nod/lib/DiscWii.cpp

1288 lines
40 KiB
C++

#include <stdio.h>
#include <string.h>
#include <cstdlib>
#include <inttypes.h>
#include "nod/DiscWii.hpp"
#include "nod/aes.hpp"
#include "nod/sha1.h"
namespace nod
{
static const uint8_t COMMON_KEYS[2][16] =
{
/* Normal */
{0xeb, 0xe4, 0x2a, 0x22,
0x5e, 0x85, 0x93, 0xe4,
0x48, 0xd9, 0xc5, 0x45,
0x73, 0x81, 0xaa, 0xf7},
/* Korean */
{0x63, 0xb8, 0x2b, 0xb4,
0xf4, 0x61, 0x4e, 0x2e,
0x13, 0xf2, 0xfe, 0xfb,
0xba, 0x4c, 0x9b, 0x7e}
};
class PartitionWii : public DiscBase::IPartition
{
enum class SigType : uint32_t
{
RSA_4096 = 0x00010000,
RSA_2048 = 0x00010001,
ELIPTICAL_CURVE = 0x00010002
};
enum class KeyType : uint32_t
{
RSA_4096 = 0x00000000,
RSA_2048 = 0x00000001
};
struct Ticket
{
uint32_t sigType;
char sig[256];
char padding[60];
char sigIssuer[64];
char ecdh[60];
char padding1[3];
unsigned char encKey[16];
char padding2;
char ticketId[8];
char consoleId[4];
char titleId[8];
char padding3[2];
uint16_t ticketVersion;
uint32_t permittedTitlesMask;
uint32_t permitMask;
char titleExportAllowed;
char commonKeyIdx;
char padding4[48];
char contentAccessPermissions[64];
char padding5[2];
struct TimeLimit
{
uint32_t enableTimeLimit;
uint32_t timeLimit;
} timeLimits[8];
void read(IDiscIO::IReadStream& s)
{
s.read(this, 676);
sigType = SBig(sigType);
ticketVersion = SBig(ticketVersion);
permittedTitlesMask = SBig(permittedTitlesMask);
permitMask = SBig(permitMask);
for (size_t t=0 ; t<8 ; ++t)
{
timeLimits[t].enableTimeLimit = SBig(timeLimits[t].enableTimeLimit);
timeLimits[t].timeLimit = SBig(timeLimits[t].timeLimit);
}
}
} m_ticket;
struct TMD
{
SigType sigType;
char sig[256];
char padding[60];
char sigIssuer[64];
char version;
char caCrlVersion;
char signerCrlVersion;
char padding1;
uint32_t iosIdMajor;
uint32_t iosIdMinor;
uint32_t titleIdMajor;
char titleIdMinor[4];
uint32_t titleType;
uint16_t groupId;
char padding2[62];
uint32_t accessFlags;
uint16_t titleVersion;
uint16_t numContents;
uint16_t bootIdx;
uint16_t padding3;
struct Content
{
uint32_t id;
uint16_t index;
uint16_t type;
uint64_t size;
char hash[20];
void read(IDiscIO::IReadStream& s)
{
s.read(this, 36);
id = SBig(id);
index = SBig(index);
type = SBig(type);
size = SBig(size);
}
};
std::vector<Content> contents;
void read(IDiscIO::IReadStream& s)
{
s.read(this, 484);
sigType = SigType(SBig(uint32_t(sigType)));
iosIdMajor = SBig(iosIdMajor);
iosIdMinor = SBig(iosIdMinor);
titleIdMajor = SBig(titleIdMajor);
titleType = SBig(titleType);
groupId = SBig(groupId);
accessFlags = SBig(accessFlags);
titleVersion = SBig(titleVersion);
numContents = SBig(numContents);
bootIdx = SBig(bootIdx);
contents.clear();
contents.reserve(numContents);
for (uint16_t c=0 ; c<numContents ; ++c)
{
contents.emplace_back();
contents.back().read(s);
}
}
} m_tmd;
struct Certificate
{
SigType sigType;
char sig[512];
char issuer[64];
KeyType keyType;
char subject[64];
char key[512];
uint32_t modulus;
uint32_t pubExp;
void read(IDiscIO::IReadStream& s)
{
s.read(&sigType, 4);
sigType = SigType(SBig(uint32_t(sigType)));
if (sigType == SigType::RSA_4096)
s.read(sig, 512);
else if (sigType == SigType::RSA_2048)
s.read(sig, 256);
else if (sigType == SigType::ELIPTICAL_CURVE)
s.read(sig, 64);
s.seek(60, SEEK_CUR);
s.read(issuer, 64);
s.read(&keyType, 4);
s.read(subject, 64);
keyType = KeyType(SBig(uint32_t(keyType)));
if (keyType == KeyType::RSA_4096)
s.read(key, 512);
else if (keyType == KeyType::RSA_2048)
s.read(key, 256);
s.read(&modulus, 8);
modulus = SBig(modulus);
pubExp = SBig(pubExp);
s.seek(52, SEEK_CUR);
}
};
Certificate m_caCert;
Certificate m_tmdCert;
Certificate m_ticketCert;
uint64_t m_dataOff;
uint8_t m_decKey[16];
public:
PartitionWii(const DiscWii& parent, Kind kind, uint64_t offset, bool& err)
