nod/lib/sha1.c

291 lines
8.4 KiB
C

/* This code is public-domain - it is based on libcrypt
* placed in the public domain by Wei Dai and other contributors.
*/
// gcc -Wall -DSHA1TEST -o sha1test sha1.c && ./sha1test
#include <stdint.h>
#include <string.h>
#include "nod/sha1.h"
#ifdef __BIG_ENDIAN__
# define SHA_BIG_ENDIAN
#elif defined __LITTLE_ENDIAN__
/* override */
#elif defined __BYTE_ORDER
# if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
# define SHA_BIG_ENDIAN
# endif
#else // ! defined __LITTLE_ENDIAN__
#ifndef _WIN32
# include <endian.h> // machine/endian.h
#endif
# if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
# define SHA_BIG_ENDIAN
# endif
#endif
/* code */
#define SHA1_K0 0x5a827999
#define SHA1_K20 0x6ed9eba1
#define SHA1_K40 0x8f1bbcdc
#define SHA1_K60 0xca62c1d6
void sha1_init(sha1nfo *s) {
s->state[0] = 0x67452301;
s->state[1] = 0xefcdab89;
s->state[2] = 0x98badcfe;
s->state[3] = 0x10325476;
s->state[4] = 0xc3d2e1f0;
s->byteCount = 0;
s->bufferOffset = 0;
}
uint32_t sha1_rol32(uint32_t number, uint8_t bits) {
return ((number << bits) | (number >> (32-bits)));
}
void sha1_hashBlock(sha1nfo *s) {
uint8_t i;
uint32_t a,b,c,d,e,t;
a=s->state[0];
b=s->state[1];
c=s->state[2];
d=s->state[3];
e=s->state[4];
for (i=0; i<80; i++) {
if (i>=16) {
t = s->buffer[(i+13)&15] ^ s->buffer[(i+8)&15] ^ s->buffer[(i+2)&15] ^ s->buffer[i&15];
s->buffer[i&15] = sha1_rol32(t,1);
}
if (i<20) {
t = (d ^ (b & (c ^ d))) + SHA1_K0;
} else if (i<40) {
t = (b ^ c ^ d) + SHA1_K20;
} else if (i<60) {
t = ((b & c) | (d & (b | c))) + SHA1_K40;
} else {
t = (b ^ c ^ d) + SHA1_K60;
}
t+=sha1_rol32(a,5) + e + s->buffer[i&15];
e=d;
d=c;
c=sha1_rol32(b,30);
b=a;
a=t;
}
s->state[0] += a;
s->state[1] += b;
s->state[2] += c;
s->state[3] += d;
s->state[4] += e;
}
void sha1_addUncounted(sha1nfo *s, uint8_t data) {
uint8_t * const b = (uint8_t*) s->buffer;
#ifdef SHA_BIG_ENDIAN
b[s->bufferOffset] = data;
#else
b[s->bufferOffset ^ 3] = data;
#endif
s->bufferOffset++;
if (s->bufferOffset == SHA1_BLOCK_LENGTH) {
sha1_hashBlock(s);
s->bufferOffset = 0;
}
}
void sha1_writebyte(sha1nfo *s, uint8_t data) {
++s->byteCount;
sha1_addUncounted(s, data);
}
void sha1_write(sha1nfo *s, const char *data, size_t len) {
for (;len--;) sha1_writebyte(s, (uint8_t) *data++);
}
void sha1_pad(sha1nfo *s) {
// Implement SHA-1 padding (fips180-2 §5.1.1)
// Pad with 0x80 followed by 0x00 until the end of the block
sha1_addUncounted(s, 0x80);
while (s->bufferOffset != 56) sha1_addUncounted(s, 0x00);
// Append length in the last 8 bytes
sha1_addUncounted(s, 0); // We're only using 32 bit lengths
sha1_addUncounted(s, 0); // But SHA-1 supports 64 bit lengths
sha1_addUncounted(s, 0); // So zero pad the top bits
sha1_addUncounted(s, s->byteCount >> 29); // Shifting to multiply by 8
sha1_addUncounted(s, s->byteCount >> 21); // as SHA-1 supports bitstreams as well as
sha1_addUncounted(s, s->byteCount >> 13); // byte.
