nod/lib/DiscWii.cpp

1363 lines
42 KiB
C++

#include "nod/DiscWii.hpp"
#include <cinttypes>
#include <cstdint>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include "nod/aes.hpp"
#include "nod/nod.hpp"
#include "nod/sha1.h"
#include "nod/Util.hpp"
namespace nod {
static const uint8_t COMMON_KEYS[2][16] = {
/* Normal */
{0xeb, 0xe4, 0x2a, 0x22, 0x5e, 0x85, 0x93, 0xe4, 0x48, 0xd9, 0xc5, 0x45, 0x73, 0x81, 0xaa, 0xf7},
/* Korean */
{0x63, 0xb8, 0x2b, 0xb4, 0xf4, 0x61, 0x4e, 0x2e, 0x13, 0xf2, 0xfe, 0xfb, 0xba, 0x4c, 0x9b, 0x7e}};
class PartitionWii : public IPartition {
enum class SigType : uint32_t { RSA_4096 = 0x00010000, RSA_2048 = 0x00010001, ELIPTICAL_CURVE = 0x00010002 };
enum class KeyType : uint32_t { RSA_4096 = 0x00000000, RSA_2048 = 0x00000001 };
struct Ticket {
uint32_t sigType;
char sig[256];
char padding[60];
char sigIssuer[64];
char ecdh[60];
char padding1[3];
unsigned char encKey[16];
char padding2;
char ticketId[8];
char consoleId[4];
char titleId[8];
char padding3[2];
uint16_t ticketVersion;
uint32_t permittedTitlesMask;
uint32_t permitMask;
char titleExportAllowed;
char commonKeyIdx;
char padding4[48];
char contentAccessPermissions[64];
char padding5[2];
struct TimeLimit {
uint32_t enableTimeLimit;
uint32_t timeLimit;
} timeLimits[8];
void read(IReadStream& s) {
s.read(this, 676);
sigType = SBig(sigType);
ticketVersion = SBig(ticketVersion);
permittedTitlesMask = SBig(permittedTitlesMask);
permitMask = SBig(permitMask);
for (size_t t = 0; t < 8; ++t) {
timeLimits[t].enableTimeLimit = SBig(timeLimits[t].enableTimeLimit);
timeLimits[t].timeLimit = SBig(timeLimits[t].timeLimit);
}
}
void write(IWriteStream& s) const {
Ticket tik = *this;
tik.sigType = SBig(tik.sigType);
tik.ticketVersion = SBig(tik.ticketVersion);
tik.permittedTitlesMask = SBig(tik.permittedTitlesMask);
tik.permitMask = SBig(tik.permitMask);
for (size_t t = 0; t < 8; ++t) {
tik.timeLimits[t].enableTimeLimit = SBig(tik.timeLimits[t].enableTimeLimit);
tik.timeLimits[t].timeLimit = SBig(tik.timeLimits[t].timeLimit);
}
s.write(&tik, 676);
}
} m_ticket;
struct TMD {
SigType sigType;
char sig[256];
char padding[60];
char sigIssuer[64];
char version;
char caCrlVersion;
char signerCrlVersion;
char padding1;
uint32_t iosIdMajor;
uint32_t iosIdMinor;
uint32_t titleIdMajor;
char titleIdMinor[4];
uint32_t titleType;
uint16_t groupId;
char padding2[62];
uint32_t accessFlags;
uint16_t titleVersion;
uint16_t numContents;
uint16_t bootIdx;
uint16_t padding3;
struct Content {
uint32_t id;
uint16_t index;
uint16_t type;
uint64_t size;
char hash[20];
void read(IReadStream& s) {
s.read(this, 36);
id = SBig(id);
index = SBig(index);
type = SBig(type);
size = SBig(size);
}
void write(IWriteStream& s) const {
Content c = *this;
c.id = SBig(c.id);
c.index = SBig(c.index);
c.type = SBig(c.type);
c.size = SBig(c.size);
s.write(&c, 36);
}
};
std::vector<Content> contents;
void read(IReadStream& s) {
s.read(this, 484);
sigType = SigType(SBig(uint32_t(sigType)));
iosIdMajor = SBig(iosIdMajor);
iosIdMinor = SBig(iosIdMinor);
titleIdMajor = SBig(titleIdMajor);
titleType = SBig(titleType);
groupId = SBig(groupId);
accessFlags = SBig(accessFlags);
titleVersion = SBig(titleVersion);
numContents = SBig(numContents);
bootIdx = SBig(bootIdx);
contents.clear();
contents.reserve(numContents);
for (uint16_t c = 0; c < numContents; ++c) {
contents.emplace_back();
contents.back().read(s);
}
}
void write(IWriteStream& s) const {
TMD tmd = *this;
tmd.sigType = SigType(SBig(uint32_t(tmd.sigType)));
tmd.iosIdMajor = SBig(tmd.iosIdMajor);
tmd.iosIdMinor = SBig(tmd.iosIdMinor);
tmd.titleIdMajor = SBig(tmd.titleIdMajor);
tmd.titleType = SBig(tmd.titleType);
tmd.groupId = SBig(tmd.groupId);
tmd.accessFlags = SBig(tmd.accessFlags);
tmd.titleVersion = SBig(tmd.titleVersion);
tmd.numContents = SBig(tmd.numContents);
tmd.bootIdx = SBig(tmd.bootIdx);
s.write(&tmd, 484);
for (uint16_t c = 0; c < numContents; ++c)
tmd.contents.back().write(s);
}
} m_tmd;
struct Certificate {
SigType sigType;
char sig[512];
char issuer[64];
KeyType keyType;
char subject[64];
char key[512];
uint32_t modulus;
uint32_t pubExp;
void read(IReadStream& s) {
s.read(&sigType, 4);
sigType = SigType(SBig(uint32_t(sigType)));
if (sigType == SigType::RSA_4096)
s.read(sig, 512);
else if (sigType == SigType::RSA_2048)
s.read(sig, 256);
else if (sigType == SigType::ELIPTICAL_CURVE)
s.read(sig, 64);
s.seek(60, SEEK_CUR);
s.read(issuer, 64);
s.read(&keyType, 4);
s.read(subject, 64);
keyType = KeyType(SBig(uint32_t(keyType)));
if (keyType == KeyType::RSA_4096)
s.read(key, 512);