: IPartition(parent, kind, offset)
{
std::unique_ptr<IDiscIO::IReadStream> s = parent.getDiscIO().beginReadStream(offset);
if (!s)
{
err = true;
return;
}
m_ticket.read(*s);
uint32_t tmdSize;
s->read(&tmdSize, 4);
tmdSize = SBig(tmdSize);
uint32_t tmdOff;
s->read(&tmdOff, 4);
tmdOff = SBig(tmdOff) << 2;
uint32_t certChainSize;
s->read(&certChainSize, 4);
certChainSize = SBig(certChainSize);
uint32_t certChainOff;
s->read(&certChainOff, 4);
certChainOff = SBig(certChainOff) << 2;
uint32_t globalHashTableOff;
s->read(&globalHashTableOff, 4);
globalHashTableOff = SBig(globalHashTableOff) << 2;
uint32_t dataOff;
s->read(&dataOff, 4);
dataOff = SBig(dataOff) << 2;
m_dataOff = offset + dataOff;
uint32_t dataSize;
s->read(&dataSize, 4);
dataSize = SBig(dataSize) << 2;
s->seek(offset + tmdOff);
m_tmd.read(*s);
s->seek(offset + certChainOff);
m_caCert.read(*s);
m_tmdCert.read(*s);
m_ticketCert.read(*s);
/* Decrypt title key */
std::unique_ptr<IAES> aes = NewAES();
uint8_t iv[16] = {};
memcpy(iv, m_ticket.titleId, 8);
aes->setKey(COMMON_KEYS[(int)m_ticket.commonKeyIdx]);
aes->decrypt(iv, m_ticket.encKey, m_decKey, 16);
/* Wii-specific header reads (now using title key to decrypt) */
std::unique_ptr<IPartReadStream> ds = beginReadStream(0x420);
if (!ds)
{
err = true;
return;
}
s->read(&m_bi2Header, sizeof(BI2Header));
m_dolOff = SBig(m_bi2Header.dolOff) << 2;
m_fstOff = SBig(m_bi2Header.fstOff) << 2;
m_fstSz = SBig(m_bi2Header.fstSz) << 2;
ds->seek(0x2440 + 0x14);
uint32_t vals[2];
ds->read(vals, 8);
m_apploaderSz = ((32 + SBig(vals[0]) + SBig(vals[1])) + 31) & ~31;
/* Yay files!! */
parseFST(*ds);
/* Also make DOL header and size handy */
ds->seek(m_dolOff);
parseDOL(*ds);
}
class PartReadStream : public IPartReadStream
{
std::unique_ptr<IAES> m_aes;
const PartitionWii& m_parent;
uint64_t m_baseOffset;
uint64_t m_offset;
std::unique_ptr<IDiscIO::IReadStream> m_dio;
size_t m_curBlock = SIZE_MAX;
uint8_t m_encBuf[0x8000];
uint8_t m_decBuf[0x7c00];
void decryptBlock()
{
m_dio->read(m_encBuf, 0x8000);
m_aes->decrypt(&m_encBuf[0x3d0], &m_encBuf[0x400], m_decBuf, 0x7c00);
}
public:
PartReadStream(const PartitionWii& parent, uint64_t baseOffset, uint64_t offset, bool& err)
: m_aes(NewAES()), m_parent(parent), m_baseOffset(baseOffset), m_offset(offset)
{
m_aes->setKey(parent.m_decKey);
size_t block = m_offset / 0x7c00;
m_dio = m_parent.m_parent.getDiscIO().beginReadStream(m_baseOffset + block * 0x8000);
if (!m_dio)
{
err = true;
return;
}
decryptBlock();
m_curBlock = block;
}
void seek(int64_t offset, int whence)
{
if (whence == SEEK_SET)
m_offset = offset;
else if (whence == SEEK_CUR)
m_offset += offset;
else
return;
size_t block = m_offset / 0x7c00;
if (block != m_curBlock)
{
m_dio->seek(m_baseOffset + block * 0x8000);
decryptBlock();
m_curBlock = block;
}
}
uint64_t position() const {return m_offset;}
uint64_t read(void* buf, uint64_t length)
{
size_t block = m_offset / 0x7c00;
size_t cacheOffset = m_offset % 0x7c00;
uint64_t cacheSize;
uint64_t rem = length;
uint8_t* dst = (uint8_t*)buf;
while (rem)
{
if (block != m_curBlock)
{
decryptBlock();
m_curBlock = block;
}
cacheSize = rem;
if (cacheSize + cacheOffset > 0x7c00)
cacheSize = 0x7c00 - cacheOffset;
memcpy(dst, m_decBuf + cacheOffset, cacheSize);
dst += cacheSize;
rem -= cacheSize;
cacheOffset = 0;
++block;
}
m_offset += length;
return dst - (uint8_t*)buf;
}
};
std::unique_ptr<IPartReadStream> beginReadStream(uint64_t offset) const
{
bool Err = false;
auto ret = std::unique_ptr<IPartReadStream>(new PartReadStream(*this, m_dataOff, offset, Err));
if (Err)
return {};
return ret;
}
uint64_t normalizeOffset(uint64_t anOffset) const {return anOffset << 2;}
std::unique_ptr<uint8_t[]> readPartitionHeaderBuf(size_t& szOut) const
