initial AES decryption for Wii Discs

This commit is contained in:
Jack Andersen 2015-06-28 19:35:25 -10:00
parent 03a371b7bf
commit f297c7ff37
6 changed files with 759 additions and 7 deletions

View File

@ -4,6 +4,9 @@ CONFIG -= app_bundle
CONFIG -= qt
QT =
QMAKE_CXXFLAGS += -maes
QMAKE_LFLAGS += -maes
INCLUDEPATH += include
HEADERS += \
@ -13,7 +16,8 @@ HEADERS += \
include/IFileIO.hpp \
include/DiscBase.hpp \
include/DiscGCN.hpp \
include/DiscWii.hpp
include/DiscWii.hpp \
include/aes.hpp
SOURCES += \
lib/NODLib.cpp \
@ -22,6 +26,7 @@ SOURCES += \
lib/DiscBase.cpp \
lib/DiscGCN.cpp \
lib/DiscWii.cpp \
main.cpp \
lib/DiscIOWBFS.cpp \
lib/DiscIOISO.cpp
lib/DiscIOISO.cpp \
main.cpp \
lib/aes.cpp

View File

@ -2,7 +2,6 @@
#define __NOD_DISC_BASE__
#include <vector>
#include <list>
#include <memory>
#include <string>
#include "Util.hpp"
@ -90,10 +89,20 @@ public:
Node(const IPartition& parent, bool isDir, const char* name)
: m_parent(parent), m_kind(isDir ? NODE_DIRECTORY : NODE_FILE), m_name(name) {}
inline Kind getKind() const {return m_kind;}
std::unique_ptr<IPartReadStream> beginReadStream();
std::unique_ptr<IPartReadStream> beginReadStream() const
{
if (m_kind != NODE_FILE)
{
throw std::runtime_error("unable to stream a non-file");
return std::unique_ptr<IPartReadStream>();
}
return m_parent.beginReadStream(m_discOffset);
}
};
protected:
std::list<Node> files;
std::vector<Node> m_files;
void parseFST();
const DiscBase& m_parent;
Kind m_kind;
size_t m_offset;
@ -101,7 +110,7 @@ public:
IPartition(const DiscBase& parent, Kind kind, size_t offset)
: m_parent(parent), m_kind(kind), m_offset(offset) {}
inline Kind getKind() const {return m_kind;}
std::unique_ptr<IPartReadStream> beginReadStream(size_t offset);
virtual std::unique_ptr<IPartReadStream> beginReadStream(size_t offset=0) const=0;
};
protected:

113
include/aes.hpp Normal file
View File

@ -0,0 +1,113 @@
#ifndef __AES_HPP_
#define __AES_HPP_
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include <memory>
#include <cpuid.h>
namespace NOD
{
class IAES
{
public:
virtual void encrypt(uint8_t* iv, const uint8_t* inbuf, uint8_t* outbuf, size_t len)=0;
virtual void decrypt(uint8_t* iv, const uint8_t* inbuf, uint8_t* outbuf, size_t len)=0;
virtual void setKey(const uint8_t* key)=0;
};
class SoftwareAES : public IAES
{
protected:
uint8_t fbsub[256];
uint8_t rbsub[256];
uint8_t ptab[256], ltab[256];
uint32_t ftable[256];
uint32_t rtable[256];
uint32_t rco[30];
/* Parameter-dependent data */
int Nk, Nb, Nr;
uint8_t fi[24], ri[24];
uint32_t fkey[120];
uint32_t rkey[120];
uint8_t bmul(uint8_t x, uint8_t y);
uint32_t SubByte(uint32_t a);
uint8_t product(uint32_t x, uint32_t y);
uint32_t InvMixCol(uint32_t x);
uint8_t ByteSub(uint8_t x);
void gentables(void);
void gkey(int nb, int nk, const uint8_t* key);
void _encrypt(uint8_t* buff);
void _decrypt(uint8_t* buff);
public:
void encrypt(uint8_t* iv, const uint8_t* inbuf, uint8_t* outbuf, size_t len);
void decrypt(uint8_t* iv, const uint8_t* inbuf, uint8_t* outbuf, size_t len);
void setKey(const uint8_t* key);
};
#if __AES__
#include <wmmintrin.h>
class NiAES : public IAES
{
__m128i m_ekey[11];
__m128i m_dkey[11];
public:
void encrypt(uint8_t* iv, const uint8_t* inbuf, uint8_t* outbuf, size_t len)
{
__m128i feedback,data;
size_t i,j;
if (len%16)
len = len/16+1;
else len /= 16;
feedback = _mm_loadu_si128((__m128i*)iv);
for (i=0 ; i<len ; i++)
{
data = _mm_loadu_si128(&((__m128i*)inbuf)[i]);
feedback = _mm_xor_si128(data, feedback);
feedback = _mm_xor_si128(feedback, m_ekey[0]);
for(j=1 ; j<10 ; j++)
feedback = _mm_aesenc_si128(feedback, m_ekey[j]);
feedback = _mm_aesenclast_si128(feedback, m_ekey[j]);
_mm_storeu_si128(&((__m128i*)outbuf)[i], feedback);
}
}
void decrypt(uint8_t* iv, const uint8_t* inbuf, uint8_t* outbuf, size_t len)
{
__m128i data,feedback,last_in;
size_t i,j;
if (len%16)
len = len/16+1;
else
len /= 16;
feedback = _mm_loadu_si128((__m128i*)iv);
for (i=0 ; i<len ; i++)
{
last_in=_mm_loadu_si128(&((__m128i*)inbuf)[i]);
data = _mm_xor_si128(last_in, m_dkey[0]);
for(j=1 ; j<10 ; j++)
data = _mm_aesdec_si128(data, m_dkey[j]);
data = _mm_aesdeclast_si128(data, m_dkey[j]);
data = _mm_xor_si128(data, feedback);
_mm_storeu_si128(&((__m128i*)outbuf)[i], data);
feedback = last_in;
}
}
void setKey(const uint8_t* key);
};
#endif
std::unique_ptr<IAES> NewAES();
}
#endif //__AES_HPP_

View File

@ -8,4 +8,12 @@ DiscBase::DiscBase(std::unique_ptr<IDiscIO>&& dio)
{
}
void DiscBase::IPartition::parseFST()
{
char buf[1024];
std::unique_ptr<IPartReadStream> s = beginReadStream();
s->read(buf, 1024);
printf("");
}
}