else if (keyType == KeyType::RSA_2048)
s.read(key, 256);
s.read(&modulus, 8);
modulus = SBig(modulus);
pubExp = SBig(pubExp);
s.seek(52, SEEK_CUR);
}
void write(IWriteStream& s) const {
Certificate c = *this;
c.sigType = SigType(SBig(uint32_t(c.sigType)));
s.write(&c.sigType, 4);
if (sigType == SigType::RSA_4096)
s.write(sig, 512);
else if (sigType == SigType::RSA_2048)
s.write(sig, 256);
else if (sigType == SigType::ELIPTICAL_CURVE)
s.write(sig, 64);
uint32_t zero = 0;
for (int i = 0; i < 15; ++i)
s.write(&zero, 4);
s.write(issuer, 64);
c.keyType = KeyType(SBig(uint32_t(c.keyType)));
s.write(&c.keyType, 4);
s.write(subject, 64);
if (keyType == KeyType::RSA_4096)
s.write(key, 512);
else if (keyType == KeyType::RSA_2048)
s.write(key, 256);
c.modulus = SBig(c.modulus);
c.pubExp = SBig(c.pubExp);
s.write(&c.modulus, 8);
for (int i = 0; i < 13; ++i)
s.write(&zero, 4);
}
};
Certificate m_caCert;
Certificate m_tmdCert;
Certificate m_ticketCert;
std::unique_ptr<uint8_t[]> m_h3Data;
uint64_t m_dataOff;
uint8_t m_decKey[16];
public:
PartitionWii(const DiscWii& parent, PartitionKind kind, uint64_t offset, bool& err)
: IPartition(parent, kind, true, offset) {
std::unique_ptr<IReadStream> s = parent.getDiscIO().beginReadStream(offset);
if (!s) {
err = true;
return;
}
m_ticket.read(*s);
uint32_t tmdSize;
s->read(&tmdSize, 4);
tmdSize = SBig(tmdSize);
uint32_t tmdOff;
s->read(&tmdOff, 4);
tmdOff = SBig(tmdOff) << 2;
uint32_t certChainSize;
s->read(&certChainSize, 4);
certChainSize = SBig(certChainSize);
uint32_t certChainOff;
s->read(&certChainOff, 4);
certChainOff = SBig(certChainOff) << 2;
uint32_t globalHashTableOff;
s->read(&globalHashTableOff, 4);
globalHashTableOff = SBig(globalHashTableOff) << 2;
uint32_t dataOff;
s->read(&dataOff, 4);
dataOff = SBig(dataOff) << 2;
m_dataOff = offset + dataOff;
uint32_t dataSize;
s->read(&dataSize, 4);
dataSize = SBig(dataSize) << 2;
s->seek(offset + tmdOff);
m_tmd.read(*s);
s->seek(offset + certChainOff);
m_caCert.read(*s);
m_tmdCert.read(*s);
m_ticketCert.read(*s);
s->seek(globalHashTableOff);
m_h3Data.reset(new uint8_t[0x18000]);
s->read(m_h3Data.get(), 0x18000);
/* Decrypt title key */
std::unique_ptr<IAES> aes = NewAES();
uint8_t iv[16] = {};
memmove(iv, m_ticket.titleId, 8);
aes->setKey(COMMON_KEYS[(int)m_ticket.commonKeyIdx]);
aes->decrypt(iv, m_ticket.encKey, m_decKey, 16);
/* Wii-specific header reads (now using title key to decrypt) */
std::unique_ptr<IPartReadStream> ds = beginReadStream(0x0);
if (!ds) {
err = true;
return;
}
m_header.read(*ds);
m_bi2Header.read(*ds);
m_dolOff = m_header.m_dolOff << 2;
m_fstOff = m_header.m_fstOff << 2;
m_fstSz = m_header.m_fstSz << 2;
ds->seek(0x2440 + 0x14);
uint32_t vals[2];
ds->read(vals, 8);
m_apploaderSz = 32 + SBig(vals[0]) + SBig(vals[1]);
/* Yay files!! */
parseFST(*ds);
/* Also make DOL header and size handy */
ds->seek(m_dolOff);
parseDOL(*ds);
}
class PartReadStream : public IPartReadStream {
std::unique_ptr<IAES> m_aes;
const PartitionWii& m_parent;
uint64_t m_baseOffset;
uint64_t m_offset;
std::unique_ptr<IReadStream> m_dio;
size_t m_curBlock = SIZE_MAX;
uint8_t m_encBuf[0x8000];
uint8_t m_decBuf[0x7c00];
void decryptBlock() {
if (m_aes) {
m_dio->read(m_encBuf, 0x8000);
m_aes->decrypt(&m_encBuf[0x3d0], &m_encBuf[0x400], m_decBuf, 0x7c00);
} else {
m_dio->seek(0x400, SEEK_CUR);
m_dio->read(m_decBuf, 0x7c00);
}
}
public:
PartReadStream(const PartitionWii& parent, uint64_t baseOffset, uint64_t offset, bool& err)
: m_parent(parent), m_baseOffset(baseOffset), m_offset(offset) {
if (m_parent.m_parent.getDiscIO().hasWiiCrypto()) {
m_aes = NewAES();
m_aes->setKey(parent.m_decKey);
}
size_t block = m_offset / 0x7c00;
m_dio = m_parent.m_parent.getDiscIO().beginReadStream(m_baseOffset + block * 0x8000);
if (!m_dio) {
err = true;
return;
}
decryptBlock();
m_curBlock = block;
}
void seek(int64_t offset, int whence) override {
if (whence == SEEK_SET)
m_offset = offset;
else if (whence == SEEK_CUR)
m_offset += offset;
else
return;
size_t block = m_offset / 0x7c00;
if (block != m_curBlock) {
m_dio->seek(m_baseOffset + block * 0x8000);
decryptBlock();
m_curBlock = block;
}
}
uint64_t position() const override { return m_offset; }
uint64_t read(void* buf, uint64_t length) override {
auto blockAndRemOff = nod::div(m_offset, uint64_t(0x7c00));
uint64_t rem = length;
uint8_t* dst = (uint8_t*)buf;
while (rem) {
if (blockAndRemOff.quot != m_curBlock) {
decryptBlock();
m_curBlock = blockAndRemOff.quot;
}
uint64_t cacheSize = rem;
if (cacheSize + blockAndRemOff.rem > 0x7c00)
cacheSize = 0x7c00 - blockAndRemOff.rem;
