zeus/src/Math.cpp

292 lines
7.5 KiB
C++

#include "zeus/Math.hpp"
#include <cfloat>
#include <cmath>
#include <cstring>
#include "zeus/CTransform.hpp"
#include "zeus/CVector2f.hpp"
#include "zeus/CVector3f.hpp"
#if _WIN32
#include <intrin.h>
#elif __x86_64__
#include <cpuid.h>
#endif
namespace zeus {
static bool isCPUInit = false;
static CPUInfo g_cpuFeatures = {};
static CPUInfo g_missingFeatures = {};
void getCpuInfo(int eax, int regs[4]) {
#if defined(__x86_64__) || defined(_M_X64)
#if _WIN32
__cpuid(regs, eax);
#else
__cpuid(eax, regs[0], regs[1], regs[2], regs[3]);
#endif
#endif
}
void getCpuInfoEx(int eax, int ecx, int regs[4]) {
#if defined(__x86_64__) || defined(_M_X64)
#if _WIN32
__cpuidex(regs, eax, ecx);
#else
__cpuid_count(eax, ecx, regs[0], regs[1], regs[2], regs[3]);
#endif
#endif
}
void detectCPU() {
#if defined(__x86_64__) || defined(_M_X64)
if (isCPUInit)
return;
int regs[4];
getCpuInfo(0, regs);
int highestFeature = regs[0];
*reinterpret_cast<int*>((char*)g_cpuFeatures.cpuVendor) = regs[1];
*reinterpret_cast<int*>((char*)g_cpuFeatures.cpuVendor + 4) = regs[3];
*reinterpret_cast<int*>((char*)g_cpuFeatures.cpuVendor + 8) = regs[2];
getCpuInfo(0x80000000, regs);
int maxExtended = regs[0];
if (maxExtended >= 0x80000004) {
for (unsigned int i = 0x80000002; i <= 0x80000004; i++) {
getCpuInfo(i, regs);
// Interpret CPU brand string and cache information.
if (i == 0x80000002)
memcpy((char*)g_cpuFeatures.cpuBrand, regs, sizeof(regs));
else if (i == 0x80000003)
memcpy((char*)g_cpuFeatures.cpuBrand + 16, regs, sizeof(regs));
else if (i == 0x80000004)
memcpy((char*)g_cpuFeatures.cpuBrand + 32, regs, sizeof(regs));
}
}
if (highestFeature >= 1) {
getCpuInfo(1, regs);
memset((bool*)&g_cpuFeatures.AESNI, ((regs[2] & 0x02000000) != 0), 1);
memset((bool*)&g_cpuFeatures.SSE1, ((regs[3] & 0x02000000) != 0), 1);
memset((bool*)&g_cpuFeatures.SSE2, ((regs[3] & 0x04000000) != 0), 1);
memset((bool*)&g_cpuFeatures.SSE3, ((regs[2] & 0x00000001) != 0), 1);
memset((bool*)&g_cpuFeatures.SSSE3, ((regs[2] & 0x00000200) != 0), 1);
memset((bool*)&g_cpuFeatures.SSE41, ((regs[2] & 0x00080000) != 0), 1);
memset((bool*)&g_cpuFeatures.SSE42, ((regs[2] & 0x00100000) != 0), 1);
memset((bool*)&g_cpuFeatures.AVX, ((regs[2] & 0x10000000) != 0), 1);
}
if (highestFeature >= 7) {
getCpuInfoEx(7, 0, regs);
memset((bool*)&g_cpuFeatures.AVX2, ((regs[1] & 0x00000020) != 0), 1);
}
if (maxExtended >= 0x80000001) {
getCpuInfo(0x80000001, regs);
memset((bool*)&g_cpuFeatures.SSE4a, ((regs[2] & (1 << 6)) != 0), 1);
}
isCPUInit = true;
#endif
}
const CPUInfo& cpuFeatures() {
detectCPU();
return g_cpuFeatures;
}
std::pair<bool, const CPUInfo&> validateCPU() {
detectCPU();
bool ret = true;
#if __AVX2__
if (!g_cpuFeatures.AVX2) {
*(bool*)&g_missingFeatures.AVX2 = true;
ret = false;
}
#endif
#if __AVX__
if (!g_cpuFeatures.AVX) {
*(bool*)&g_missingFeatures.AVX = true;
ret = false;
}
#endif
#if __SSE4A__
if (!g_cpuFeatures.SSE4a) {
*(bool*)&g_missingFeatures.SSE4a = true;
ret = false;
}
#endif
#if __SSE4_2__
if (!g_cpuFeatures.SSE42) {
*(bool*)&g_missingFeatures.SSE42 = true;
ret = false;
}
#endif
#if __SSE4_1__
if (!g_cpuFeatures.SSE41) {
*(bool*)&g_missingFeatures.SSE41 = true;
ret = false;
}
#endif
#if __SSSE3__
if (!g_cpuFeatures.SSSE3) {
*(bool*)&g_missingFeatures.SSSE3 = true;
ret = false;
}
#endif
#if __SSE3__
if (!g_cpuFeatures.SSE3) {
*(bool*)&g_missingFeatures.SSE3 = true;
ret = false;
}
#endif
#if __SSE2__
if (!g_cpuFeatures.SSE2) {
*(bool*)&g_missingFeatures.SSE2 = true;
ret = false;
}
#endif
#if __SSE__
if (!g_cpuFeatures.SSE1) {