View File

@ -1,9 +1,15 @@
#include <stdio.h>
#include "DiscWii.hpp"
#include "aes.hpp"
namespace NOD
{
static const uint8_t COMMON_KEY[] = {0xeb, 0xe4, 0x2a, 0x22,
0x5e, 0x85, 0x93, 0xe4,
0x48, 0xd9, 0xc5, 0x45,
0x73, 0x81, 0xaa, 0xf7};
class PartitionWii : public DiscBase::IPartition
{
struct Ticket
@ -156,6 +162,9 @@ class PartitionWii : public DiscBase::IPartition
Certificate m_tmdCert;
Certificate m_ticketCert;
size_t m_dataOff;
uint8_t m_decKey[16];
public:
PartitionWii(const DiscWii& parent, Kind kind, size_t offset)
: IPartition(parent, kind, offset)
@ -184,6 +193,7 @@ public:
uint32_t dataOff;
s->read(&dataOff, 4);
dataOff = SBig(dataOff) << 2;
m_dataOff = offset + dataOff;
uint32_t dataSize;
s->read(&dataSize, 4);
dataSize = SBig(dataSize) << 2;
@ -196,6 +206,68 @@ public:
m_tmdCert.read(*s.get());
m_ticketCert.read(*s.get());
/* Decrypt title key */
std::unique_ptr<IAES> aes = NewAES();
uint8_t iv[16] = {};
memcpy(iv, m_ticket.titleId, 8);
aes->setKey(COMMON_KEY);
aes->decrypt(iv, m_ticket.encKey, m_decKey, 16);
parseFST();
}
class PartReadStream : public DiscBase::IPartReadStream
{
std::unique_ptr<IAES> m_aes;
const PartitionWii& m_parent;
size_t m_baseOffset;
size_t m_offset;
std::unique_ptr<IDiscIO::IReadStream> m_dio;
uint8_t m_encBuf[0x8000];
uint8_t m_decBuf[0x7c00];
void decryptBlock()
{
m_dio->read(m_encBuf, 0x8000);
m_aes->decrypt(&m_encBuf[0x3d0], &m_encBuf[0x400], m_decBuf, 0x7c00);
}
public:
PartReadStream(const PartitionWii& parent, size_t baseOffset, size_t offset)
: m_aes(NewAES()), m_parent(parent), m_baseOffset(baseOffset), m_offset(offset)
{
m_aes->setKey(parent.m_decKey);
size_t block = m_offset / 0x7c00;
m_dio = m_parent.m_parent.getDiscIO().beginReadStream(m_baseOffset + block * 0x8000);
}
size_t read(void* buf, size_t length)
{
size_t cacheOffset = m_offset % 0x7c00;
size_t cacheSize;
uint8_t* dst = (uint8_t*)buf;
while (length)
{
decryptBlock();
cacheSize = length;
if (cacheSize + cacheOffset > 0x7c00)
cacheSize = 0x7c00 - cacheOffset;
memcpy(dst, m_decBuf + cacheOffset, cacheSize);
dst += cacheSize;
length -= cacheSize;
cacheOffset = 0;
}
m_offset += length;
return dst - (uint8_t*)buf;
}
};
std::unique_ptr<DiscBase::IPartReadStream> beginReadStream(size_t offset) const
{
return std::unique_ptr<DiscBase::IPartReadStream>(new PartReadStream(*this, m_dataOff, offset));
}
};

