zeus/include/zeus/CVector3d.hpp
2017-03-17 13:30:14 -10:00

251 lines
6.1 KiB
C++

#ifndef CVECTOR3D_HPP
#define CVECTOR3D_HPP
#include "Global.hpp"
#include "zeus/Math.hpp"
#include "TVectorUnion.hpp"
#include "zeus/CVector3f.hpp"
namespace zeus
{
class alignas(16) CVector3d
{
public:
ZE_DECLARE_ALIGNED_ALLOCATOR();
CVector3d() { zeroOut(); }
#if __SSE__
CVector3d(const __m128d mVec128[2])
{
this->mVec128[0] = mVec128[0];
this->mVec128[1] = mVec128[1];
v[3] = 0.0;
}
#endif
#if ZE_ATHENA_TYPES
CVector3d(const atVec3d& vec)
{
#if __SSE__
mVec128[0] = vec.mVec128[0];
mVec128[1] = vec.mVec128[1];
#else
x = v[0], y = v[1], z = v[2], v[3] = 0.0f;
#endif
}
#endif
CVector3d(double xyz) { splat(xyz); }
CVector3d(const CVector3f& vec)
{
#if __SSE__
mVec128[0] = _mm_cvtps_pd(vec.mVec128);
v[2] = vec[2];
v[3] = 0.0;
#else
v[0] = vec[0];
v[1] = vec[1];
v[2] = vec[2];
#endif
}
CVector3d(double x, double y, double z)
{
#if __SSE__
TDblVectorUnion splat{x, y, z, 0.0};
mVec128[0] = splat.mVec128[0];
mVec128[1] = splat.mVec128[1];
#else
v[0] = x;
v[1] = y;
v[2] = z;
#endif
}
CVector3f asCVector3f()
{
CVector3f ret;
ret.x = float(x);
ret.y = float(y);
ret.z = float(z);
return ret;
}
double magSquared() const
{
#if __SSE__
TDblVectorUnion result;
#if __SSE4_1__ || __SSE4_2__
if (cpuFeatures().SSE41 || cpuFeatures().SSE42)
{
result.mVec128[0] = _mm_dp_pd(mVec128[0], mVec128[0], 0x31);
return result.v[0] + (v[2] * v[2]);
}
#endif
result.mVec128[0] = _mm_mul_pd(mVec128[0], mVec128[0]);
result.mVec128[1] = _mm_mul_pd(mVec128[1], mVec128[1]);
return result.v[0] + result.v[1] + result.v[2];
#else
return x * x + y * y + z * z;
#endif
}
double magnitude() const { return sqrt(magSquared()); }
inline CVector3d cross(const CVector3d& rhs) const
{
return {y * rhs.z - z * rhs.y, z * rhs.x - x * rhs.z, x * rhs.y - y * rhs.x};
}
double dot(const CVector3d& rhs) const
{
#if __SSE__
TDblVectorUnion result;
#if __SSE4_1__ || __SSE4_2__
if (cpuFeatures().SSE41 || cpuFeatures().SSE42)
{
result.mVec128[0] = _mm_dp_pd(mVec128[0], rhs.mVec128[0], 0x31);
return result.v[0] + (v[2] * rhs.v[2]);
}
#endif
result.mVec128[0] = _mm_mul_pd(mVec128[0], rhs.mVec128[0]);
result.mVec128[1] = _mm_mul_pd(mVec128[1], rhs.mVec128[1]);
return result.v[0] + result.v[1] + result.v[2];
#else
return (x * rhs.x) + (y * rhs.y) + (z * rhs.z);
#endif
}
CVector3d asNormalized()
{
double mag = magnitude();
mag /= 1.0;
return {x * mag, y * mag, z * mag};
}
void splat(double xyz)
{
#if __SSE__
TDblVectorUnion splat = {xyz, xyz, xyz, 0.0};
mVec128[0] = splat.mVec128[0];
mVec128[1] = splat.mVec128[1];
#else
v[0] = xyz;
v[1] = xyz;
v[2] = xyz;
v[3] = 0.0;
#endif
}
void zeroOut()
{
