zeus/include/zeus/Math.hpp

194 lines
5.9 KiB
C++

#pragma once
#include <cfloat>
#undef min
#undef max
#undef M_PI
#define M_PI 3.14159265358979323846 /* pi */
#define M_PIF 3.14159265358979323846f /* pi */
#undef M_PI_2
#define M_PI_2 1.57079632679489661923 /* pi/2 */
#undef M_PI_4
#define M_PI_4 0.78539816339744830962 /* pi/4 */
#undef M_1_PI
#define M_1_PI 0.31830988618379067154 /* 1/pi */
#undef M_2_PI
#define M_2_PI 0.63661977236758134308 /* 2/pi */
#undef M_2_SQRTPI
#define M_2_SQRTPI 1.12837916709551257390 /* 2/sqrt(pi) */
#undef M_SQRT2
#define M_SQRT2 1.41421356237309504880 /* sqrt(2) */
#undef M_SQRT1_2
#define M_SQRT1_2 0.70710678118654752440 /* 1/sqrt(2) */
#define M_SQRT1_2F 0.70710678118654752440f /* 1/sqrt(2) */
#include <cmath>
#include <algorithm>
namespace zeus {
#if _MSC_VER
#if defined(_M_IX86)
#define ZEUS_ARCH_X86 1
#elif defined(_M_X64)
#define ZEUS_ARCH_X86_64 1
#endif
#else
#if defined(__i386__)
#define ZEUS_ARCH_X86 1
#elif defined(__x86_64__)
#define ZEUS_ARCH_X86_64 1
#endif
#endif
struct CPUInfo {
const char cpuBrand[48] = {0};
const char cpuVendor[32] = {0};
#if ZEUS_ARCH_X86_64 || ZEUS_ARCH_X86
const bool isIntel = false;
const bool SSE1 = false;
const bool SSE2 = false;
const bool SSE3 = false;
const bool SSSE3 = false;
const bool SSE41 = false;
const bool SSE42 = false;
const bool SSE4a = false;
const bool AESNI = false;
const bool AVX = false;
const bool AVX2 = false;
#endif
};
/**
* Detects CPU capabilities and returns true if SSE4.1 or SSE4.2 is available
*/
void detectCPU();
const CPUInfo& cpuFeatures();
[[nodiscard]] std::pair<bool, const CPUInfo&> validateCPU();
void getCpuInfo(int eax, int regs[4]);
void getCpuInfoEx(int eax, int ecx, int regs[4]);
class CVector3f;
class CVector2f;
class CTransform;
template <typename T>
[[nodiscard]] constexpr T min(const T& a, const T& b) {
return a < b ? a : b;
}
template <typename T>
[[nodiscard]] constexpr T max(const T& a, const T& b) {
return a > b ? a : b;
}
template <>
[[nodiscard]] CVector3f min(const CVector3f& a, const CVector3f& b);
template <>
[[nodiscard]] CVector3f max(const CVector3f& a, const CVector3f& b);
template <typename T>
[[nodiscard]] constexpr T clamp(const T& a, const T& val, const T& b) {
return max<T>(a, min<T>(b, val));
}
[[nodiscard]] constexpr float radToDeg(float rad) { return rad * (180.f / M_PIF); }
[[nodiscard]] constexpr float degToRad(float deg) { return deg * (M_PIF / 180.f); }
[[nodiscard]] constexpr double radToDeg(double rad) { return rad * (180.0 / M_PI); }
[[nodiscard]] constexpr double degToRad(double deg) { return deg * (M_PI / 180.0); }
[[nodiscard]] CVector3f baryToWorld(const CVector3f& p0, const CVector3f& p1, const CVector3f& p2,
const CVector3f& bary);
[[nodiscard]] CVector3f getBezierPoint(const CVector3f& a, const CVector3f& b, const CVector3f& c, const CVector3f& d,
float t);
[[nodiscard]] float getCatmullRomSplinePoint(float a, float b, float c, float d, float t);
[[nodiscard]] CVector3f getCatmullRomSplinePoint(const CVector3f& a, const CVector3f& b, const CVector3f& c,
const CVector3f& d, float t);
[[nodiscard]] CVector3f getRoundCatmullRomSplinePoint(const CVector3f& a, const CVector3f& b, const CVector3f& c,
const CVector3f& d, float t);
// Since round(double) doesn't exist in some <cmath> implementations
// we'll define our own
[[nodiscard]] inline double round(double val) { return (val < 0.0 ? std::ceil(val - 0.5) : std::ceil(val + 0.5)); }
[[nodiscard]] inline double powD(float a, float b) { return std::exp(b * std::log(a)); }
[[nodiscard]] inline double invSqrtD(double val) { return 1.0 / std::sqrt(val); }
[[nodiscard]] inline float invSqrtF(float val) { return float(1.0 / std::sqrt(val)); }
[[nodiscard]] int floorPowerOfTwo(int x);
[[nodiscard]] int ceilingPowerOfTwo(int x);
template <typename U>
[[nodiscard]] typename std::enable_if<!std::is_enum<U>::value && std::is_integral<U>::value, int>::type PopCount(U x) {
#if __GNUC__ >= 4
return __builtin_popcountll(x);
#else
const U m1 = U(0x5555555555555555); // binary: 0101...
const U m2 = U(0x3333333333333333); // binary: 00110011..
const U m4 = U(0x0f0f0f0f0f0f0f0f); // binary: 4 zeros, 4 ones ...
const U h01 = U(0x0101010101010101); // the sum of 256 to the power of 0,1,2,3...
x -= (x >> 1) & m1; // put count of each 2 bits into those 2 bits
x = (x & m2) + ((x >> 2) & m2); // put count of each 4 bits into those 4 bits
x = (x + (x >> 4)) & m4; // put count of each 8 bits into those 8 bits
return (x * h01) >> ((sizeof(U) - 1) * 8); // returns left 8 bits of x + (x<<8) + (x<<16) + (x<<24) + ...
#endif
}
template <typename E>
[[nodiscard]] typename std::enable_if<std::is_enum<E>::value, int>::type PopCount(E e) {
return PopCount(static_cast<typename std::underlying_type<E>::type>(e));
}
template <typename U>
[[nodiscard]] typename std::enable_if<!std::is_enum<U>::value && std::is_integral<U>::value, int>::type
countLeadingZeros(U x) {
#if __GNUC__ >= 4
return __builtin_clz(x);
#else
x = x | (x >> 1);
x = x | (x >> 2);
x = x | (x >> 4);
x = x | (x >> 8);
x = x | (x >> 16);
return PopCount(~x);
#endif
}
template <typename E>
[[nodiscard]] typename std::enable_if<std::is_enum<E>::value, int>::type countLeadingZeros(E e) {
return countLeadingZeros(static_cast<typename std::underlying_type<E>::type>(e));
}
[[nodiscard]] bool close_enough(const CVector3f& a, const CVector3f& b, float epsilon = FLT_EPSILON);
[[nodiscard]] bool close_enough(const CVector2f& a, const CVector2f& b, float epsilon = FLT_EPSILON);
[[nodiscard]] inline bool close_enough(float a, float b, double epsilon = FLT_EPSILON) {
return std::fabs(a - b) <= epsilon;
}
[[nodiscard]] inline bool close_enough(double a, double b, double epsilon = FLT_EPSILON) {
return std::fabs(a - b) <= epsilon;
}
} // namespace zeus