{
{
std::unique_ptr<IDiscIO::IReadStream> rs = m_parent.getDiscIO().beginReadStream(m_offset + 0x2B4);
if (!rs)
return {};
uint32_t h3;
if (rs->read(&h3, 4) != 4)
{
LogModule.report(logvisor::Error, _S("unable to read H3 offset apploader"));
return {};
}
h3 = SBig(h3);
szOut = uint64_t(h3) << 2;
}
std::unique_ptr<IDiscIO::IReadStream> rs = m_parent.getDiscIO().beginReadStream(m_offset);
if (!rs)
return {};
std::unique_ptr<uint8_t[]> buf(new uint8_t[szOut]);
rs->read(buf.get(), szOut);
return buf;
}
bool writeOutPartitionHeader(const SystemChar* pathOut) const
{
std::unique_ptr<IFileIO::IWriteStream> ws = NewFileIO(pathOut)->beginWriteStream();
if (!ws)
return false;
uint64_t h3Off;
{
std::unique_ptr<IDiscIO::IReadStream> rs = m_parent.getDiscIO().beginReadStream(m_offset + 0x2B4);
if (!rs)
return false;
uint32_t h3;
if (rs->read(&h3, 4) != 4)
{
LogModule.report(logvisor::Error, _S("unable to read H3 offset to %s"), pathOut);
return false;
}
h3 = SBig(h3);
h3Off = uint64_t(h3) << 2;
}
char buf[8192];
size_t rem = h3Off;
std::unique_ptr<IDiscIO::IReadStream> rs = m_parent.getDiscIO().beginReadStream(m_offset);
if (!rs)
return false;
while (rem)
{
size_t rdSz = nod::min(rem, size_t(8192ul));
rs->read(buf, rdSz);
ws->write(buf, rdSz);
rem -= rdSz;
}
return true;
}
};
DiscWii::DiscWii(std::unique_ptr<IDiscIO>&& dio, bool& err)
: DiscBase(std::move(dio), err)
{
if (err)
return;
/* Read partition info */
struct PartInfo
{
uint32_t partCount;
uint32_t partInfoOff;
struct Part
{
uint32_t partDataOff;
IPartition::Kind partType;
} parts[4];
PartInfo(IDiscIO& dio, bool& err)
{
std::unique_ptr<IDiscIO::IReadStream> s = dio.beginReadStream(0x40000);
if (!s)
{
err = true;
return;
}
s->read(this, 32);
partCount = SBig(partCount);
partInfoOff = SBig(partInfoOff);
s->seek(partInfoOff << 2);
for (uint32_t p=0 ; p<partCount && p<4 ; ++p)
{
s->read(&parts[p], 8);
parts[p].partDataOff = SBig(parts[p].partDataOff);
parts[p].partType = IPartition::Kind(SBig(uint32_t(parts[p].partType)));
}
}
} partInfo(*m_discIO, err);
if (err)
return;
/* Iterate for data partition */
m_partitions.reserve(partInfo.partCount);
for (uint32_t p=0 ; p<partInfo.partCount && p<4 ; ++p)
{
PartInfo::Part& part = partInfo.parts[p];
IPartition::Kind kind;
switch (part.partType)
{
case IPartition::Kind::Data:
case IPartition::Kind::Update:
case IPartition::Kind::Channel:
kind = part.partType;
break;
default:
LogModule.report(logvisor::Error, "invalid partition type %d", part.partType);
err = true;
return;
}
m_partitions.emplace_back(new PartitionWii(*this, kind, part.partDataOff << 2, err));
if (err)
return;
}
}
DiscBuilderWii DiscWii::makeMergeBuilder(const SystemChar* outPath, bool dualLayer, FProgress progressCB)
{
return DiscBuilderWii(outPath, m_header.m_gameID, m_header.m_gameTitle,
dualLayer, progressCB);
}
bool DiscWii::writeOutDataPartitionHeader(const SystemChar* pathOut) const
{
for (const std::unique_ptr<IPartition>& part : m_partitions)
{
if (part->getKind() == IPartition::Kind::Data)
{
return static_cast<PartitionWii&>(*part).writeOutPartitionHeader(pathOut);
}
}
return false;
}
static const uint8_t ZEROIV[16] = {0};
class PartitionBuilderWii : public DiscBuilderBase::PartitionBuilderBase
{
friend class DiscBuilderWii;
friend class DiscMergerWii;
uint64_t m_baseOffset;
uint64_t m_userOffset = 0;
uint64_t m_curUser = 0x1F0000;
std::unique_ptr<IAES> m_aes;
uint8_t m_h3[4916][20] = {};
public:
class PartWriteStream : public IPartWriteStream
{
friend class PartitionBuilderWii;
PartitionBuilderWii& m_parent;
uint64_t m_baseOffset;
uint64_t m_offset;
std::unique_ptr<IFileIO::IWriteStream> m_fio;
bool m_closed = false;
size_t m_curGroup = SIZE_MAX;
char m_buf[0x200000];
void encryptGroup(uint8_t h3Out[20])