memmove(dst, m_decBuf + blockAndRemOff.rem, cacheSize);
dst += cacheSize;
rem -= cacheSize;
blockAndRemOff.rem = 0;
++blockAndRemOff.quot;
}
m_offset += length;
return dst - (uint8_t*)buf;
}
};
std::unique_ptr<IPartReadStream> beginReadStream(uint64_t offset) const override {
bool err = false;
auto ret = std::make_unique<PartReadStream>(*this, m_dataOff, offset, err);
if (err) {
return nullptr;
}
return ret;
}
uint64_t normalizeOffset(uint64_t anOffset) const override { return anOffset << 2; }
std::unique_ptr<uint8_t[]> readPartitionHeaderBuf(size_t& szOut) const {
{
std::unique_ptr<IReadStream> rs = m_parent.getDiscIO().beginReadStream(m_offset + 0x2B4);
if (!rs) {
return nullptr;
}
uint32_t h3;
if (rs->read(&h3, 4) != 4) {
LogModule.report(logvisor::Error, FMT_STRING("unable to read H3 offset apploader"));
return nullptr;
}
h3 = SBig(h3);
szOut = uint64_t(h3) << 2;
}
std::unique_ptr<IReadStream> rs = m_parent.getDiscIO().beginReadStream(m_offset);
if (!rs) {
return nullptr;
}
std::unique_ptr<uint8_t[]> buf(new uint8_t[szOut]);
rs->read(buf.get(), szOut);
return buf;
}
bool extractCryptoFiles(std::string_view basePath, const ExtractionContext& ctx) const override {
Sstat theStat;
std::string basePathStr(basePath);
/* Extract Ticket */
std::string ticketPath = basePathStr + "/ticket.bin";
if (ctx.force || Stat(ticketPath.c_str(), &theStat)) {
if (ctx.progressCB)
ctx.progressCB("ticket.bin", 0.f);
auto ws = NewFileIO(ticketPath)->beginWriteStream();
if (!ws)
return false;
m_ticket.write(*ws);
}
/* Extract TMD */
std::string tmdPath = basePathStr + "/tmd.bin";
if (ctx.force || Stat(tmdPath.c_str(), &theStat)) {
if (ctx.progressCB)
ctx.progressCB("tmd.bin", 0.f);
auto ws = NewFileIO(tmdPath)->beginWriteStream();
if (!ws)
return false;
m_tmd.write(*ws);
}
/* Extract Certs */
std::string certPath = basePathStr + "/cert.bin";
if (ctx.force || Stat(certPath.c_str(), &theStat)) {
if (ctx.progressCB)
ctx.progressCB("cert.bin", 0.f);
auto ws = NewFileIO(certPath)->beginWriteStream();
if (!ws)
return false;
m_caCert.write(*ws);
m_tmdCert.write(*ws);
m_ticketCert.write(*ws);
}
/* Extract H3 */
std::string h3Path = basePathStr + "/h3.bin";
if (ctx.force || Stat(h3Path.c_str(), &theStat)) {
if (ctx.progressCB)
ctx.progressCB("h3.bin", 0.f);
auto ws = NewFileIO(h3Path)->beginWriteStream();
if (!ws)
return false;
ws->write(m_h3Data.get(), 0x18000);
}
return true;
}
};
DiscWii::DiscWii(std::unique_ptr<IDiscIO>&& dio, bool& err) : DiscBase(std::move(dio), err) {
if (err)
return;
/* Read partition info */
struct PartInfo {
uint32_t partCount;
uint32_t partInfoOff;
struct Part {
uint32_t partDataOff;
PartitionKind partType;
} parts[4];
PartInfo(IDiscIO& dio, bool& err) {
std::unique_ptr<IReadStream> s = dio.beginReadStream(0x40000);
if (!s) {
err = true;
return;
}
s->read(this, 32);
partCount = SBig(partCount);
partInfoOff = SBig(partInfoOff);
s->seek(partInfoOff << 2);
for (uint32_t p = 0; p < partCount && p < 4; ++p) {
s->read(&parts[p], 8);
parts[p].partDataOff = SBig(parts[p].partDataOff);
parts[p].partType = PartitionKind(SBig(uint32_t(parts[p].partType)));
}
}
} partInfo(*m_discIO, err);
if (err)
return;
/* Iterate for data partition */
m_partitions.reserve(partInfo.partCount);
for (uint32_t p = 0; p < partInfo.partCount && p < 4; ++p) {
PartInfo::Part& part = partInfo.parts[p];
PartitionKind kind;
switch (part.partType) {
case PartitionKind::Data:
case PartitionKind::Update:
case PartitionKind::Channel:
kind = part.partType;
break;
default:
LogModule.report(logvisor::Error, FMT_STRING("invalid partition type {}"), part.partType);
err = true;
return;
}
m_partitions.emplace_back(std::make_unique<PartitionWii>(*this, kind, part.partDataOff << 2, err));
if (err)
return;
}
}
DiscBuilderWii DiscWii::makeMergeBuilder(std::string_view outPath, bool dualLayer, FProgress progressCB) {
return DiscBuilderWii(outPath, dualLayer, progressCB);
}
bool DiscWii::extractDiscHeaderFiles(std::string_view basePath, const ExtractionContext& ctx) const {
std::string basePathStr(basePath);
if (Mkdir((basePathStr + "/disc").c_str(), 0755) && errno != EEXIST) {
LogModule.report(logvisor::Error, FMT_STRING("unable to mkdir '{}/disc'"), basePathStr);
return false;
}
Sstat theStat;
/* Extract Header */
std::string headerPath = basePathStr + "/disc/header.bin";
if (ctx.force || Stat(headerPath.c_str(), &theStat)) {
if (ctx.progressCB)
ctx.progressCB("header.bin", 0.f);
std::unique_ptr<IReadStream> rs = getDiscIO().beginReadStream(0x0);
if (!rs)
return false;
Header header;
header.read(*rs);
auto ws = NewFileIO(headerPath)->beginWriteStream();