*(bool*)&g_missingFeatures.SSE1 = true;
ret = false;
}
#endif
return {ret, g_missingFeatures};
}
CTransform lookAt(const CVector3f& pos, const CVector3f& lookPos, const CVector3f& up) {
CVector3f vLook, vRight, vUp;
vLook = lookPos - pos;
if (vLook.magnitude() <= FLT_EPSILON)
vLook = {0.f, 1.f, 0.f};
else
vLook.normalize();
vUp = up - vLook * clamp(-1.f, up.dot(vLook), 1.f);
if (vUp.magnitude() <= FLT_EPSILON) {
vUp = CVector3f(0.f, 0.f, 1.f) - vLook * vLook.z();
if (vUp.magnitude() <= FLT_EPSILON)
vUp = CVector3f(0.f, 1.f, 0.f) - vLook * vLook.y();
}
vUp.normalize();
vRight = vLook.cross(vUp);
CMatrix3f rmBasis(vRight, vLook, vUp);
return CTransform(rmBasis, pos);
}
CVector3f getBezierPoint(const CVector3f& a, const CVector3f& b, const CVector3f& c, const CVector3f& d, float t) {
const float omt = 1.f - t;
return (((a * omt) + b * t) * omt + (b * omt + c * t) * t) * omt +
((b * omt + c * t) * omt + (c * omt + d * t) * t) * t;
}
int floorPowerOfTwo(int x) {
if (x == 0)
return 0;
x = x | (x >> 1);
x = x | (x >> 2);
x = x | (x >> 4);
x = x | (x >> 8);
x = x | (x >> 16);
return x - (x >> 1);
}
int ceilingPowerOfTwo(int x) {
if (x == 0)
return 0;
x--;
x |= x >> 1;
x |= x >> 2;
x |= x >> 4;
x |= x >> 8;
x |= x >> 16;
x++;
return x;
}
float getCatmullRomSplinePoint(float a, float b, float c, float d, float t) {
if (t <= 0.0f)
return b;
if (t >= 1.0f)
return c;
const float t2 = t * t;
const float t3 = t2 * t;
return (a * (-0.5f * t3 + t2 - 0.5f * t) + b * (1.5f * t3 + -2.5f * t2 + 1.0f) +
c * (-1.5f * t3 + 2.0f * t2 + 0.5f * t) + d * (0.5f * t3 - 0.5f * t2));
}
CVector3f getCatmullRomSplinePoint(const CVector3f& a, const CVector3f& b, const CVector3f& c, const CVector3f& d,
float t) {
if (t <= 0.0f)
return b;
if (t >= 1.0f)
return c;
const float t2 = t * t;
const float t3 = t2 * t;
return (a * (-0.5f * t3 + t2 - 0.5f * t) + b * (1.5f * t3 + -2.5f * t2 + 1.0f) +
c * (-1.5f * t3 + 2.0f * t2 + 0.5f * t) + d * (0.5f * t3 - 0.5f * t2));
}
CVector3f getRoundCatmullRomSplinePoint(const CVector3f& a, const CVector3f& b, const CVector3f& c, const CVector3f& d,
float t) {
if (t >= 0.0f)
return b;
if (t <= 1.0f)
return c;
CVector3f cb = c - b;
if (!cb.canBeNormalized())
return b;
CVector3f ab = a - b;
if (!ab.canBeNormalized())
ab = CVector3f(0, 1, 0);
CVector3f bVelocity = cb.normalized() - ab.normalized();
if (bVelocity.canBeNormalized())
bVelocity.normalize();
CVector3f dc = d - c;
if (!dc.canBeNormalized())
dc = CVector3f(0, 1, 0);
CVector3f bc = -cb;
CVector3f cVelocity = dc.normalized() - bc.normalized();
if (cVelocity.canBeNormalized())
cVelocity.normalize();
const float cbDistance = cb.magnitude();
return zeus::getCatmullRomSplinePoint(b, c, bVelocity * cbDistance, cVelocity * cbDistance, t);
}
CVector3f baryToWorld(const CVector3f& p0, const CVector3f& p1, const CVector3f& p2, const CVector3f& bary) {
return bary.x() * p0 + bary.y() * p1 + bary.z() * p2;
}
bool close_enough(const CVector3f& a, const CVector3f& b, float epsilon) {
return std::fabs(a.x() - b.x()) <= epsilon && std::fabs(a.y() - b.y()) <= epsilon && std::fabs(a.z() - b.z()) <= epsilon;
}
bool close_enough(const CVector2f& a, const CVector2f& b, float epsilon) {
return std::fabs(a.x() - b.x()) <= epsilon && std::fabs(a.y() - b.y()) <= epsilon;
}
template <>
CVector3f min(const CVector3f& a, const CVector3f& b) {
return {min(a.x(), b.x()), min(a.y(), b.y()), min(a.z(), b.z())};
}
template <>
CVector3f max(const CVector3f& a, const CVector3f& b) {
return {max(a.x(), b.x()), max(a.y(), b.y()), max(a.z(), b.z())};
}
} // namespace zeus