{
sha1nfo sha;
uint8_t h2[8][20];
for (int s=0 ; s<8 ; ++s)
{
char* ptr1 = m_buf + s*0x40000;
uint8_t h1[8][20];
for (int c=0 ; c<8 ; ++c)
{
char* ptr0 = ptr1 + c*0x8000;
uint8_t h0[31][20];
for (int j=0 ; j<31 ; ++j)
{
sha1_init(&sha);
sha1_write(&sha, ptr0 + (j+1)*0x400, 0x400);
memcpy(h0[j], sha1_result(&sha), 20);
}
sha1_init(&sha);
sha1_write(&sha, (char*)h0, 0x26C);
memcpy(h1[c], sha1_result(&sha), 20);
memcpy(ptr0, h0, 0x26C);
memset(ptr0+0x26C, 0, 0x014);
}
sha1_init(&sha);
sha1_write(&sha, (char*)h1, 0x0A0);
memcpy(h2[s], sha1_result(&sha), 20);
for (int c=0 ; c<8 ; ++c)
{
char* ptr0 = ptr1 + c*0x8000;
memcpy(ptr0+0x280, h1, 0x0A0);
memset(ptr0+0x320, 0, 0x020);
}
}
sha1_init(&sha);
sha1_write(&sha, (char*)h2, 0x0A0);
memcpy(h3Out, sha1_result(&sha), 20);
for (int s=0 ; s<8 ; ++s)
{
char* ptr1 = m_buf + s*0x40000;
for (int c=0 ; c<8 ; ++c)
{
char* ptr0 = ptr1 + c*0x8000;
memcpy(ptr0+0x340, h2, 0x0A0);
memset(ptr0+0x3E0, 0, 0x020);
m_parent.m_aes->encrypt(ZEROIV, (uint8_t*)ptr0, (uint8_t*)ptr0, 0x400);
m_parent.m_aes->encrypt((uint8_t*)(ptr0+0x3D0), (uint8_t*)(ptr0+0x400), (uint8_t*)(ptr0+0x400), 0x7c00);
}
}
if (m_fio->write(m_buf, 0x200000) != 0x200000)
{
LogModule.report(logvisor::Error, "unable to write full disc group");
return;
}
}
public:
PartWriteStream(PartitionBuilderWii& parent, uint64_t baseOffset, uint64_t offset, bool& err)
: m_parent(parent), m_baseOffset(baseOffset), m_offset(offset)
{
if (offset % 0x1F0000)
{
LogModule.report(logvisor::Error, "partition write stream MUST begin on 0x1F0000-aligned boundary");
err = true;
return;
}
size_t group = m_offset / 0x1F0000;
m_fio = m_parent.m_parent.getFileIO().beginWriteStream(m_baseOffset + group * 0x200000);
if (!m_fio)
err = true;
m_curGroup = group;
}
~PartWriteStream() {close();}
void close()
{
if (m_closed)
return;
m_closed = true;
size_t rem = m_offset % 0x1F0000;
if (rem)
{
rem = 0x1F0000 - rem;
write(nullptr, rem);
}
encryptGroup(m_parent.m_h3[m_curGroup]);
m_fio.reset();
}
uint64_t position() const {return m_offset;}
uint64_t write(const void* buf, uint64_t length)
{
size_t group = m_offset / 0x1F0000;
size_t block = (m_offset - group * 0x1F0000) / 0x7c00;
size_t cacheOffset = m_offset % 0x7c00;
uint64_t cacheSize;
uint64_t rem = length;
const uint8_t* src = (uint8_t*)buf;
while (rem)
{
if (group != m_curGroup)
{
encryptGroup(m_parent.m_h3[m_curGroup]);
m_curGroup = group;
}
cacheSize = rem;
if (cacheSize + cacheOffset > 0x7c00)
cacheSize = 0x7c00 - cacheOffset;
if (src)
{
memcpy(m_buf + block * 0x8000 + 0x400 + cacheOffset, src, cacheSize);
src += cacheSize;
}
else
memset(m_buf + block * 0x8000 + 0x400 + cacheOffset, 0, cacheSize);
rem -= cacheSize;
cacheOffset = 0;
++block;
if (block == 64)
{
block = 0;
++group;
}
}
m_offset += length;
return length;
}
};
PartitionBuilderWii(DiscBuilderBase& parent, Kind kind,
const char gameID[6], const char* gameTitle, uint64_t baseOffset)
: DiscBuilderBase::PartitionBuilderBase(parent, kind, gameID, gameTitle),
m_baseOffset(baseOffset), m_aes(NewAES()) {}
uint64_t getCurUserEnd() const {return m_curUser;}
uint64_t userAllocate(uint64_t reqSz, IPartWriteStream& ws)
{
reqSz = ROUND_UP_32(reqSz);
if (m_curUser + reqSz >= 0x1FB450000)
{
LogModule.report(logvisor::Error, "partition exceeds maximum single-partition capacity");
return -1;
}
uint64_t ret = m_curUser;
PartWriteStream& cws = static_cast<PartWriteStream&>(ws);
if (cws.m_offset > ret)
{
LogModule.report(logvisor::Error, "partition overwrite error");
return -1;
}
while (cws.m_offset < ret)
cws.write("\xff", 1);
m_curUser += reqSz;
return ret;
}
uint32_t packOffset(uint64_t offset) const
{
return uint32_t(offset >> uint64_t(2));
}
std::unique_ptr<IPartWriteStream> beginWriteStream(uint64_t offset)
