zeus/include/zeus/Math.hpp
2016-04-09 13:18:46 -10:00

122 lines
4.1 KiB
C++

#ifndef MATH_HPP
#define MATH_HPP
#undef min
#undef max
#undef M_PI
#define M_PI 3.14159265358979323846 /* pi */
#undef M_PI_2
#define M_PI_2 1.57079632679489661923 /* pi/2 */
#undef M_PI_4
#define M_PI_4 0.78539816339744830962 /* pi/4 */
#undef M_1_PI
#define M_1_PI 0.31830988618379067154 /* 1/pi */
#undef M_2_PI
#define M_2_PI 0.63661977236758134308 /* 2/pi */
#undef M_2_SQRTPI
#define M_2_SQRTPI 1.12837916709551257390 /* 2/sqrt(pi) */
#undef M_SQRT2
#define M_SQRT2 1.41421356237309504880 /* sqrt(2) */
#undef M_SQRT1_2
#define M_SQRT1_2 0.70710678118654752440 /* 1/sqrt(2) */
#include <cmath>
#include <algorithm>
namespace zeus
{
struct CPUInfo
{
const char cpuBrand [48] = {0};
const char cpuVendor[32] = {0};
const bool isIntel = false;
const bool SSE1 = false;
const bool SSE2 = false;
const bool SSE3 = false;
const bool SSSE3 = false;
const bool SSE41 = false;
const bool SSE42 = false;
const bool SSE4a = false;
const bool AESNI = false;
};
/**
* Detects CPU capabilities and returns true if SSE4.1 or SSE4.2 is available
*/
void detectCPU();
const CPUInfo& cpuFeatures();
class CVector3f;
class CTransform;
template<typename T>
inline T min(T a, T b) { return a < b ? a : b; }
template<typename T>
inline T max(T a, T b) { return a > b ? a : b; }
template<typename T>
inline T clamp(T a, T val, T b) {return max<T>(a, min<T>(b, val));}
inline float radToDeg(float rad) {return rad * 180.f / M_PI;}
inline float degToRad(float deg) {return deg * M_PI / 180.f;}
inline double radToDeg(double rad) {return rad * 180.0 / M_PI;}
inline double degToRad(double deg) {return deg * M_PI / 180.0;}
CVector3f baryToWorld(const CVector3f& p0, const CVector3f& p1, const CVector3f& p2, const CVector3f& bary);
CVector3f getBezierPoint(const CVector3f& a, const CVector3f& b,
const CVector3f& c, const CVector3f& d, float t);
float getCatmullRomSplinePoint(float a, float b,
float c, float d, float t);
CVector3f getCatmullRomSplinePoint(const CVector3f& a, const CVector3f& b,
const CVector3f& c, const CVector3f& d, float t);
CVector3f getRoundCatmullRomSplinePoint(const CVector3f& a, const CVector3f& b,
const CVector3f& c, const CVector3f& d, float t);
inline float powF(float a, float b) { return std::pow(a, b); }
inline float floorF(float val) { return std::floor(val); }
inline float ceilingF(float val)
{
float tmp = std::floor(val);
return (tmp == val ? tmp : tmp + 1.0);
}
// Since round(double) doesn't exist in some <cmath> implementations
// we'll define our own
inline double round(double val) { return (val < 0.0 ? ceilingF(val - 0.5) : floorF(val + 0.5)); }
inline double powD(float a, float b) { return std::exp(b * std::log(a)); }
double sqrtD(double val);
inline double invSqrtD(double val) { return 1.0 / sqrtD(val); }
inline float invSqrtF(float val) { return float(1.0 / sqrtD(val)); }
inline float sqrtF(float val) { return float(sqrtD(val)); }
float fastArcCosF(float val);
float fastCosF(float val);
float fastSinF(float val);
int floorPowerOfTwo(int x);
int ceilingPowerOfTwo(int x);
template <typename U>
typename std::enable_if<!std::is_enum<U>::value && std::is_integral<U>::value, int>::type
PopCount(U x)
{
const U m1 = U(0x5555555555555555); //binary: 0101...
const U m2 = U(0x3333333333333333); //binary: 00110011..
const U m4 = U(0x0f0f0f0f0f0f0f0f); //binary: 4 zeros, 4 ones ...
const U h01 = U(0x0101010101010101); //the sum of 256 to the power of 0,1,2,3...
x -= (x >> 1) & m1; //put count of each 2 bits into those 2 bits
x = (x & m2) + ((x >> 2) & m2); //put count of each 4 bits into those 4 bits
x = (x + (x >> 4)) & m4; //put count of each 8 bits into those 8 bits
return (x * h01) >> ((sizeof(U)-1)*8); //returns left 8 bits of x + (x<<8) + (x<<16) + (x<<24) + ...
}
template <typename E>
typename std::enable_if<std::is_enum<E>::value, int>::type
PopCount(E e)
{
return PopCount(static_cast<typename std::underlying_type<E>::type>(e));
}
}
#endif // MATH_HPP