sha1_addUncounted(s, s->byteCount >> 5);
sha1_addUncounted(s, s->byteCount << 3);
}
uint8_t* sha1_result(sha1nfo *s) {
// Pad to complete the last block
sha1_pad(s);
#ifndef SHA_BIG_ENDIAN
// Swap byte order back
int i;
for (i=0; i<5; i++) {
s->state[i]=
(((s->state[i])<<24)& 0xff000000)
| (((s->state[i])<<8) & 0x00ff0000)
| (((s->state[i])>>8) & 0x0000ff00)
| (((s->state[i])>>24)& 0x000000ff);
}
#endif
// Return pointer to hash (20 characters)
return (uint8_t*) s->state;
}
#define HMAC_IPAD 0x36
#define HMAC_OPAD 0x5c
void sha1_initHmac(sha1nfo *s, const uint8_t* key, int keyLength) {
uint8_t i;
memset(s->keyBuffer, 0, SHA1_BLOCK_LENGTH);
if (keyLength > SHA1_BLOCK_LENGTH) {
// Hash long keys
sha1_init(s);
for (;keyLength--;) sha1_writebyte(s, *key++);
memcpy(s->keyBuffer, sha1_result(s), SHA1_HASH_LENGTH);
} else {
// Block length keys are used as is
memcpy(s->keyBuffer, key, keyLength);
}
// Start inner hash
sha1_init(s);
for (i=0; i<SHA1_BLOCK_LENGTH; i++) {
sha1_writebyte(s, s->keyBuffer[i] ^ HMAC_IPAD);
}
}
uint8_t* sha1_resultHmac(sha1nfo *s) {
uint8_t i;
// Complete inner hash
memcpy(s->innerHash,sha1_result(s),SHA1_HASH_LENGTH);
// Calculate outer hash
sha1_init(s);
for (i=0; i<SHA1_BLOCK_LENGTH; i++) sha1_writebyte(s, s->keyBuffer[i] ^ HMAC_OPAD);
for (i=0; i<SHA1_HASH_LENGTH; i++) sha1_writebyte(s, s->innerHash[i]);
return sha1_result(s);
}
/* self-test */
#if SHA1TEST
#include <stdio.h>
uint8_t hmacKey1[]={
0x00,0x01,0x02,0x03,0x04,0x05,0x06,0x07,0x08,0x09,0x0a,0x0b,0x0c,0x0d,0x0e,0x0f,
0x10,0x11,0x12,0x13,0x14,0x15,0x16,0x17,0x18,0x19,0x1a,0x1b,0x1c,0x1d,0x1e,0x1f,
0x20,0x21,0x22,0x23,0x24,0x25,0x26,0x27,0x28,0x29,0x2a,0x2b,0x2c,0x2d,0x2e,0x2f,
0x30,0x31,0x32,0x33,0x34,0x35,0x36,0x37,0x38,0x39,0x3a,0x3b,0x3c,0x3d,0x3e,0x3f
};
uint8_t hmacKey2[]={
0x30,0x31,0x32,0x33,0x34,0x35,0x36,0x37,0x38,0x39,0x3a,0x3b,0x3c,0x3d,0x3e,0x3f,
0x40,0x41,0x42,0x43
};
uint8_t hmacKey3[]={
0x50,0x51,0x52,0x53,0x54,0x55,0x56,0x57,0x58,0x59,0x5a,0x5b,0x5c,0x5d,0x5e,0x5f,
0x60,0x61,0x62,0x63,0x64,0x65,0x66,0x67,0x68,0x69,0x6a,0x6b,0x6c,0x6d,0x6e,0x6f,
0x70,0x71,0x72,0x73,0x74,0x75,0x76,0x77,0x78,0x79,0x7a,0x7b,0x7c,0x7d,0x7e,0x7f,
0x80,0x81,0x82,0x83,0x84,0x85,0x86,0x87,0x88,0x89,0x8a,0x8b,0x8c,0x8d,0x8e,0x8f,
0x90,0x91,0x92,0x93,0x94,0x95,0x96,0x97,0x98,0x99,0x9a,0x9b,0x9c,0x9d,0x9e,0x9f,
0xa0,0xa1,0xa2,0xa3,0xa4,0xa5,0xa6,0xa7,0xa8,0xa9,0xaa,0xab,0xac,0xad,0xae,0xaf,