{
bool Err = false;
std::unique_ptr<IPartWriteStream> ret =
std::make_unique<PartWriteStream>(*this, m_baseOffset + m_userOffset, offset, Err);
if (Err)
return {};
return ret;
}
uint64_t _build(const std::function<bool(IPartWriteStream&)>& contentFunc,
const std::function<bool(IPartWriteStream&, size_t&)>& apploaderFunc,
const uint8_t* phBuf, size_t phSz, size_t apploaderSz)
{
/* Read head and validate key members */
uint8_t tkey[16];
{
if (0x1BF + 16 > phSz)
{
LogModule.report(logvisor::Error, _S("unable to read title key"));
return -1;
}
memmove(tkey, phBuf + 0x1BF, 16);
}
uint8_t tkeyiv[16] = {};
{
if (0x1DC + 8 > phSz)
{
LogModule.report(logvisor::Error, _S("unable to read title key IV"));
return -1;
}
memmove(tkeyiv, phBuf + 0x1DC, 8);
}
uint8_t ccIdx;
{
if (0x1F1 + 1 > phSz)
{
LogModule.report(logvisor::Error, _S("unable to read common key index"));
return -1;
}
memmove(&ccIdx, phBuf + 0x1F1, 1);
if (ccIdx > 1)
{
LogModule.report(logvisor::Error, _S("common key index may only be 0 or 1"));
return -1;
}
}
uint32_t tmdSz;
{
if (0x2A4 + 4 > phSz)
{
LogModule.report(logvisor::Error, _S("unable to read TMD size"));
return -1;
}
memmove(&tmdSz, phBuf + 0x2A4, 4);
tmdSz = SBig(tmdSz);
}
uint64_t h3Off;
{
uint32_t h3Ptr;
if (0x2B4 + 4 > phSz)
{
LogModule.report(logvisor::Error, _S("unable to read H3 pointer"));
return -1;
}
memmove(&h3Ptr, phBuf + 0x2B4, 4);
h3Off = uint64_t(SBig(h3Ptr)) << 2;
}
uint64_t dataOff;
{
uint32_t dataPtr;
if (0x2B8 + 4 > phSz)
{
LogModule.report(logvisor::Error, _S("unable to read data pointer"));
return -1;
}
memmove(&dataPtr, phBuf + 0x2B8, 4);
dataOff = uint64_t(SBig(dataPtr)) << 2;
}
m_userOffset = dataOff;
std::unique_ptr<uint8_t[]> tmdData(new uint8_t[tmdSz]);
{
if (0x2C0 + tmdSz > phSz)
{
LogModule.report(logvisor::Error, _S("unable to read TMD"));
return -1;
}
memmove(tmdData.get(), phBuf + 0x2C0, tmdSz);
}
/* Copy partition head up to H3 table */
std::unique_ptr<IFileIO::IWriteStream> ws = m_parent.getFileIO().beginWriteStream(m_baseOffset);
if (!ws)
return -1;
size_t copySz = std::min(phSz, size_t(h3Off));
ws->write(phBuf, copySz);
size_t remCopy = (h3Off > phSz) ? (h3Off - copySz) : 0;
for (size_t i=0 ; i<remCopy ; ++i)
ws->write("", 1);
/* Prepare crypto pass */
m_aes->setKey(COMMON_KEYS[ccIdx]);
m_aes->decrypt(tkeyiv, tkey, tkey, 16);
m_aes->setKey(tkey);
{
/* Assemble partition data */
std::unique_ptr<IPartWriteStream> cws = beginWriteStream(0x1F0000);
if (!cws)
return -1;
if (!contentFunc(*cws))
return -1;
/* Pad out user area to nearest cleartext sector */
m_curUser = cws->position();
uint64_t curUserRem = m_curUser % 0x1F0000;
if (curUserRem)
{
curUserRem = 0x1F0000 - curUserRem;
for (size_t i=0 ; i<curUserRem ; ++i)
cws->write("\xff", 1);
m_curUser += curUserRem;
}
/* Begin crypto write and add content header */
cws = beginWriteStream(0);
if (!cws)
return -1;
Header header(m_gameID, m_gameTitle.c_str(), true, 0, 0, 0);
header.write(*cws);
/* Compute boot table members and write */
size_t fstOff = 0x2440 + ROUND_UP_32(apploaderSz);
size_t fstSz = sizeof(FSTNode) * m_buildNodes.size();
fstSz += m_buildNameOff;
fstSz = ROUND_UP_32(fstSz);
if (fstOff + fstSz >= 0x1F0000)
{
LogModule.report(logvisor::Error,
"FST flows into user area (one or the other is too big)");
return -1;
}
cws->write(nullptr, 0x420 - sizeof(Header));
uint32_t vals[4];
vals[0] = SBig(uint32_t(m_dolOffset >> uint64_t(2)));
vals[1] = SBig(uint32_t(fstOff >> uint64_t(2)));
vals[2] = SBig(uint32_t(fstSz));
vals[3] = SBig(uint32_t(fstSz));
cws->write(vals, 16);
size_t xferSz = 0;
if (!apploaderFunc(*cws, xferSz))
return -1;
size_t fstOffRel = fstOff - 0x2440;
if (xferSz > fstOffRel)
{
LogModule.report(logvisor::Error, "apploader unexpectedly flows into FST");
