zeus/include/zeus/CVector3f.hpp
2017-12-18 17:02:59 -10:00

437 lines
11 KiB
C++

#ifndef CVECTOR3F_HPP
#define CVECTOR3F_HPP
#include "Global.hpp"
#include "zeus/Math.hpp"
#include "zeus/CVector2f.hpp"
#include "TVectorUnion.hpp"
#if ZE_ATHENA_TYPES
#include <athena/IStreamReader.hpp>
#endif
namespace zeus
{
class CVector3d;
class alignas(16) CVector3f
{
#if __atdna__
float clangVec __attribute__((__vector_size__(12)));
#endif
public:
ZE_DECLARE_ALIGNED_ALLOCATOR();
union {
struct
{
float x, y, z;
};
float v[4];
#if __SSE__
__m128 mVec128;
#elif __GEKKO_PS__
ps128_t mVec128;
#endif
};
inline CVector3f() { zeroOut(); }
#if __SSE__ || __GEKKO_PS__
CVector3f(const __m128& mVec128) : mVec128(mVec128) { v[3] = 0.0f; }
#endif
#if ZE_ATHENA_TYPES
CVector3f(const atVec3f& vec)
#if __SSE__ || __GEKKO_PS__
: mVec128(vec.mVec128)
{
}
#else
{
x = vec.vec[0], y = vec.vec[1], z = vec.vec[2], v[3] = 0.0f;
}
#endif
operator atVec3f()
{
atVec3f ret;
#if __SSE__
ret.mVec128 = mVec128;
#else
ret.vec = v;
#endif
return ret;
}
operator atVec3f() const
{
atVec3f ret;
#if __SSE__
ret.mVec128 = mVec128;
#else
ret.vec = v;
#endif
return ret;
}
void readBig(athena::io::IStreamReader& input)
{
x = input.readFloatBig();
y = input.readFloatBig();
z = input.readFloatBig();
v[3] = 0.0f;
}
static CVector3f ReadBig(athena::io::IStreamReader& input)
{
CVector3f ret;
ret.readBig(input);
return ret;
}
#endif
CVector3f(const CVector3d& vec);
explicit CVector3f(float xyz) { splat(xyz); }
void assign(float x, float y, float z)
{
v[0] = x;
v[1] = y;
v[2] = z;
v[3] = 0.0f;
}
CVector3f(float x, float y, float z) { assign(x, y, z); }
CVector3f(const CVector2f& other)
{
x = other.x;
y = other.y;
z = 0.0f;
v[3] = 0.0f;
}
inline CVector2f toVec2f() const
{
#if __SSE__
return CVector2f(mVec128);
#else
return CVector2f(x, y);
#endif
}
inline bool operator==(const CVector3f& rhs) const { return (x == rhs.x && y == rhs.y && z == rhs.z); }
inline bool operator!=(const CVector3f& rhs) const { return !(*this == rhs); }
inline CVector3f operator+(const CVector3f& rhs) const
{
#if __SSE__
return CVector3f(_mm_add_ps(mVec128, rhs.mVec128));
#elif __GEKKO_PS__
return CVector3f(__mm_gekko_add_ps(mVec128, rhs.mVec128));
#else
return CVector3f(x + rhs.x, y + rhs.y, z + rhs.z);
#endif
}
inline CVector3f operator-(const CVector3f& rhs) const
{
#if __SSE__
return CVector3f(_mm_sub_ps(mVec128, rhs.mVec128));
#else
return CVector3f(x - rhs.x, y - rhs.y, z - rhs.z);
#endif
}
inline CVector3f operator-() const
{
#if __SSE__
return CVector3f(_mm_sub_ps(_mm_xor_ps(mVec128, mVec128), mVec128));
#elif __GEKKO_PS__
return CVector3f(_mm_gekko_neg_ps(mVec128));
#else
return CVector3f(-x, -y, -z);
#endif
}
inline CVector3f operator*(const CVector3f& rhs) const
{
#if __SSE__
return CVector3f(_mm_mul_ps(mVec128, rhs.mVec128));
#else
return CVector3f(x * rhs.x, y * rhs.y, z * rhs.z);
#endif
}
inline CVector3f operator/(const CVector3f& rhs) const
{
#if __SSE__
return CVector3f(_mm_div_ps(mVec128, rhs.mVec128));
#else
return CVector3f(x / rhs.x, y / rhs.y, z / rhs.z);
#endif
}
inline CVector3f operator+(float val) const
{
#if __SSE__