545
lib/aes.cpp Normal file
View File

@ -0,0 +1,545 @@
/* Rijndael Block Cipher - aes.c
Written by Mike Scott 21st April 1999
mike@compapp.dcu.ie
Permission for free direct or derivative use is granted subject
to compliance with any conditions that the originators of the
algorithm place on its exploitation.
*/
#include "aes.hpp"
#include <stdio.h>
//#include <stdlib.h>
#include <string.h>
namespace NOD
{
/* rotates x one bit to the left */
#define ROTL(x) (((x)>>7)|((x)<<1))
/* Rotates 32-bit word left by 1, 2 or 3 byte */
#define ROTL8(x) (((x)<<8)|((x)>>24))
#define ROTL16(x) (((x)<<16)|((x)>>16))
#define ROTL24(x) (((x)<<24)|((x)>>8))
/* Fixed Data */
static const uint8_t InCo[4] = {0xB, 0xD, 0x9, 0xE}; /* Inverse Coefficients */
static uint32_t pack(const uint8_t* b)
{
/* pack bytes into a 32-bit Word */
return ((uint32_t)b[3] << 24) | ((uint32_t)b[2] << 16) | ((uint32_t)b[1] << 8) | (uint32_t)b[0];
}
static void unpack(uint32_t a, uint8_t* b)
{
/* unpack bytes from a word */
b[0] = (uint8_t)a;
b[1] = (uint8_t)(a >> 8);
b[2] = (uint8_t)(a >> 16);
b[3] = (uint8_t)(a >> 24);
}
static uint8_t xtime(uint8_t a)
{
uint8_t b;
if (a & 0x80) b = 0x1B;
else b = 0;
a <<= 1;
a ^= b;
return a;
}
uint8_t SoftwareAES::bmul(uint8_t x, uint8_t y)
{
/* x.y= AntiLog(Log(x) + Log(y)) */
if (x && y) return ptab[(ltab[x] + ltab[y]) % 255];
else return 0;
}
uint32_t SoftwareAES::SubByte(uint32_t a)
{
uint8_t b[4];
unpack(a, b);
b[0] = fbsub[b[0]];
b[1] = fbsub[b[1]];
b[2] = fbsub[b[2]];
b[3] = fbsub[b[3]];
return pack(b);
}
uint8_t SoftwareAES::product(uint32_t x, uint32_t y)
{
/* dot product of two 4-byte arrays */
uint8_t xb[4], yb[4];
unpack(x, xb);
unpack(y, yb);
return bmul(xb[0], yb[0])^bmul(xb[1], yb[1])^bmul(xb[2], yb[2])^bmul(xb[3], yb[3]);
}
uint32_t SoftwareAES::InvMixCol(uint32_t x)
{
/* matrix Multiplication */
uint32_t y, m;
uint8_t b[4];
m = pack(InCo);
b[3] = product(m, x);
m = ROTL24(m);
b[2] = product(m, x);
m = ROTL24(m);
b[1] = product(m, x);
m = ROTL24(m);
b[0] = product(m, x);
y = pack(b);
return y;
}
uint8_t SoftwareAES::ByteSub(uint8_t x)
{
uint8_t y = ptab[255 - ltab[x]]; /* multiplicative inverse */
x = y;
x = ROTL(x);
y ^= x;
x = ROTL(x);
y ^= x;
x = ROTL(x);
y ^= x;
x = ROTL(x);
y ^= x;
y ^= 0x63;
return y;
}
void SoftwareAES::gentables(void)
{
/* generate tables */
int i;
uint8_t y, b[4];
/* use 3 as primitive root to generate power and log tables */
ltab[0] = 0;
ptab[0] = 1;
ltab[1] = 0;
ptab[1] = 3;
ltab[3] = 1;
for (i = 2; i < 256; i++)
{
ptab[i] = ptab[i - 1] ^ xtime(ptab[i - 1]);
ltab[ptab[i]] = i;
}
/* affine transformation:- each bit is xored with itself shifted one bit */
fbsub[0] = 0x63;
rbsub[0x63] = 0;
for (i = 1; i < 256; i++)
{
y = ByteSub((uint8_t)i);
fbsub[i] = y;
rbsub[y] = i;
}
for (i = 0, y = 1; i < 30; i++)
{
rco[i] = y;
y = xtime(y);
}
/* calculate forward and reverse tables */
for (i = 0; i < 256; i++)
{
y = fbsub[i];
b[3] = y ^ xtime(y);
b[2] = y;