return -1;
}
for (size_t i=0 ; i<fstOffRel-xferSz ; ++i)
cws->write("\xff", 1);
/* Write FST */
cws->write(m_buildNodes.data(), m_buildNodes.size() * sizeof(FSTNode));
for (const std::string& str : m_buildNames)
cws->write(str.data(), str.size()+1);
}
/* Write new crypto content size */
uint64_t groupCount = m_curUser / 0x1F0000;
uint64_t cryptContentSize = (groupCount * 0x200000) >> uint64_t(2);
uint32_t cryptContentSizeBig = SBig(uint32_t(cryptContentSize));
ws = m_parent.getFileIO().beginWriteStream(m_baseOffset + 0x2BC);
if (!ws)
return -1;
ws->write(&cryptContentSizeBig, 0x4);
/* Write new H3 */
ws = m_parent.getFileIO().beginWriteStream(m_baseOffset + h3Off);
if (!ws)
return -1;
ws->write(m_h3, 0x18000);
/* Compute content hash and replace in TMD */
sha1nfo sha;
sha1_init(&sha);
sha1_write(&sha, (char*)m_h3, 0x18000);
memmove(tmdData.get() + 0x1F4, sha1_result(&sha), 20);
/* Same for content size */
uint64_t contentSize = groupCount * 0x1F0000;
uint64_t contentSizeBig = SBig(contentSize);
memmove(tmdData.get() + 0x1EC, &contentSizeBig, 8);
/* Zero-out TMD signature to simplify brute-force */
memset(tmdData.get() + 0x4, 0, 0x100);
/* Brute-force zero-starting hash */
size_t tmdCheckSz = tmdSz - 0x140;
struct BFWindow
{
uint64_t word[7];
}* bfWindow = (BFWindow*)(tmdData.get() + 0x19A);
bool good = false;
uint64_t attempts = 0;
SystemString bfName(_S("Brute force attempts"));
for (int w=0 ; w<7 ; ++w)
{
for (uint64_t i=0 ; i<UINT64_MAX ; ++i)
{
bfWindow->word[w] = i;
sha1_init(&sha);
sha1_write(&sha, (char*)(tmdData.get() + 0x140), tmdCheckSz);
uint8_t* hash = sha1_result(&sha);
++attempts;
if (hash[0] == 0)
{
good = true;
break;
}
m_parent.m_progressCB(m_parent.getProgressFactor(), bfName, attempts);
}
if (good)
break;
}
m_parent.m_progressCB(m_parent.getProgressFactor(), bfName, attempts);
++m_parent.m_progressIdx;
ws = m_parent.getFileIO().beginWriteStream(m_baseOffset + 0x2C0);
if (!ws)
return -1;
ws->write(tmdData.get(), tmdSz);
return m_baseOffset + dataOff + groupCount * 0x200000;
}
uint64_t buildFromDirectory(const SystemChar* dirIn,
const SystemChar* dolIn,
const SystemChar* apploaderIn,
const SystemChar* partHeadIn)
{
std::unique_ptr<IFileIO> ph = NewFileIO(partHeadIn);
size_t phSz = ph->size();
std::unique_ptr<uint8_t[]> phBuf(new uint8_t[phSz]);
{
auto rs = ph->beginReadStream();
if (!rs)
return -1;
rs->read(phBuf.get(), phSz);
}
/* Get Apploader Size */
Sstat theStat;
if (Stat(apploaderIn, &theStat))
{
LogModule.report(logvisor::Error, _S("unable to stat %s"), apploaderIn);
return -1;
}
return _build(
[this, dirIn, dolIn, apploaderIn](IPartWriteStream& cws) -> bool
{
return DiscBuilderBase::PartitionBuilderBase::buildFromDirectory(cws, dirIn, dolIn, apploaderIn);
},
[this, apploaderIn](IPartWriteStream& cws, size_t& xferSz) -> bool
{
cws.write(nullptr, 0x2440 - 0x430);
std::unique_ptr<IFileIO::IReadStream> rs = NewFileIO(apploaderIn)->beginReadStream();
if (!rs)
return false;
char buf[8192];
SystemString apploaderName(apploaderIn);
while (true)
{
size_t rdSz = rs->read(buf, 8192);
if (!rdSz)
break;
cws.write(buf, rdSz);
xferSz += rdSz;
if (0x2440 + xferSz >= 0x1F0000)
{
LogModule.report(logvisor::Error,
"apploader flows into user area (one or the other is too big)");
return false;
}
m_parent.m_progressCB(m_parent.getProgressFactor(), apploaderName, xferSz);
}
++m_parent.m_progressIdx;
return true;
}, phBuf.get(), phSz, theStat.st_size);
}
bool mergeFromDirectory(const PartitionWii* partIn, const SystemChar* dirIn)
{
size_t phSz;
std::unique_ptr<uint8_t[]> phBuf = partIn->readPartitionHeaderBuf(phSz);
return _build(
[this, partIn, dirIn](IPartWriteStream& cws) -> bool
{
return DiscBuilderBase::PartitionBuilderBase::mergeFromDirectory(cws, partIn, dirIn);