TVectorUnion splat = {{val, val, val, 0.0f}};
return CVector3f(_mm_add_ps(mVec128, splat.mVec128));
#else
return CVector3f(x + val, y + val, z + val);
#endif
}
inline CVector3f operator-(float val) const
{
#if __SSE__ || __GEKKO_PS__
TVectorUnion splat = {{val, val, val, 0.0f}};
#endif
#if __SSE__
return CVector3f(_mm_sub_ps(mVec128, splat.mVec128));
#elif __GEKKO_PS__
return CVector3f(_mm_gekko_sub_ps(mVec128, splat.mVec128));
#else
return CVector3f(x - val, y - val, z - val);
#endif
}
inline CVector3f operator*(float val) const
{
#if __SSE__ || __GEKKO_PS__
TVectorUnion splat = {{val, val, val, 0.0f}};
#endif
#if __SSE__
return CVector3f(_mm_mul_ps(mVec128, splat.mVec128));
#elif __GEKKO_PS__
return CVector3f(_mm_gekko_mul_ps(mVec128, splat.mVec128));
#else
return CVector3f(x * val, y * val, z * val);
#endif
}
inline CVector3f operator/(float val) const
{
#if __SSE__ || __GEKKO_PS__
TVectorUnion splat = {{val, val, val, 0.0f}};
#endif
#if __SSE__
return CVector3f(_mm_div_ps(mVec128, splat.mVec128));
#elif __GEKKO_PS__
return CVector3f(_mm_gekko_div_ps(mVec128, splat.mVec128));
#else
return CVector3f(x / val, y / val, z / val);
#endif
}
inline const CVector3f& operator+=(const CVector3f& rhs)
{
#if __SSE__
mVec128 = _mm_add_ps(mVec128, rhs.mVec128);
#elif __GEKKO_PS__
mVec128 = _mm_gekko_add_ps(mVec128, rhs.mVec128);
#else
x += rhs.x;
y += rhs.y;
z += rhs.z;
#endif
return *this;
}
inline const CVector3f& operator-=(const CVector3f& rhs)
{
#if __SSE__
mVec128 = _mm_sub_ps(mVec128, rhs.mVec128);
#else
x -= rhs.x;
y -= rhs.y;
z -= rhs.z;
#endif
return *this;
}
inline const CVector3f& operator*=(const CVector3f& rhs)
{
#if __SSE__
mVec128 = _mm_mul_ps(mVec128, rhs.mVec128);
#else
x *= rhs.x;
y *= rhs.y;
z *= rhs.z;
#endif
return *this;
}
inline const CVector3f& operator/=(const CVector3f& rhs)
{
#if __SSE__
mVec128 = _mm_div_ps(mVec128, rhs.mVec128);
#else
x /= rhs.x;
y /= rhs.y;
z /= rhs.z;
#endif
return *this;
}
inline void normalize()
{
float mag = magnitude();
mag = 1.f / mag;
*this *= CVector3f(mag);
}
inline CVector3f normalized() const
{
float mag = magnitude();
mag = 1.f / mag;
return *this * mag;
}
inline CVector3f cross(const CVector3f& rhs) const
{
return CVector3f(y * rhs.z - z * rhs.y,
z * rhs.x - x * rhs.z,
x * rhs.y - y * rhs.x);
}
inline float dot(const CVector3f& rhs) const
{
#if __SSE__
TVectorUnion result;
#if __SSE4_1__
result.mVec128 = _mm_dp_ps(mVec128, rhs.mVec128, 0x71);
return result.v[0];
#else
result.mVec128 = _mm_mul_ps(mVec128, rhs.mVec128);
return result.v[0] + result.v[1] + result.v[2];
#endif
#else
return (x * rhs.x) + (y * rhs.y) + (z * rhs.z);
#endif
}
inline float magSquared() const
{
#if __SSE__
TVectorUnion result;
#if __SSE4_1__
result.mVec128 = _mm_dp_ps(mVec128, mVec128, 0x71);
return result.v[0];
#else
result.mVec128 = _mm_mul_ps(mVec128, mVec128);
return result.v[0] + result.v[1] + result.v[2];
#endif
#else
return x * x + y * y + z * z;
#endif
}
inline float magnitude() const { return sqrtF(magSquared()); }
inline void zeroOut()
{
*this = CVector3f::skZero;
}
inline void splat(float xyz)
{
#if __SSE__
TVectorUnion splat = {{xyz, xyz, xyz, 0.0f}};