*this = skZero;
}
inline CVector3d operator+(const CVector3d& rhs) const
{
#if __SSE__
return CVector3d({_mm_add_pd(mVec128[0], rhs.mVec128[0]),
_mm_add_pd(mVec128[1], rhs.mVec128[1])});
#elif __GEKKO_PS__
return CVector3d(__mm_gekko_add_pd(mVec128, rhs.mVec128));
#else
return CVector3d(x + rhs.x, y + rhs.y, z + rhs.z);
#endif
}
inline CVector3d operator-(const CVector3d& rhs) const
{
#if __SSE__
return CVector3d({_mm_sub_pd(mVec128[0], rhs.mVec128[0]),
_mm_sub_pd(mVec128[1], rhs.mVec128[1])});
#else
return CVector3d(x - rhs.x, y - rhs.y, z - rhs.z);
#endif
}
inline CVector3d operator*(const CVector3d& rhs) const
{
#if __SSE__
return CVector3d({_mm_mul_pd(mVec128[0], rhs.mVec128[0]),
_mm_mul_pd(mVec128[1], rhs.mVec128[1])});
#else
return CVector3d(x * rhs.x, y * rhs.y, z * rhs.z);
#endif
}
inline CVector3d operator/(const CVector3d& rhs) const
{
#if __SSE__
return CVector3d({_mm_div_pd(mVec128[0], rhs.mVec128[0]),
_mm_div_pd(mVec128[1], rhs.mVec128[1])});
#else
return CVector3d(x / rhs.x, y / rhs.y, z / rhs.z);
#endif
}
inline double& operator[](size_t idx) { return v[idx]; }
inline const double& operator[](size_t idx) const { return v[idx]; }
union {
struct
{
double x, y, z;
};
double v[4];
#if __SSE__
__m128d mVec128[2];
#endif
};
static const CVector3d skZero;
};
static inline CVector3d operator+(double lhs, const CVector3d& rhs)
{
#if __SSE__
TDblVectorUnion splat{lhs, lhs, lhs, 0};
splat.mVec128[0] = _mm_add_pd(splat.mVec128[0], rhs.mVec128[0]);
splat.mVec128[1] = _mm_add_pd(splat.mVec128[1], rhs.mVec128[1]);
return {splat.mVec128};
#else
return {lhs + rhs.x, lhs + rhs.y, lhs + rhs.z};
#endif
}
static inline CVector3d operator-(double lhs, const CVector3d& rhs)
{
#if __SSE__
TDblVectorUnion splat{lhs, lhs, lhs, 0};
splat.mVec128[0] = _mm_sub_pd(splat.mVec128[0], rhs.mVec128[0]);
splat.mVec128[1] = _mm_sub_pd(splat.mVec128[1], rhs.mVec128[1]);
return {splat.mVec128};
#else
return {lhs - rhs.x, lhs - rhs.y, lhs - rhs.z};
#endif
}
static inline CVector3d operator*(double lhs, const CVector3d& rhs)
{
#if __SSE__
TDblVectorUnion splat{lhs, lhs, lhs, 0};
splat.mVec128[0] = _mm_mul_pd(splat.mVec128[0], rhs.mVec128[0]);
splat.mVec128[1] = _mm_mul_pd(splat.mVec128[1], rhs.mVec128[1]);
return {splat.mVec128};
#else
return {lhs * rhs.x, lhs * rhs.y, lhs * rhs.z};
#endif
}
static inline CVector3d operator/(double lhs, const CVector3d& rhs)
{
#if __SSE__
TDblVectorUnion splat{lhs, lhs, lhs, 0};
splat.mVec128[0] = _mm_div_pd(splat.mVec128[0], rhs.mVec128[0]);
splat.mVec128[1] = _mm_div_pd(splat.mVec128[1], rhs.mVec128[1]);
return {splat.mVec128};
#else
return {lhs.x / rhs.x, lhs.y / rhs.y, lhs.z / rhs.z};
#endif
}
}
#endif