b[1] = y;
b[0] = xtime(y);
ftable[i] = pack(b);
y = rbsub[i];
b[3] = bmul(InCo[0], y);
b[2] = bmul(InCo[1], y);
b[1] = bmul(InCo[2], y);
b[0] = bmul(InCo[3], y);
rtable[i] = pack(b);
}
}
void SoftwareAES::gkey(int nb, int nk, const uint8_t* key)
{
/* blocksize=32*nb bits. Key=32*nk bits */
/* currently nb,bk = 4, 6 or 8 */
/* key comes as 4*Nk bytes */
/* Key Scheduler. Create expanded encryption key */
int i, j, k, m, N;
int C1, C2, C3;
uint32_t CipherKey[8];
Nb = nb;
Nk = nk;
/* Nr is number of rounds */
if (Nb >= Nk) Nr = 6 + Nb;
else Nr = 6 + Nk;
C1 = 1;
if (Nb < 8) { C2 = 2; C3 = 3; }
else { C2 = 3; C3 = 4; }
/* pre-calculate forward and reverse increments */
for (m = j = 0; j < nb; j++, m += 3)
{
fi[m] = (j + C1) % nb;
fi[m + 1] = (j + C2) % nb;
fi[m + 2] = (j + C3) % nb;
ri[m] = (nb + j - C1) % nb;
ri[m + 1] = (nb + j - C2) % nb;
ri[m + 2] = (nb + j - C3) % nb;
}
N = Nb * (Nr + 1);
for (i = j = 0; i < Nk; i++, j += 4)
{
CipherKey[i] = pack(key + j);
}
for (i = 0; i < Nk; i++) fkey[i] = CipherKey[i];
for (j = Nk, k = 0; j < N; j += Nk, k++)
{
fkey[j] = fkey[j - Nk] ^ SubByte(ROTL24(fkey[j - 1]))^rco[k];
if (Nk <= 6)
{
for (i = 1; i < Nk && (i + j) < N; i++)
fkey[i + j] = fkey[i + j - Nk] ^ fkey[i + j - 1];
}
else
{
for (i = 1; i < 4 && (i + j) < N; i++)
fkey[i + j] = fkey[i + j - Nk] ^ fkey[i + j - 1];
if ((j + 4) < N) fkey[j + 4] = fkey[j + 4 - Nk] ^ SubByte(fkey[j + 3]);
for (i = 5; i < Nk && (i + j) < N; i++)
fkey[i + j] = fkey[i + j - Nk] ^ fkey[i + j - 1];
}
}
/* now for the expanded decrypt key in reverse order */
for (j = 0; j < Nb; j++) rkey[j + N - Nb] = fkey[j];
for (i = Nb; i < N - Nb; i += Nb)
{
k = N - Nb - i;
for (j = 0; j < Nb; j++) rkey[k + j] = InvMixCol(fkey[i + j]);
}
for (j = N - Nb; j < N; j++) rkey[j - N + Nb] = fkey[j];
}
/* There is an obvious time/space trade-off possible here. *
* Instead of just one ftable[], I could have 4, the other *
* 3 pre-rotated to save the ROTL8, ROTL16 and ROTL24 overhead */
void SoftwareAES::_encrypt(uint8_t* buff)
{
int i, j, k, m;
uint32_t a[8], b[8], *x, *y, *t;
for (i = j = 0; i < Nb; i++, j += 4)
{
a[i] = pack(buff + j);
a[i] ^= fkey[i];
}
k = Nb;
x = a;
y = b;
/* State alternates between a and b */
for (i = 1; i < Nr; i++)
{
/* Nr is number of rounds. May be odd. */
/* if Nb is fixed - unroll this next
loop and hard-code in the values of fi[] */
for (m = j = 0; j < Nb; j++, m += 3)
{
/* deal with each 32-bit element of the State */
/* This is the time-critical bit */
y[j] = fkey[k++] ^ ftable[(uint8_t)x[j]] ^
ROTL8(ftable[(uint8_t)(x[fi[m]] >> 8)])^
ROTL16(ftable[(uint8_t)(x[fi[m + 1]] >> 16)])^
ROTL24(ftable[(uint8_t)(x[fi[m + 2]] >> 24)]);
}
t = x;
x = y;
y = t; /* swap pointers */
}
/* Last Round - unroll if possible */
for (m = j = 0; j < Nb; j++, m += 3)
{
y[j] = fkey[k++] ^ (uint32_t)fbsub[(uint8_t)x[j]] ^
ROTL8((uint32_t)fbsub[(uint8_t)(x[fi[m]] >> 8)])^
ROTL16((uint32_t)fbsub[(uint8_t)(x[fi[m + 1]] >> 16)])^
