mirror of
https://github.com/AxioDL/zeus.git
synced 2025-12-17 17:05:30 +00:00
Remove unneeded standard math functions
This commit is contained in:
128
src/Math.cpp
128
src/Math.cpp
@@ -187,88 +187,6 @@ CVector3f getBezierPoint(const CVector3f& a, const CVector3f& b, const CVector3f
|
||||
(d * t * t * t);
|
||||
}
|
||||
|
||||
double sqrtD(double val)
|
||||
{
|
||||
if (val <= 0.0)
|
||||
{
|
||||
// Dunnno what retro is doing here,
|
||||
// but this shouldn't come up anyway.
|
||||
if (val != 0.0)
|
||||
return 1.0 / (float)0x7FFFFFFF;
|
||||
if (val == 0.0)
|
||||
return 1.0 / (float)0x7F800000;
|
||||
}
|
||||
double q;
|
||||
#if __SSE__
|
||||
union {
|
||||
__m128d v;
|
||||
double d[2];
|
||||
} qv = {val};
|
||||
qv.v = _mm_sqrt_sd(qv.v, qv.v);
|
||||
q = qv.d[0];
|
||||
#else
|
||||
// le sigh, let's use Carmack's inverse square -.-
|
||||
union {
|
||||
double v;
|
||||
int i;
|
||||
} p;
|
||||
|
||||
double x = val * 0.5F;
|
||||
p.v = val;
|
||||
p.i = 0x5fe6eb50c7b537a9 - (p.i >> 1);
|
||||
p.v *= (1.5f - (x * p.v * p.v));
|
||||
p.v *= (1.5f - (x * p.v * p.v));
|
||||
q = p.v;
|
||||
|
||||
static const double half = 0.5;
|
||||
static const double three = 3.0;
|
||||
double sq = q * q;
|
||||
q = half * q;
|
||||
sq = -((val * three) - sq);
|
||||
q = q * sq;
|
||||
sq = q * q;
|
||||
q = q * q;
|
||||
sq = -((val * three) - sq);
|
||||
q = q * sq;
|
||||
sq = q * q;
|
||||
q = half * q;
|
||||
sq = -((val * three) - sq);
|
||||
q = q * sq;
|
||||
sq = q * q;
|
||||
q = half * q;
|
||||
sq = -((val * three) - sq);
|
||||
sq = q * sq;
|
||||
q = val * sq;
|
||||
#endif
|
||||
return q;
|
||||
}
|
||||
|
||||
float fastArcCosF(float val)
|
||||
{
|
||||
/* If we're not at a low enough value,
|
||||
* the approximation below won't provide any benefit,
|
||||
* and we simply fall back to the standard implementation
|
||||
*/
|
||||
if (std::fabs(val) >= 0.925000011920929f)
|
||||
return std::acos(val);
|
||||
|
||||
/* Fast Arc Cosine approximation using Taylor Polynomials
|
||||
* while this implementation is fast, it's also not as accurate.
|
||||
* This is a straight reimplementation of Retro's CFastArcCosR
|
||||
* and as a result of the polynomials, it returns the inverse value,
|
||||
* I'm not certain if this was intended originally, but we'll leave it
|
||||
* in order to be as accurate as possible.
|
||||
*/
|
||||
double mag = (val * val);
|
||||
double a = ((val * 1.5707964f) + -0.99822718f);
|
||||
double b = (val * mag);
|
||||
a = ((b * a) + -0.20586604f);
|
||||
b *= mag;
|
||||
a = ((b * a) + 0.1142542f);
|
||||
b *= mag;
|
||||
return ((b * a) + -0.2969782f);
|
||||
}
|
||||
|
||||
int floorPowerOfTwo(int x)
|
||||
{
|
||||
if (x == 0)
|
||||
@@ -302,52 +220,6 @@ int ceilingPowerOfTwo(int x)
|
||||
return x;
|
||||
}
|
||||
|
||||
float fastCosF(float val)
|
||||
{
|
||||
if (std::fabs(val) > M_PIF)
|
||||
{
|
||||
float rVal = float(uint32_t(val));
|
||||
val = -((rVal * val) - 6.2831855f);
|
||||
if (val <= M_PIF && val < -M_PIF)
|
||||
val += 6.2831855f;
|
||||
else
|
||||
val -= 6.2831855f;
|
||||
}
|
||||
|
||||
float sq = val * val;
|
||||
float b = sq * sq;
|
||||
val = sq + -0.4999803f;
|
||||
val = (b * val) + 0.041620344f;
|
||||
b = b * sq;
|
||||
val = (b * val) + -0.0013636103f;
|
||||
b = b * sq;
|
||||
val = (b * val) + 0.000020169435f;
|
||||
return val;
|
||||
}
|
||||
|
||||
float fastSinF(float val)
|
||||
{
|
||||
if (std::fabs(val) > M_PIF)
|
||||
{
|
||||
float rVal = float(uint32_t(val));
|
||||
val = -((rVal * val) - 6.2831855f);
|
||||
if (val <= M_PIF && val < -M_PIF)
|
||||
val += 6.2831855f;
|
||||
else
|
||||
val -= 6.2831855f;
|
||||
}
|
||||
|
||||
float sq = val * val;
|
||||
float ret = val * 0.99980587f;
|
||||
val = val * sq;
|
||||
ret = (val * ret) + -0.16621658f;
|
||||
val = val * sq;
|
||||
ret = (val * ret) + 0.0080871079f;
|
||||
val = val * sq;
|
||||
ret = (val * ret) + -0.00015297699f;
|
||||
return ret;
|
||||
}
|
||||
|
||||
float getCatmullRomSplinePoint(float a, float b, float c, float d, float t)
|
||||
{
|
||||
if (t <= 0.0f)
|
||||
|
||||
Reference in New Issue
Block a user