},
[this, partIn](IPartWriteStream& cws, size_t& xferSz) -> bool
{
cws.write(nullptr, 0x2440 - 0x430);
std::unique_ptr<uint8_t[]> apploaderBuf = partIn->getApploaderBuf();
size_t apploaderSz = partIn->getApploaderSize();
SystemString apploaderName(_S("<apploader>"));
cws.write(apploaderBuf.get(), apploaderSz);
xferSz += apploaderSz;
if (0x2440 + xferSz >= 0x1F0000)
{
LogModule.report(logvisor::Error,
"apploader flows into user area (one or the other is too big)");
return false;
}
m_parent.m_progressCB(m_parent.getProgressFactor(), apploaderName, xferSz);
++m_parent.m_progressIdx;
return true;
}, phBuf.get(), phSz, partIn->getApploaderSize());
}
};
EBuildResult DiscBuilderWii::buildFromDirectory(const SystemChar* dirIn, const SystemChar* dolIn,
const SystemChar* apploaderIn, const SystemChar* partHeadIn)
{
PartitionBuilderWii& pb = static_cast<PartitionBuilderWii&>(*m_partitions[0]);
uint64_t filledSz = pb.m_baseOffset;
if (!m_fileIO->beginWriteStream())
return EBuildResult::Failed;
if (!CheckFreeSpace(m_outPath.c_str(), m_discCapacity))
{
LogModule.report(logvisor::Error, _S("not enough free disk space for %s"), m_outPath.c_str());
return EBuildResult::DiskFull;
}
m_progressCB(getProgressFactor(), _S("Preallocating image"), -1);
++m_progressIdx;
std::unique_ptr<IFileIO::IWriteStream> ws = m_fileIO->beginWriteStream(m_discCapacity - 1);
if (!ws)
return EBuildResult::Failed;
ws->write("", 1);
/* Assemble image */
filledSz = pb.buildFromDirectory(dirIn, dolIn, apploaderIn, partHeadIn);
if (filledSz == -1)
return EBuildResult::Failed;
else if (filledSz >= uint64_t(m_discCapacity))
{
LogModule.report(logvisor::Error, "data partition exceeds disc capacity");
return EBuildResult::Failed;
}
m_progressCB(getProgressFactor(), _S("Finishing Disc"), -1);
++m_progressIdx;
/* Populate disc header */
ws = m_fileIO->beginWriteStream(0);
if (!ws)
return EBuildResult::Failed;
Header header(pb.getGameID(), pb.getGameTitle().c_str(), true, 0, 0, 0);
header.write(*ws);
/* Populate partition info */
ws = m_fileIO->beginWriteStream(0x40000);
if (!ws)
return EBuildResult::Failed;
uint32_t vals[2] = {SBig(uint32_t(1)), SBig(uint32_t(0x40020 >> uint64_t(2)))};
ws->write(vals, 8);
ws = m_fileIO->beginWriteStream(0x40020);
if (!ws)
return EBuildResult::Failed;
vals[0] = SBig(uint32_t(pb.m_baseOffset >> uint64_t(2)));
ws->write(vals, 4);
/* Populate region info */
ws = m_fileIO->beginWriteStream(0x4E000);
if (!ws)
return EBuildResult::Failed;
const char* gameID = pb.getGameID();
if (gameID[3] == 'P')
vals[0] = SBig(uint32_t(2));
else if (gameID[3] == 'J')
vals[0] = SBig(uint32_t(0));
else
vals[0] = SBig(uint32_t(1));
ws->write(vals, 4);
/* Make disc unrated */
ws = m_fileIO->beginWriteStream(0x4E010);
if (!ws)
return EBuildResult::Failed;
for (int i=0 ; i<16 ; ++i)
ws->write("\x80", 1);
/* Fill image to end */
ws = m_fileIO->beginWriteStream(filledSz);
if (!ws)
return EBuildResult::Failed;
uint8_t fillBuf[512];
memset(fillBuf, 0xff, 512);
for (size_t i=m_discCapacity-filledSz ; i>0 ;)
{
if (i >= 512)
{
ws->write(fillBuf, 512);
i -= 512;
continue;
}
ws->write(fillBuf, i);
break;
}
return EBuildResult::Success;
}
uint64_t DiscBuilderWii::CalculateTotalSizeRequired(const SystemChar* dirIn, const SystemChar* dolIn,
bool& dualLayer)
{
uint64_t sz = DiscBuilderBase::PartitionBuilderBase::CalculateTotalSizeBuild(dolIn, dirIn);
if (sz == -1)
return -1;
auto szDiv = std::lldiv(sz, 0x1F0000);
if (szDiv.rem) ++szDiv.quot;
sz = szDiv.quot * 0x200000;
sz += 0x200000;
dualLayer = (sz > 0x118240000);
if (sz > 0x1FB4E0000)
{
LogModule.report(logvisor::Error, _S("disc capacity exceeded [%" PRIu64 " / %" PRIu64 "]"), sz, 0x1FB4E0000);
return -1;
}
return sz;
}
