zeus/include/zeus/CMatrix3f.hpp

159 lines
4.5 KiB
C++

#pragma once
#include <array>
#include <cassert>
#include "zeus/CVector3f.hpp"
#include "zeus/Global.hpp"
/* Column-major matrix class */
namespace zeus {
class CQuaternion;
class CMatrix3f {
public:
explicit constexpr CMatrix3f(bool zero = false) {
if (!zero) {
m[0][0] = 1.0;
m[1][1] = 1.0;
m[2][2] = 1.0;
}
}
constexpr CMatrix3f(float m00, float m01, float m02, float m10, float m11, float m12, float m20, float m21, float m22)
: m{{{m00, m10, m20}, {m01, m11, m21}, {m02, m12, m22}}} {}
CMatrix3f(const CVector3f& scaleVec) {
m[0][0] = scaleVec[0];
m[1][1] = scaleVec[1];
m[2][2] = scaleVec[2];
}
CMatrix3f(float scale) : CMatrix3f(CVector3f(scale)) {}
constexpr CMatrix3f(const CVector3f& r0, const CVector3f& r1, const CVector3f& r2) : m{{r0, r1, r2}} {}
constexpr CMatrix3f(const CMatrix3f& other) = default;
constexpr CMatrix3f(const simd<float>& r0, const simd<float>& r1, const simd<float>& r2) {
m[0].mSimd = r0;
m[1].mSimd = r1;
m[2].mSimd = r2;
}
#if ZE_ATHENA_TYPES
constexpr CMatrix3f(const atVec4f& r0, const atVec4f& r1, const atVec4f& r2) {
m[0].mSimd = r0.simd;
m[1].mSimd = r1.simd;
m[2].mSimd = r2.simd;
}
void readBig(athena::io::IStreamReader& input) {
m[0][0] = input.readFloatBig();
m[1][0] = input.readFloatBig();
m[2][0] = input.readFloatBig();
m[0][1] = input.readFloatBig();
m[1][1] = input.readFloatBig();
m[2][1] = input.readFloatBig();
m[0][2] = input.readFloatBig();
m[1][2] = input.readFloatBig();
m[2][2] = input.readFloatBig();
}
[[nodiscard]] static CMatrix3f ReadBig(athena::io::IStreamReader& input) {
CMatrix3f ret;
ret.readBig(input);
return ret;
}
#endif
CMatrix3f(const CQuaternion& quat);
constexpr CMatrix3f& operator=(const CMatrix3f& other) = default;
[[nodiscard]] CVector3f operator*(const CVector3f& other) const {
return m[0].mSimd * other.mSimd.shuffle<0, 0, 0, 0>() + m[1].mSimd * other.mSimd.shuffle<1, 1, 1, 1>() +
m[2].mSimd * other.mSimd.shuffle<2, 2, 2, 2>();
}
[[nodiscard]] CVector3f& operator[](size_t i) {
assert(i < m.size());
return m[i];
}
[[nodiscard]] const CVector3f& operator[](size_t i) const {
assert(i < m.size());
return m[i];
}
[[nodiscard]] CMatrix3f orthonormalized() const {
CMatrix3f ret;
ret[0] = m[0].normalized();
ret[2] = ret[0].cross(m[1]);
ret[2].normalize();
ret[1] = ret[2].cross(ret[0]);
return ret;
}
[[nodiscard]] bool operator==(const CMatrix3f& other) const {
return m[0] == other.m[0] && m[1] == other.m[1] && m[2] == other.m[2];
}
[[nodiscard]] bool operator!=(const CMatrix3f& other) const { return !operator==(other); }
void transpose();
[[nodiscard]] CMatrix3f transposed() const;
void invert() { *this = inverted(); }
[[nodiscard]] CMatrix3f inverted() const;
void addScaledMatrix(const CMatrix3f& other, float scale) {
CVector3f scaleVec(scale);
m[0] += other.m[0] * scaleVec;
m[1] += other.m[1] * scaleVec;
m[2] += other.m[2] * scaleVec;
}
[[nodiscard]] static CMatrix3f RotateX(float theta) {
float sinT = std::sin(theta);
float cosT = std::cos(theta);
return CMatrix3f(simd<float>{1.f, 0.f, 0.f, 0.f}, simd<float>{0.f, cosT, sinT, 0.f},
simd<float>{0.f, -sinT, cosT, 0.f});
}
[[nodiscard]] static CMatrix3f RotateY(float theta) {
float sinT = std::sin(theta);
float cosT = std::cos(theta);
return CMatrix3f(simd<float>{cosT, 0.f, -sinT, 0.f}, simd<float>{0.f, 1.f, 0.f, 0.f},
simd<float>{sinT, 0.f, cosT, 0.f});
}
[[nodiscard]] static CMatrix3f RotateZ(float theta) {
float sinT = std::sin(theta);
float cosT = std::cos(theta);
return CMatrix3f(simd<float>{cosT, sinT, 0.f, 0.f}, simd<float>{-sinT, cosT, 0.f, 0.f},
simd<float>{0.f, 0.f, 1.f, 0.f});
}
[[nodiscard]] float determinant() const {
return m[1][0] * (m[2][1] * m[0][2] - m[0][1] * m[2][2]) + m[0][0] * (m[1][1] * m[2][2] - m[2][1] * m[1][2]) +
m[2][0] * (m[0][1] * m[1][2] - m[1][1] * m[0][2]);
}
std::array<CVector3f, 3> m;
};
[[nodiscard]] inline CMatrix3f operator*(const CMatrix3f& lhs, const CMatrix3f& rhs) {
std::array<simd<float>, 3> v;
for (size_t i = 0; i < v.size(); ++i) {
v[i] = lhs.m[0].mSimd * rhs[i].mSimd.shuffle<0, 0, 0, 0>() + lhs.m[1].mSimd * rhs[i].mSimd.shuffle<1, 1, 1, 1>() +
lhs.m[2].mSimd * rhs[i].mSimd.shuffle<2, 2, 2, 2>();
}
return CMatrix3f(v[0], v[1], v[2]);
}
} // namespace zeus