mVec128 = splat.mVec128;
#else
v[0] = xyz;
v[1] = xyz;
v[2] = xyz;
v[3] = 0.0f;
#endif
}
static float getAngleDiff(const CVector3f& a, const CVector3f& b);
static inline CVector3f lerp(const CVector3f& a, const CVector3f& b, float t) { return (a + (b - a) * t); }
static inline CVector3f nlerp(const CVector3f& a, const CVector3f& b, float t) { return lerp(a, b, t).normalized(); }
static CVector3f slerp(const CVector3f& a, const CVector3f& b, float t);
inline bool isNormalized() const { return std::fabs(1.f - magSquared()) < 0.01f; }
inline bool canBeNormalized() const
{
if (std::isinf(x) || std::isinf(y) || std::isinf(z))
return false;
return std::fabs(x) >= FLT_EPSILON || std::fabs(y) >= FLT_EPSILON || std::fabs(z) >= FLT_EPSILON;
}
inline bool isZero() const { return magSquared() <= 1.1920929e-7f; }
inline void scaleToLength(float newLength)
{
float length = magSquared();
if (length < 1.1920929e-7f)
{
x = newLength, y = 0.f, z = 0.f;
return;
}
length = std::sqrt(length);
float scalar = newLength / length;
*this *= CVector3f(scalar);
}
inline CVector3f scaledToLength(float newLength) const
{
CVector3f v = *this;
v.scaleToLength(newLength);
return v;
}
inline bool isEqu(const CVector3f& other, float epsilon = 1.1920929e-7f)
{
const CVector3f diffVec = other - *this;
return (diffVec.x <= epsilon && diffVec.y <= epsilon && diffVec.z <= epsilon);
}
inline float& operator[](size_t idx) { assert(idx < 3); return (&x)[idx]; }
inline const float& operator[](size_t idx) const { assert(idx < 3); return (&x)[idx]; }
static const CVector3f skOne;
static const CVector3f skNegOne;
static const CVector3f skZero;
static const CVector3f skForward;
static const CVector3f skBack;
static const CVector3f skLeft;
static const CVector3f skRight;
static const CVector3f skUp;
static const CVector3f skDown;
static const CVector3f skRadToDegVec;
static const CVector3f skDegToRadVec;
static CVector3f radToDeg(const CVector3f& rad) { return rad * skRadToDegVec; }
static CVector3f degToRad(const CVector3f& deg) { return deg * skDegToRadVec; }
};
static inline CVector3f operator+(float lhs, const CVector3f& rhs)
{
#if __SSE__
TVectorUnion splat = {{lhs, lhs, lhs, 0.0f}};
return CVector3f(_mm_add_ps(splat.mVec128, rhs.mVec128));
#else
return CVector3f(lhs + rhs.x, lhs + rhs.y, lhs + rhs.z);
#endif
}
static inline CVector3f operator-(float lhs, const CVector3f& rhs)
{
#if __SSE__
TVectorUnion splat = {{lhs, lhs, lhs, 0.0f}};
return CVector3f(_mm_sub_ps(splat.mVec128, rhs.mVec128));
#else
return CVector3f(lhs - rhs.x, lhs - rhs.y, lhs - rhs.z);
#endif
}
static inline CVector3f operator*(float lhs, const CVector3f& rhs)
{
#if __SSE__
TVectorUnion splat = {{lhs, lhs, lhs, 0.0f}};
return CVector3f(_mm_mul_ps(splat.mVec128, rhs.mVec128));
#else
return CVector3f(lhs * rhs.x, lhs * rhs.y, lhs * rhs.z);
#endif
}
static inline CVector3f operator/(float lhs, const CVector3f& rhs)
{
#if __SSE__
TVectorUnion splat = {{lhs, lhs, lhs, 0.0f}};
return CVector3f(_mm_div_ps(splat.mVec128, rhs.mVec128));
#else
return CVector3f(lhs / rhs.x, lhs / rhs.y, lhs / rhs.z);
#endif
}
}
#endif // CVECTOR3F_HPP