if (!ws)
return false;
header.write(*ws);
}
/* Extract Region info */
std::string regionPath = basePathStr + "/disc/region.bin";
if (ctx.force || Stat(regionPath.c_str(), &theStat)) {
if (ctx.progressCB)
ctx.progressCB("header.bin", 0.f);
std::unique_ptr<IReadStream> rs = getDiscIO().beginReadStream(0x4E000);
if (!rs)
return false;
std::unique_ptr<uint8_t[]> buf(new uint8_t[0x20]);
rs->read(buf.get(), 0x20);
auto ws = NewFileIO(regionPath)->beginWriteStream();
if (!ws)
return false;
ws->write(buf.get(), 0x20);
}
return true;
}
static const uint8_t ZEROIV[16] = {0};
class PartitionBuilderWii : public DiscBuilderBase::PartitionBuilderBase {
friend class DiscBuilderWii;
friend class DiscMergerWii;
uint64_t m_baseOffset;
uint64_t m_userOffset = 0;
uint64_t m_curUser = 0x1F0000;
std::unique_ptr<IAES> m_aes;
uint8_t m_h3[4916][20] = {};
public:
class PartWriteStream : public IPartWriteStream {
friend class PartitionBuilderWii;
PartitionBuilderWii& m_parent;
uint64_t m_baseOffset;
uint64_t m_offset;
std::unique_ptr<IFileIO::IWriteStream> m_fio;
bool m_closed = false;
size_t m_curGroup = SIZE_MAX;
char m_buf[0x200000];
void encryptGroup(uint8_t h3Out[20]) {
sha1nfo sha;
uint8_t h2[8][20];
for (int s = 0; s < 8; ++s) {
char* ptr1 = m_buf + s * 0x40000;
uint8_t h1[8][20];
for (int c = 0; c < 8; ++c) {
char* ptr0 = ptr1 + c * 0x8000;
uint8_t h0[31][20];
for (int j = 0; j < 31; ++j) {
sha1_init(&sha);
sha1_write(&sha, ptr0 + (j + 1) * 0x400, 0x400);
memmove(h0[j], sha1_result(&sha), 20);
}
sha1_init(&sha);
sha1_write(&sha, (char*)h0, 0x26C);
memmove(h1[c], sha1_result(&sha), 20);
memmove(ptr0, h0, 0x26C);
memset(ptr0 + 0x26C, 0, 0x014);
}
sha1_init(&sha);
sha1_write(&sha, (char*)h1, 0x0A0);
memmove(h2[s], sha1_result(&sha), 20);
for (int c = 0; c < 8; ++c) {
char* ptr0 = ptr1 + c * 0x8000;
memmove(ptr0 + 0x280, h1, 0x0A0);
memset(ptr0 + 0x320, 0, 0x020);
}
}
sha1_init(&sha);
sha1_write(&sha, (char*)h2, 0x0A0);
memmove(h3Out, sha1_result(&sha), 20);
for (int s = 0; s < 8; ++s) {
char* ptr1 = m_buf + s * 0x40000;
for (int c = 0; c < 8; ++c) {
char* ptr0 = ptr1 + c * 0x8000;
memmove(ptr0 + 0x340, h2, 0x0A0);
memset(ptr0 + 0x3E0, 0, 0x020);
m_parent.m_aes->encrypt(ZEROIV, (uint8_t*)ptr0, (uint8_t*)ptr0, 0x400);
m_parent.m_aes->encrypt((uint8_t*)(ptr0 + 0x3D0), (uint8_t*)(ptr0 + 0x400), (uint8_t*)(ptr0 + 0x400), 0x7c00);
}
}
if (m_fio->write(m_buf, 0x200000) != 0x200000) {
LogModule.report(logvisor::Error, FMT_STRING("unable to write full disc group"));
return;
}
}
public:
PartWriteStream(PartitionBuilderWii& parent, uint64_t baseOffset, uint64_t offset, bool& err)
: m_parent(parent), m_baseOffset(baseOffset), m_offset(offset) {
if (offset % 0x1F0000) {
LogModule.report(logvisor::Error, FMT_STRING("partition write stream MUST begin on 0x1F0000-aligned boundary"));
err = true;
return;
}
size_t group = m_offset / 0x1F0000;
m_fio = m_parent.m_parent.getFileIO().beginWriteStream(m_baseOffset + group * 0x200000);
if (!m_fio)
err = true;
m_curGroup = group;
}
~PartWriteStream() override { PartWriteStream::close(); }
void close() override {
if (m_closed)
return;
m_closed = true;
size_t rem = m_offset % 0x1F0000;
if (rem) {
rem = 0x1F0000 - rem;
write(nullptr, rem);
}
encryptGroup(m_parent.m_h3[m_curGroup]);
m_fio.reset();
}
uint64_t position() const override { return m_offset; }
uint64_t write(const void* buf, uint64_t length) override {
size_t group = m_offset / 0x1F0000;
size_t block = (m_offset - group * 0x1F0000) / 0x7c00;
size_t cacheOffset = m_offset % 0x7c00;
uint64_t cacheSize;
uint64_t rem = length;
const uint8_t* src = (uint8_t*)buf;
while (rem) {
if (group != m_curGroup) {
encryptGroup(m_parent.m_h3[m_curGroup]);
m_curGroup = group;
}
cacheSize = rem;
if (cacheSize + cacheOffset > 0x7c00)
cacheSize = 0x7c00 - cacheOffset;
if (src) {
memmove(m_buf + block * 0x8000 + 0x400 + cacheOffset, src, cacheSize);
src += cacheSize;
} else
memset(m_buf + block * 0x8000 + 0x400 + cacheOffset, 0, cacheSize);
rem -= cacheSize;
cacheOffset = 0;
++block;
if (block == 64) {
block = 0;
++group;
}
}
m_offset += length;
return length;
}
};
PartitionBuilderWii(DiscBuilderBase& parent, PartitionKind kind, uint64_t baseOffset)
: DiscBuilderBase::PartitionBuilderBase(parent, kind, true), m_baseOffset(baseOffset), m_aes(NewAES()) {}
uint64_t getCurUserEnd() const { return m_curUser; }
uint64_t userAllocate(uint64_t reqSz, IPartWriteStream& ws) override {
reqSz = ROUND_UP_32(reqSz);
if (m_curUser + reqSz >= 0x1FB450000) {
LogModule.report(logvisor::Error, FMT_STRING("partition exceeds maximum single-partition capacity"));