ROTL24((uint32_t)fbsub[(uint8_t)(x[fi[m + 2]] >> 24)]);
}
for (i = j = 0; i < Nb; i++, j += 4)
{
unpack(y[i], (uint8_t*)&buff[j]);
x[i] = y[i] = 0; /* clean up stack */
}
return;
}
void SoftwareAES::_decrypt(uint8_t* buff)
{
int i, j, k, m;
uint32_t a[8], b[8], *x, *y, *t;
for (i = j = 0; i < Nb; i++, j += 4)
{
a[i] = pack(buff + j);
a[i] ^= rkey[i];
}
k = Nb;
x = a;
y = b;
/* State alternates between a and b */
for (i = 1; i < Nr; i++)
{
/* Nr is number of rounds. May be odd. */
/* if Nb is fixed - unroll this next
loop and hard-code in the values of ri[] */
for (m = j = 0; j < Nb; j++, m += 3)
{
/* This is the time-critical bit */
y[j] = rkey[k++] ^ rtable[(uint8_t)x[j]] ^
ROTL8(rtable[(uint8_t)(x[ri[m]] >> 8)])^
ROTL16(rtable[(uint8_t)(x[ri[m + 1]] >> 16)])^
ROTL24(rtable[(uint8_t)(x[ri[m + 2]] >> 24)]);
}
t = x;
x = y;
y = t; /* swap pointers */
}
/* Last Round - unroll if possible */
for (m = j = 0; j < Nb; j++, m += 3)
{
y[j] = rkey[k++] ^ (uint32_t)rbsub[(uint8_t)x[j]] ^
ROTL8((uint32_t)rbsub[(uint8_t)(x[ri[m]] >> 8)])^
ROTL16((uint32_t)rbsub[(uint8_t)(x[ri[m + 1]] >> 16)])^
ROTL24((uint32_t)rbsub[(uint8_t)(x[ri[m + 2]] >> 24)]);
}
for (i = j = 0; i < Nb; i++, j += 4)
{
unpack(y[i], (uint8_t*)&buff[j]);
x[i] = y[i] = 0; /* clean up stack */
}
return;
}
void SoftwareAES::setKey(const uint8_t* key)
{
gentables();
gkey(4, 4, key);
}
// CBC mode decryption
void SoftwareAES::decrypt(uint8_t* iv, const uint8_t* inbuf, uint8_t* outbuf, size_t len)
{
uint8_t block[16];
uint8_t* ctext_ptr;
unsigned int blockno = 0, i;
//fprintf( stderr,"aes_decrypt(%p, %p, %p, %lld)\n", iv, inbuf, outbuf, len );
//printf("aes_decrypt(%p, %p, %p, %lld)\n", iv, inbuf, outbuf, len);
for (blockno = 0; blockno <= (len / sizeof(block)); blockno++)
{
unsigned int fraction;
if (blockno == (len / sizeof(block))) // last block
{
fraction = len % sizeof(block);
if (fraction == 0) break;
memset(block, 0, sizeof(block));
}
else fraction = 16;
// debug_printf("block %d: fraction = %d\n", blockno, fraction);
memcpy(block, inbuf + blockno * sizeof(block), fraction);
_decrypt(block);
if (blockno == 0) ctext_ptr = iv;
else ctext_ptr = (uint8_t*)(inbuf + (blockno - 1) * sizeof(block));
for (i = 0; i < fraction; i++)
outbuf[blockno * sizeof(block) + i] =
ctext_ptr[i] ^ block[i];
// debug_printf("Block %d output: ", blockno);
// hexdump(outbuf + blockno*sizeof(block), 16);
}
}
// CBC mode encryption
void SoftwareAES::encrypt(uint8_t* iv, const uint8_t* inbuf, uint8_t* outbuf, size_t len)
{
uint8_t block[16];
unsigned int blockno = 0, i;
//printf("aes_decrypt(%p, %p, %p, %lld)\n", iv, inbuf, outbuf, len);
//fprintf( stderr,"aes_encrypt(%p, %p, %p, %lld)\n", iv, inbuf, outbuf, len);
for (blockno = 0; blockno <= (len / sizeof(block)); blockno++)
{
unsigned int fraction;
if (blockno == (len / sizeof(block))) // last block
{
fraction = len % sizeof(block);
if (fraction == 0) break;
memset(block, 0, sizeof(block));
}
else fraction = 16;