DiscBuilderWii::DiscBuilderWii(const SystemChar* outPath, const char gameID[6], const char* gameTitle,
bool dualLayer, FProgress progressCB)
: DiscBuilderBase(outPath, dualLayer ? 0x1FB4E0000 : 0x118240000, progressCB), m_dualLayer(dualLayer)
{
PartitionBuilderWii* partBuilder = new PartitionBuilderWii(*this, PartitionBuilderBase::Kind::Data,
gameID, gameTitle, 0x200000);
m_partitions.emplace_back(partBuilder);
}
DiscMergerWii::DiscMergerWii(const SystemChar* outPath, DiscWii& sourceDisc,
bool dualLayer, FProgress progressCB)
: m_sourceDisc(sourceDisc), m_builder(sourceDisc.makeMergeBuilder(outPath, dualLayer, progressCB))
{}
EBuildResult DiscMergerWii::mergeFromDirectory(const SystemChar* dirIn)
{
PartitionBuilderWii& pb = static_cast<PartitionBuilderWii&>(*m_builder.m_partitions[0]);
uint64_t filledSz = pb.m_baseOffset;
if (!m_builder.m_fileIO->beginWriteStream())
return EBuildResult::Failed;
if (!CheckFreeSpace(m_builder.m_outPath.c_str(), m_builder.m_discCapacity))
{
LogModule.report(logvisor::Error, _S("not enough free disk space for %s"), m_builder.m_outPath.c_str());
return EBuildResult::DiskFull;
}
m_builder.m_progressCB(m_builder.getProgressFactor(), _S("Preallocating image"), -1);
++m_builder.m_progressIdx;
std::unique_ptr<IFileIO::IWriteStream> ws = m_builder.m_fileIO->beginWriteStream(m_builder.m_discCapacity - 1);
if (!ws)
return EBuildResult::Failed;
ws->write("", 1);
/* Assemble image */
filledSz = pb.mergeFromDirectory(static_cast<PartitionWii*>(m_sourceDisc.getDataPartition()), dirIn);
if (filledSz == -1)
return EBuildResult::Failed;
else if (filledSz >= uint64_t(m_builder.m_discCapacity))
{
LogModule.report(logvisor::Error, "data partition exceeds disc capacity");
return EBuildResult::Failed;
}
m_builder.m_progressCB(m_builder.getProgressFactor(), _S("Finishing Disc"), -1);
++m_builder.m_progressIdx;
/* Populate disc header */
ws = m_builder.m_fileIO->beginWriteStream(0);
if (!ws)
return EBuildResult::Failed;
m_sourceDisc.getHeader().write(*ws);
/* Populate partition info */
ws = m_builder.m_fileIO->beginWriteStream(0x40000);
if (!ws)
return EBuildResult::Failed;
uint32_t vals[2] = {SBig(uint32_t(1)), SBig(uint32_t(0x40020 >> uint64_t(2)))};
ws->write(vals, 8);
ws = m_builder.m_fileIO->beginWriteStream(0x40020);
if (!ws)
return EBuildResult::Failed;
vals[0] = SBig(uint32_t(pb.m_baseOffset >> uint64_t(2)));
ws->write(vals, 4);
/* Populate region info */
ws = m_builder.m_fileIO->beginWriteStream(0x4E000);
if (!ws)
return EBuildResult::Failed;
const char* gameID = pb.getGameID();
if (gameID[3] == 'P')
vals[0] = SBig(uint32_t(2));
else if (gameID[3] == 'J')
vals[0] = SBig(uint32_t(0));
else
vals[0] = SBig(uint32_t(1));
ws->write(vals, 4);
/* Make disc unrated */
ws = m_builder.m_fileIO->beginWriteStream(0x4E010);
if (!ws)
return EBuildResult::Failed;
for (int i=0 ; i<16 ; ++i)
ws->write("\x80", 1);
/* Fill image to end */
ws = m_builder.m_fileIO->beginWriteStream(filledSz);
if (!ws)
return EBuildResult::Failed;
uint8_t fillBuf[512];
memset(fillBuf, 0xff, 512);
for (size_t i=m_builder.m_discCapacity-filledSz ; i>0 ;)
{
if (i >= 512)
{
ws->write(fillBuf, 512);
i -= 512;
continue;
}
ws->write(fillBuf, i);
break;
}
return EBuildResult::Success;
}
uint64_t DiscMergerWii::CalculateTotalSizeRequired(DiscWii& sourceDisc,
const SystemChar* dirIn, bool& dualLayer)
{
uint64_t sz = DiscBuilderBase::PartitionBuilderBase::CalculateTotalSizeMerge(
sourceDisc.getDataPartition(), dirIn);
if (sz == -1)
return -1;
auto szDiv = std::lldiv(sz, 0x1F0000);
if (szDiv.rem) ++szDiv.quot;
sz = szDiv.quot * 0x200000;
sz += 0x200000;
dualLayer = (sz > 0x118240000);
if (sz > 0x1FB4E0000)
{
LogModule.report(logvisor::Error, _S("disc capacity exceeded [%" PRIu64 " / %" PRIu64 "]"), sz, 0x1FB4E0000);
return -1;
}
return sz;
}
}