return -1;
}
uint64_t ret = m_curUser;
PartWriteStream& cws = static_cast<PartWriteStream&>(ws);
if (cws.m_offset > ret) {
LogModule.report(logvisor::Error, FMT_STRING("partition overwrite error"));
return -1;
}
while (cws.m_offset < ret)
cws.write("\xff", 1);
m_curUser += reqSz;
return ret;
}
uint32_t packOffset(uint64_t offset) const override { return uint32_t(offset >> uint64_t(2)); }
std::unique_ptr<IPartWriteStream> beginWriteStream(uint64_t offset) override {
bool err = false;
auto ret = std::make_unique<PartWriteStream>(*this, m_baseOffset + m_userOffset, offset, err);
if (err) {
return nullptr;
}
return ret;
}
uint64_t _build(const std::function<bool(IFileIO::IWriteStream&, uint32_t& h3Off, uint32_t& dataOff, uint8_t& ccIdx,
uint8_t tkey[16], uint8_t tkeyiv[16], std::unique_ptr<uint8_t[]>& tmdData,
size_t& tmdSz)>& cryptoFunc,
const std::function<bool(IPartWriteStream&, uint32_t, uint32_t, uint32_t)>& headerFunc,
const std::function<bool(IPartWriteStream&)>& bi2Func,
const std::function<bool(IPartWriteStream&, size_t&)>& apploaderFunc,
const std::function<bool(IPartWriteStream&)>& contentFunc, size_t apploaderSz) {
/* Write partition head up to H3 table */
std::unique_ptr<IFileIO::IWriteStream> ws = m_parent.getFileIO().beginWriteStream(m_baseOffset);
if (!ws)
return -1;
uint32_t h3Off, dataOff;
uint8_t tkey[16], tkeyiv[16];
uint8_t ccIdx;
std::unique_ptr<uint8_t[]> tmdData;
size_t tmdSz;
if (!cryptoFunc(*ws, h3Off, dataOff, ccIdx, tkey, tkeyiv, tmdData, tmdSz))
return -1;
m_userOffset = dataOff;
/* Prepare crypto pass */
m_aes->setKey(COMMON_KEYS[ccIdx]);
m_aes->decrypt(tkeyiv, tkey, tkey, 16);
m_aes->setKey(tkey);
{
/* Assemble partition data */
std::unique_ptr<IPartWriteStream> cws = beginWriteStream(0x1F0000);
if (!cws)
return -1;
if (!contentFunc(*cws))
return -1;
/* Pad out user area to nearest cleartext sector */
m_curUser = cws->position();
uint64_t curUserRem = m_curUser % 0x1F0000;
if (curUserRem) {
curUserRem = 0x1F0000 - curUserRem;
for (size_t i = 0; i < curUserRem; ++i)
cws->write("\xff", 1);
m_curUser += curUserRem;
}
/* Begin crypto write and add content header */
cws = beginWriteStream(0);
if (!cws)
return -1;
/* Compute boot table members and write */
size_t fstOff = 0x2440 + ROUND_UP_32(apploaderSz);
size_t fstSz = sizeof(FSTNode) * m_buildNodes.size();
fstSz += m_buildNameOff;
fstSz = ROUND_UP_32(fstSz);
if (fstOff + fstSz >= 0x1F0000) {
LogModule.report(logvisor::Error, FMT_STRING("FST flows into user area (one or the other is too big)"));
return -1;
}
if (!headerFunc(*cws, m_dolOffset, fstOff, fstSz))
return -1;
if (!bi2Func(*cws))
return -1;
size_t xferSz = 0;
if (!apploaderFunc(*cws, xferSz))
return -1;
size_t fstOffRel = fstOff - 0x2440;
if (xferSz > fstOffRel) {
LogModule.report(logvisor::Error, FMT_STRING("apploader unexpectedly flows into FST"));
return -1;
}
for (size_t i = 0; i < fstOffRel - xferSz; ++i)
cws->write("\xff", 1);
/* Write FST */
cws->write(m_buildNodes.data(), m_buildNodes.size() * sizeof(FSTNode));
for (const std::string& str : m_buildNames)
cws->write(str.data(), str.size() + 1);
}
/* Write new crypto content size */
uint64_t groupCount = m_curUser / 0x1F0000;
uint64_t cryptContentSize = (groupCount * 0x200000) >> uint64_t(2);
uint32_t cryptContentSizeBig = SBig(uint32_t(cryptContentSize));
ws = m_parent.getFileIO().beginWriteStream(m_baseOffset + 0x2BC);
if (!ws)
return -1;
ws->write(&cryptContentSizeBig, 0x4);
/* Write new H3 */
ws = m_parent.getFileIO().beginWriteStream(m_baseOffset + h3Off);
if (!ws)
return -1;
ws->write(m_h3, 0x18000);
/* Compute content hash and replace in TMD */
sha1nfo sha;
sha1_init(&sha);
sha1_write(&sha, (char*)m_h3, 0x18000);
memmove(tmdData.get() + 0x1F4, sha1_result(&sha), 20);
/* Same for content size */
uint64_t contentSize = groupCount * 0x1F0000;
uint64_t contentSizeBig = SBig(contentSize);
memmove(tmdData.get() + 0x1EC, &contentSizeBig, 8);
/* Zero-out TMD signature to simplify brute-force */
memset(tmdData.get() + 0x4, 0, 0x100);
/* Brute-force zero-starting hash */
size_t tmdCheckSz = tmdSz - 0x140;
struct BFWindow {
uint64_t word[7];
}* bfWindow = (BFWindow*)(tmdData.get() + 0x19A);
bool good = false;
uint64_t attempts = 0;
std::string bfName("Brute force attempts");
for (int w = 0; w < 7; ++w) {
for (uint64_t i = 0; i < UINT64_MAX; ++i) {
bfWindow->word[w] = i;
sha1_init(&sha);
sha1_write(&sha, (char*)(tmdData.get() + 0x140), tmdCheckSz);
uint8_t* hash = sha1_result(&sha);
++attempts;
if (hash[0] == 0) {
good = true;
break;
}