0xb0,0xb1,0xb2,0xb3
};
uint8_t hmacKey4[]={
0x70,0x71,0x72,0x73,0x74,0x75,0x76,0x77,0x78,0x79,0x7a,0x7b,0x7c,0x7d,0x7e,0x7f,
0x80,0x81,0x82,0x83,0x84,0x85,0x86,0x87,0x88,0x89,0x8a,0x8b,0x8c,0x8d,0x8e,0x8f,
0x90,0x91,0x92,0x93,0x94,0x95,0x96,0x97,0x98,0x99,0x9a,0x9b,0x9c,0x9d,0x9e,0x9f,
0xa0
};
void printHash(uint8_t* hash) {
int i;
for (i=0; i<20; i++) {
printf("%02x", hash[i]);
}
printf("\n");
}
int main (int argc, char **argv) {
uint32_t a;
sha1nfo s;
// SHA tests
printf("Test: FIPS 180-2 C.1 and RFC3174 7.3 TEST1\n");
printf("Expect:a9993e364706816aba3e25717850c26c9cd0d89d\n");
printf("Result:");
sha1_init(&s);
sha1_write(&s, "abc", 3);
printHash(sha1_result(&s));
printf("\n\n");
printf("Test: FIPS 180-2 C.2 and RFC3174 7.3 TEST2\n");
printf("Expect:84983e441c3bd26ebaae4aa1f95129e5e54670f1\n");
printf("Result:");
sha1_init(&s);
sha1_write(&s, "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq", 56);
printHash(sha1_result(&s));
printf("\n\n");
printf("Test: RFC3174 7.3 TEST4\n");
printf("Expect:dea356a2cddd90c7a7ecedc5ebb563934f460452\n");
printf("Result:");
sha1_init(&s);
for (a=0; a<80; a++) sha1_write(&s, "01234567", 8);
printHash(sha1_result(&s));
printf("\n\n");
// HMAC tests
printf("Test: FIPS 198a A.1\n");
printf("Expect:4f4ca3d5d68ba7cc0a1208c9c61e9c5da0403c0a\n");
printf("Result:");
sha1_initHmac(&s, hmacKey1, 64);
sha1_write(&s, "Sample #1",9);
printHash(sha1_resultHmac(&s));
printf("\n\n");
printf("Test: FIPS 198a A.2\n");
printf("Expect:0922d3405faa3d194f82a45830737d5cc6c75d24\n");
printf("Result:");
sha1_initHmac(&s, hmacKey2, 20);
sha1_write(&s, "Sample #2", 9);
printHash(sha1_resultHmac(&s));
printf("\n\n");
printf("Test: FIPS 198a A.3\n");
printf("Expect:bcf41eab8bb2d802f3d05caf7cb092ecf8d1a3aa\n");
printf("Result:");
sha1_initHmac(&s, hmacKey3,100);
sha1_write(&s, "Sample #3", 9);
printHash(sha1_resultHmac(&s));
printf("\n\n");
printf("Test: FIPS 198a A.4\n");
printf("Expect:9ea886efe268dbecce420c7524df32e0751a2a26\n");
printf("Result:");
sha1_initHmac(&s, hmacKey4,49);
sha1_write(&s, "Sample #4", 9);
printHash(sha1_resultHmac(&s));
printf("\n\n");
// Long tests
printf("Test: FIPS 180-2 C.3 and RFC3174 7.3 TEST3\n");
printf("Expect:34aa973cd4c4daa4f61eeb2bdbad27316534016f\n");
printf("Result:");
sha1_init(&s);
for (a=0; a<1000000; a++) sha1_writebyte(&s, 'a');
printHash(sha1_result(&s));
return 0;
}
#endif /* self-test */