// debug_printf("block %d: fraction = %d\n", blockno, fraction);
memcpy(block, inbuf + blockno * sizeof(block), fraction);
for (i = 0; i < fraction; i++)
block[i] = inbuf[blockno * sizeof(block) + i] ^ iv[i];
_encrypt(block);
memcpy(iv, block, sizeof(block));
memcpy(outbuf + blockno * sizeof(block), block, sizeof(block));
// debug_printf("Block %d output: ", blockno);
// hexdump(outbuf + blockno*sizeof(block), 16);
}
}
#if __AES__
static inline __m128i AES_128_ASSIST (__m128i temp1, __m128i temp2)
{
__m128i temp3;
temp2 = _mm_shuffle_epi32 (temp2 ,0xff);
temp3 = _mm_slli_si128 (temp1, 0x4);
temp1 = _mm_xor_si128 (temp1, temp3);
temp3 = _mm_slli_si128 (temp3, 0x4);
temp1 = _mm_xor_si128 (temp1, temp3);
temp3 = _mm_slli_si128 (temp3, 0x4);
temp1 = _mm_xor_si128 (temp1, temp3);
temp1 = _mm_xor_si128 (temp1, temp2);
return temp1;
}
void NiAES::setKey(const uint8_t* key)
{
__m128i temp1, temp2;
__m128i* Key_Schedule = m_ekey;
__m128i* Dec_Key_Schedule = m_dkey;
temp1 = _mm_loadu_si128((__m128i*)key);
Key_Schedule[0] = temp1;
Dec_Key_Schedule[0] = temp1;
temp2 = _mm_aeskeygenassist_si128 (temp1,0x1);
temp1 = AES_128_ASSIST(temp1, temp2);
Key_Schedule[1] = temp1;
Dec_Key_Schedule[1] = _mm_aesimc_si128(temp1);
temp2 = _mm_aeskeygenassist_si128 (temp1,0x2);
temp1 = AES_128_ASSIST(temp1, temp2);
Key_Schedule[2] = temp1;
Dec_Key_Schedule[2] = _mm_aesimc_si128(temp1);
temp2 = _mm_aeskeygenassist_si128 (temp1,0x4);
temp1 = AES_128_ASSIST(temp1, temp2);
Key_Schedule[3] = temp1;
Dec_Key_Schedule[3] = _mm_aesimc_si128(temp1);
temp2 = _mm_aeskeygenassist_si128 (temp1,0x8);
temp1 = AES_128_ASSIST(temp1, temp2);
Key_Schedule[4] = temp1;
Dec_Key_Schedule[4] = _mm_aesimc_si128(temp1);
temp2 = _mm_aeskeygenassist_si128 (temp1,0x10);
temp1 = AES_128_ASSIST(temp1, temp2);
Key_Schedule[5] = temp1;
Dec_Key_Schedule[5] = _mm_aesimc_si128(temp1);
temp2 = _mm_aeskeygenassist_si128 (temp1,0x20);
temp1 = AES_128_ASSIST(temp1, temp2);
Key_Schedule[6] = temp1;
Dec_Key_Schedule[6] = _mm_aesimc_si128(temp1);
temp2 = _mm_aeskeygenassist_si128 (temp1,0x40);
temp1 = AES_128_ASSIST(temp1, temp2);
Key_Schedule[7] = temp1;
Dec_Key_Schedule[7] = _mm_aesimc_si128(temp1);
temp2 = _mm_aeskeygenassist_si128 (temp1,0x80);
temp1 = AES_128_ASSIST(temp1, temp2);
Key_Schedule[8] = temp1;
Dec_Key_Schedule[8] = _mm_aesimc_si128(temp1);
temp2 = _mm_aeskeygenassist_si128 (temp1,0x1b);
temp1 = AES_128_ASSIST(temp1, temp2);
Key_Schedule[9] = temp1;
Dec_Key_Schedule[9] = _mm_aesimc_si128(temp1);
temp2 = _mm_aeskeygenassist_si128 (temp1,0x36);
temp1 = AES_128_ASSIST(temp1, temp2);
Key_Schedule[10] = temp1;
Dec_Key_Schedule[10] = temp1;
}
#endif
static int HAS_AES_NI = -1;
std::unique_ptr<IAES> NewAES()
{
if (HAS_AES_NI == -1)
{
unsigned int a,b,c,d;
__cpuid(1, a,b,c,d);
if (c & 0x2000000)
HAS_AES_NI = 1;
else
HAS_AES_NI = 0;
}
if (HAS_AES_NI)
return std::unique_ptr<IAES>(new NiAES);
else
return std::unique_ptr<IAES>(new SoftwareAES);
}
}