m_parent.m_progressCB(m_parent.getProgressFactor(), bfName, attempts);
}
if (good)
break;
}
m_parent.m_progressCB(m_parent.getProgressFactor(), bfName, attempts);
++m_parent.m_progressIdx;
ws = m_parent.getFileIO().beginWriteStream(m_baseOffset + 0x2C0);
if (!ws)
return -1;
ws->write(tmdData.get(), tmdSz);
return m_baseOffset + dataOff + groupCount * 0x200000;
}
uint64_t buildFromDirectory(std::string_view dirIn) {
std::string dirStr(dirIn);
std::string basePath = dirStr + "/" + getKindString(m_kind);
/* Check Ticket */
std::string ticketIn = basePath + "/ticket.bin";
Sstat theStat;
if (Stat(ticketIn.c_str(), &theStat)) {
LogModule.report(logvisor::Error, FMT_STRING("unable to stat {}"), ticketIn);
return -1;
}
/* Check TMD */
std::string tmdIn = basePath + "/tmd.bin";
Sstat tmdStat;
if (Stat(tmdIn.c_str(), &tmdStat)) {
LogModule.report(logvisor::Error, FMT_STRING("unable to stat {}"), tmdIn);
return -1;
}
/* Check Cert */
std::string certIn = basePath + "/cert.bin";
Sstat certStat;
if (Stat(certIn.c_str(), &certStat)) {
LogModule.report(logvisor::Error, FMT_STRING("unable to stat {}"), certIn);
return -1;
}
/* Check Apploader */
std::string apploaderIn = basePath + "/sys/apploader.img";
Sstat apploaderStat;
if (Stat(apploaderIn.c_str(), &apploaderStat)) {
LogModule.report(logvisor::Error, FMT_STRING("unable to stat {}"), apploaderIn);
return -1;
}
/* Check Boot */
std::string bootIn = basePath + "/sys/boot.bin";
Sstat bootStat;
if (Stat(bootIn.c_str(), &bootStat)) {
LogModule.report(logvisor::Error, FMT_STRING("unable to stat {}"), bootIn);
return -1;
}
/* Check BI2 */
std::string bi2In = basePath + "/sys/bi2.bin";
Sstat bi2Stat;
if (Stat(bi2In.c_str(), &bi2Stat)) {
LogModule.report(logvisor::Error, FMT_STRING("unable to stat {}"), bi2In);
return -1;
}
return _build(
[&](IFileIO::IWriteStream& ws, uint32_t& h3OffOut, uint32_t& dataOffOut, uint8_t& ccIdx, uint8_t tkey[16],
uint8_t tkeyiv[16], std::unique_ptr<uint8_t[]>& tmdData, size_t& tmdSzOut) -> bool {
h3OffOut = 0x8000;
dataOffOut = 0x20000;
std::unique_ptr<IFileIO::IReadStream> rs = NewFileIO(ticketIn.c_str())->beginReadStream();
if (!rs)
return false;
uint8_t buf[0x2A4];
memset(buf, 0, 0x2A4);
rs->read(buf, 0x2A4);
ws.write(buf, 0x2A4);
ccIdx = buf[0x1F1];
memmove(tkey, buf + 0x1BF, 16);
memmove(tkeyiv, buf + 0x1DC, 8);
memset(tkeyiv + 8, 0, 8);
uint32_t curOff = 0x2C0;
uint32_t tmdSz = SBig(uint32_t(tmdStat.st_size));
ws.write(&tmdSz, 4);
uint32_t tmdOff = SBig(curOff >> 2);
ws.write(&tmdOff, 4);
curOff += ROUND_UP_32(tmdStat.st_size);
uint32_t certSz = SBig(uint32_t(certStat.st_size));
ws.write(&certSz, 4);
uint32_t certOff = SBig(curOff >> 2);
ws.write(&certOff, 4);
curOff += ROUND_UP_32(certStat.st_size);
uint32_t h3Off = SBig(0x8000 >> 2);
ws.write(&h3Off, 4);
uint32_t dataOff = SBig(0x20000 >> 2);
ws.write(&dataOff, 4);
uint32_t dataSz = 0;
ws.write(&dataSz, 4);
rs = NewFileIO(tmdIn.c_str())->beginReadStream();
tmdData.reset(new uint8_t[tmdStat.st_size]);
tmdSzOut = tmdStat.st_size;
rs->read(tmdData.get(), tmdStat.st_size);
ws.write(tmdData.get(), tmdStat.st_size);
uint32_t tmdPadding = ROUND_UP_32(tmdStat.st_size) - tmdStat.st_size;
for (uint32_t i = 0; i < tmdPadding; ++i)
ws.write("", 1);
rs = NewFileIO(certIn.c_str())->beginReadStream();
std::unique_ptr<uint8_t[]> certBuf(new uint8_t[certStat.st_size]);
rs->read(certBuf.get(), certStat.st_size);
ws.write(certBuf.get(), certStat.st_size);
return true;
},
[&bootIn](IPartWriteStream& cws, uint32_t dolOff, uint32_t fstOff, uint32_t fstSz) -> bool {
std::unique_ptr<IFileIO::IReadStream> rs = NewFileIO(bootIn.c_str())->beginReadStream();
if (!rs)
return false;
Header header;
header.read(*rs);
header.m_dolOff = uint32_t(dolOff >> 2);
header.m_fstOff = uint32_t(fstOff >> 2);
header.m_fstSz = fstSz;
header.m_fstMaxSz = fstSz;
header.write(cws);
return true;
},
[&bi2In](IPartWriteStream& cws) -> bool {
std::unique_ptr<IFileIO::IReadStream> rs = NewFileIO(bi2In.c_str())->beginReadStream();
if (!rs)
return false;
BI2Header bi2;
bi2.read(*rs);
bi2.write(cws);
return true;
},
[this, &apploaderIn](IPartWriteStream& cws, size_t& xferSz) -> bool {
std::unique_ptr<IFileIO::IReadStream> rs = NewFileIO(apploaderIn.c_str())->beginReadStream();
if (!rs)
return false;
char buf[8192];
while (true) {
size_t rdSz = rs->read(buf, 8192);
if (!rdSz)
break;
cws.write(buf, rdSz);
xferSz += rdSz;
if (0x2440 + xferSz >= 0x1F0000) {
LogModule.report(logvisor::Error, FMT_STRING("apploader flows into user area (one or the other is too big)"));
return false;
}
m_parent.m_progressCB(m_parent.getProgressFactor(), apploaderIn, xferSz);
}
++m_parent.m_progressIdx;
return true;
},
[this, dirIn](IPartWriteStream& cws) -> bool {
return DiscBuilderBase::PartitionBuilderBase::buildFromDirectory(cws, dirIn);
},
apploaderStat.st_size);
}
uint64_t mergeFromDirectory(const PartitionWii* partIn, std::string_view dirIn) {
size_t phSz;
std::unique_ptr<uint8_t[]> phBuf = partIn->readPartitionHeaderBuf(phSz);
return _build(
[&](IFileIO::IWriteStream& ws, uint32_t& h3OffOut, uint32_t& dataOffOut, uint8_t& ccIdx, uint8_t tkey[16],
uint8_t tkeyiv[16], std::unique_ptr<uint8_t[]>& tmdData, size_t& tmdSz) -> bool {
h3OffOut = SBig(*reinterpret_cast<uint32_t*>(&phBuf[0x2B4])) << 2;
dataOffOut = SBig(*reinterpret_cast<uint32_t*>(&phBuf[0x2B8])) << 2;
ccIdx = phBuf[0x1F1];
memmove(tkey, phBuf.get() + 0x1BF, 16);
memmove(tkeyiv, phBuf.get() + 0x1DC, 8);
memset(tkeyiv + 8, 0, 8);
tmdSz = SBig(*reinterpret_cast<uint32_t*>(&phBuf[0x2A4]));
tmdData.reset(new uint8_t[tmdSz]);
memmove(tmdData.get(), phBuf.get() + 0x2C0, tmdSz);
size_t copySz = std::min(phSz, size_t(h3OffOut));
ws.write(phBuf.get(), copySz);
return true;
},
[partIn](IPartWriteStream& cws, uint32_t dolOff, uint32_t fstOff, uint32_t fstSz) -> bool {
Header header = partIn->getHeader();
header.m_dolOff = uint32_t(dolOff >> uint64_t(2));
header.m_fstOff = uint32_t(fstOff >> uint64_t(2));
header.m_fstSz = fstSz;
header.m_fstMaxSz = fstSz;
header.write(cws);
return true;
},
[partIn](IPartWriteStream& cws) -> bool {
partIn->getBI2().write(cws);
return true;
},
[this, partIn](IPartWriteStream& cws, size_t& xferSz) -> bool {
std::unique_ptr<uint8_t[]> apploaderBuf = partIn->getApploaderBuf();
size_t apploaderSz = partIn->getApploaderSize();
std::string apploaderName("<apploader>");
cws.write(apploaderBuf.get(), apploaderSz);
xferSz += apploaderSz;
if (0x2440 + xferSz >= 0x1F0000) {
LogModule.report(logvisor::Error, FMT_STRING("apploader flows into user area (one or the other is too big)"));
return false;
}
m_parent.m_progressCB(m_parent.getProgressFactor(), apploaderName, xferSz);
++m_parent.m_progressIdx;
return true;
},
[this, partIn, dirIn](IPartWriteStream& cws) -> bool {
return DiscBuilderBase::PartitionBuilderBase::mergeFromDirectory(cws, partIn, dirIn);
},
partIn->getApploaderSize());
}
};
EBuildResult DiscBuilderWii::buildFromDirectory(std::string_view dirIn) {
std::string dirStr(dirIn);
std::string basePath = std::string(dirStr) + "/" + getKindString(PartitionKind::Data);
PartitionBuilderWii& pb = static_cast<PartitionBuilderWii&>(*m_partitions[0]);
uint64_t filledSz = pb.m_baseOffset;
if (!m_fileIO->beginWriteStream())
return EBuildResult::Failed;
if (!CheckFreeSpace(m_outPath.c_str(), m_discCapacity)) {
LogModule.report(logvisor::Error, FMT_STRING("not enough free disk space for {}"), m_outPath);
return EBuildResult::DiskFull;
}
m_progressCB(getProgressFactor(), "Preallocating image", -1);
++m_progressIdx;
{
std::unique_ptr<IFileIO::IWriteStream> ws = m_fileIO->beginWriteStream(0);
if (!ws)
return EBuildResult::Failed;
char zeroBytes[1024] = {};
for (int64_t i = 0; i < m_discCapacity; i += 1024)
ws->write(zeroBytes, 1024);
}
/* Assemble image */
filledSz = pb.buildFromDirectory(dirIn);
if (filledSz == UINT64_MAX)
return EBuildResult::Failed;
else if (filledSz >= uint64_t(m_discCapacity)) {
LogModule.report(logvisor::Error, FMT_STRING("data partition exceeds disc capacity"));
return EBuildResult::Failed;
}
m_progressCB(getProgressFactor(), "Finishing Disc", -1);
++m_progressIdx;
/* Populate disc header */
std::unique_ptr<IFileIO::IWriteStream> ws = m_fileIO->beginWriteStream(0);
if (!ws)
return EBuildResult::Failed;
std::string headerPath = basePath + "/disc/header.bin";
std::unique_ptr<IFileIO::IReadStream> rs = NewFileIO(headerPath.c_str())->beginReadStream();
if (!rs)
return EBuildResult::Failed;
Header header;
header.read(*rs);
header.write(*ws);
/* Populate partition info */
ws = m_fileIO->beginWriteStream(0x40000);
if (!ws)
return EBuildResult::Failed;
uint32_t vals[2] = {SBig(uint32_t(1)), SBig(uint32_t(0x40020 >> uint64_t(2)))};
ws->write(vals, 8);
ws = m_fileIO->beginWriteStream(0x40020);
if (!ws)
return EBuildResult::Failed;
vals[0] = SBig(uint32_t(pb.m_baseOffset >> uint64_t(2)));
ws->write(vals, 4);
/* Populate region info */
std::string regionPath = basePath + "/disc/region.bin";
rs = NewFileIO(regionPath.c_str())->beginReadStream();
if (!rs)
return EBuildResult::Failed;
uint8_t regionBuf[0x20];
rs->read(regionBuf, 0x20);
ws = m_fileIO->beginWriteStream(0x4E000);
if (!ws)
return EBuildResult::Failed;
ws->write(regionBuf, 0x20);
/* Fill image to end */
ws = m_fileIO->beginWriteStream(filledSz);
if (!ws)
return EBuildResult::Failed;
uint8_t fillBuf[512];
memset(fillBuf, 0xff, 512);
for (size_t i = m_discCapacity - filledSz; i > 0;) {
if (i >= 512) {
ws->write(fillBuf, 512);
i -= 512;
continue;
}
ws->write(fillBuf, i);
break;
}
return EBuildResult::Success;
}
std::optional<uint64_t> DiscBuilderWii::CalculateTotalSizeRequired(std::string_view dirIn, bool& dualLayer) {
std::optional<uint64_t> sz = DiscBuilderBase::PartitionBuilderBase::CalculateTotalSizeBuild(dirIn, PartitionKind::Data, true);
if (!sz)
return sz;
auto szDiv = nod::div(*sz, uint64_t(0x1F0000));
if (szDiv.rem)
++szDiv.quot;
sz = szDiv.quot * 0x200000;
*sz += 0x200000;
dualLayer = (sz > 0x118240000);
if (sz > 0x1FB4E0000) {
LogModule.report(logvisor::Error, FMT_STRING("disc capacity exceeded [{} / {}]"), *sz, 0x1FB4E0000);
return std::nullopt;
}
return sz;
}
DiscBuilderWii::DiscBuilderWii(std::string_view outPath, bool dualLayer, FProgress progressCB)
: DiscBuilderBase(outPath, dualLayer ? 0x1FB4E0000 : 0x118240000, progressCB) {
m_partitions.emplace_back(std::make_unique<PartitionBuilderWii>(*this, PartitionKind::Data, 0x200000));
}
DiscMergerWii::DiscMergerWii(std::string_view outPath, DiscWii& sourceDisc, bool dualLayer, FProgress progressCB)
: m_sourceDisc(sourceDisc), m_builder(sourceDisc.makeMergeBuilder(outPath, dualLayer, progressCB)) {}
EBuildResult DiscMergerWii::mergeFromDirectory(std::string_view dirIn) {
PartitionBuilderWii& pb = static_cast<PartitionBuilderWii&>(*m_builder.m_partitions[0]);
uint64_t filledSz = pb.m_baseOffset;
if (!m_builder.m_fileIO->beginWriteStream())
return EBuildResult::Failed;
if (!CheckFreeSpace(m_builder.m_outPath.c_str(), m_builder.m_discCapacity)) {
LogModule.report(logvisor::Error, FMT_STRING("not enough free disk space for {}"), m_builder.m_outPath);
return EBuildResult::DiskFull;
}
m_builder.m_progressCB(m_builder.getProgressFactor(), "Preallocating image", -1);
++m_builder.m_progressIdx;
{
std::unique_ptr<IFileIO::IWriteStream> ws = m_builder.m_fileIO->beginWriteStream(0);
if (!ws)
return EBuildResult::Failed;
char zeroBytes[1024] = {};
for (int64_t i = 0; i < m_builder.m_discCapacity; i += 1024)
ws->write(zeroBytes, 1024);
}
/* Assemble image */
filledSz = pb.mergeFromDirectory(static_cast<PartitionWii*>(m_sourceDisc.getDataPartition()), dirIn);
if (filledSz == UINT64_MAX)
return EBuildResult::Failed;
else if (filledSz >= uint64_t(m_builder.m_discCapacity)) {
LogModule.report(logvisor::Error, FMT_STRING("data partition exceeds disc capacity"));
return EBuildResult::Failed;
}
m_builder.m_progressCB(m_builder.getProgressFactor(), "Finishing Disc", -1);
++m_builder.m_progressIdx;
/* Populate disc header */
std::unique_ptr<IFileIO::IWriteStream> ws = m_builder.m_fileIO->beginWriteStream(0);
if (!ws)
return EBuildResult::Failed;
m_sourceDisc.getHeader().write(*ws);
/* Populate partition info */
ws = m_builder.m_fileIO->beginWriteStream(0x40000);
if (!ws)
return EBuildResult::Failed;
uint32_t vals[2] = {SBig(uint32_t(1)), SBig(uint32_t(0x40020 >> uint64_t(2)))};
ws->write(vals, 8);
ws = m_builder.m_fileIO->beginWriteStream(0x40020);
if (!ws)
return EBuildResult::Failed;
vals[0] = SBig(uint32_t(pb.m_baseOffset >> uint64_t(2)));
ws->write(vals, 4);
/* Populate region info */
std::unique_ptr<IReadStream> rs = m_sourceDisc.getDiscIO().beginReadStream(0x4E000);
if (!rs)
return EBuildResult::Failed;
uint8_t regionBuf[0x20];
rs->read(regionBuf, 0x20);
ws = m_builder.m_fileIO->beginWriteStream(0x4E000);
if (!ws)
return EBuildResult::Failed;
ws->write(regionBuf, 0x20);
/* Fill image to end */
ws = m_builder.m_fileIO->beginWriteStream(filledSz);
if (!ws)
return EBuildResult::Failed;
uint8_t fillBuf[512];
memset(fillBuf, 0xff, 512);
for (size_t i = m_builder.m_discCapacity - filledSz; i > 0;) {
if (i >= 512) {
ws->write(fillBuf, 512);
i -= 512;
continue;
}
ws->write(fillBuf, i);
break;
}
return EBuildResult::Success;
}
std::optional<uint64_t> DiscMergerWii::CalculateTotalSizeRequired(DiscWii& sourceDisc, std::string_view dirIn, bool& dualLayer) {
std::optional<uint64_t> sz = DiscBuilderBase::PartitionBuilderBase::CalculateTotalSizeMerge(sourceDisc.getDataPartition(), dirIn);
if (!sz)
return std::nullopt;
auto szDiv = nod::div(*sz, uint64_t(0x1F0000));
if (szDiv.rem)
++szDiv.quot;
sz = szDiv.quot * 0x200000;
*sz += 0x200000;
dualLayer = (sz > 0x118240000);
if (sz > 0x1FB4E0000) {
LogModule.report(logvisor::Error, FMT_STRING("disc capacity exceeded [{} / {}]"), *sz, 0x1FB4E0000);
return std::nullopt;
}
return sz;
}
} // namespace nod