zeus/include/zeus/CQuaternion.hpp

301 lines
8.3 KiB
C++

#pragma once
#include "Global.hpp"
#include "CAxisAngle.hpp"
#include "zeus/CVector3f.hpp"
#include "zeus/CVector4f.hpp"
#include "zeus/CMatrix3f.hpp"
#include "zeus/Math.hpp"
#include "zeus/CRelAngle.hpp"
#include "zeus/CTransform.hpp"
#if ZE_ATHENA_TYPES
#include <athena/IStreamReader.hpp>
#endif
namespace zeus {
static float normalize_angle(float angle) {
if (angle > M_PIF)
angle -= 2.f * M_PIF;
else if (angle < -M_PIF)
angle += 2.f * M_PIF;
return angle;
}
class CNUQuaternion;
/** Unit quaternion, used for all quaternion arithmetic */
class CQuaternion {
public:
CQuaternion() : mSimd(1.f, 0.f, 0.f, 0.f) {}
CQuaternion(float wi, float xi, float yi, float zi) : mSimd(wi, xi, yi, zi) {}
CQuaternion(float xi, float yi, float zi) { fromVector3f(CVector3f(xi, yi, zi)); }
CQuaternion(float wi, const CVector3f& vec) : mSimd(vec.mSimd.shuffle<0, 0, 1, 2>()) { mSimd[0] = wi; }
template <typename T>
CQuaternion(const simd<T>& s) : mSimd(s) {}
#if ZE_ATHENA_TYPES
void readBig(athena::io::IStreamReader& input) {
simd_floats f;
f[0] = input.readFloatBig();
f[1] = input.readFloatBig();
f[2] = input.readFloatBig();
f[3] = input.readFloatBig();
mSimd.copy_from(f);
}
CQuaternion(const atVec4f& vec) : mSimd(vec.simd) {}
operator atVec4f&() { return *reinterpret_cast<atVec4f*>(this); }
operator const atVec4f&() const { return *reinterpret_cast<const atVec4f*>(this); }
#endif
CQuaternion(const CMatrix3f& mat);
CQuaternion(const CVector3f& vec) { fromVector3f(vec); }
CQuaternion(const CVector4f& vec) : mSimd(vec.mSimd) {}
CQuaternion(const CVector3f& vecA, const CVector3f& vecB) {
CVector3f vecAN = vecA.normalized();
CVector3f vecBN = vecB.normalized();
CVector3f w = vecAN.cross(vecBN);
*this = CQuaternion(1.f + vecAN.dot(vecBN), w).normalized();
}
void fromVector3f(const CVector3f& vec);
CQuaternion& operator=(const CQuaternion& q);
CQuaternion operator+(const CQuaternion& q) const;
CQuaternion operator-(const CQuaternion& q) const;
CQuaternion operator*(const CQuaternion& q) const;
CQuaternion operator/(const CQuaternion& q) const;
CQuaternion operator*(float scale) const;
CQuaternion operator/(float scale) const;
CQuaternion operator-() const;
const CQuaternion& operator+=(const CQuaternion& q);
const CQuaternion& operator-=(const CQuaternion& q);
const CQuaternion& operator*=(const CQuaternion& q);
const CQuaternion& operator*=(float scale);
const CQuaternion& operator/=(float scale);
float magnitude() const { return std::sqrt(magSquared()); }
float magSquared() const { return mSimd.dot4(mSimd); }
void normalize() { *this /= magnitude(); }
CQuaternion normalized() const { return *this / magnitude(); }
void invert();
CQuaternion inverse() const;
/**
* @brief Set the rotation using axis angle notation
* @param axis The axis to rotate around
* @param angle The magnitude of the rotation in radians
* @return
*/
static CQuaternion fromAxisAngle(const CUnitVector3f& axis, const CRelAngle& angle) {
return CQuaternion(std::cos(angle / 2.f), axis * std::sin(angle / 2.f));
}
void rotateX(const CRelAngle& angle) { *this *= fromAxisAngle({1.0f, 0.0f, 0.0f}, angle); }
void rotateY(const CRelAngle& angle) { *this *= fromAxisAngle({0.0f, 1.0f, 0.0f}, angle); }
void rotateZ(const CRelAngle& angle) { *this *= fromAxisAngle({0.0f, 0.0f, 1.0f}, angle); }
static CVector3f rotate(const CQuaternion& rotation, const CAxisAngle& v) {
CQuaternion q = rotation * v;
q *= rotation.inverse();
return {q.mSimd.shuffle<1, 2, 3, 3>()};
}
static CQuaternion lookAt(const CUnitVector3f& source, const CUnitVector3f& dest, const CRelAngle& maxAng);
CVector3f transform(const CVector3f& v) const {
CQuaternion r(0.f, v);
return (*this * r * inverse()).getImaginary();
}
CQuaternion log() const;
CQuaternion exp() const;
CTransform toTransform() const { return CTransform(CMatrix3f(*this)); }
CTransform toTransform(const zeus::CVector3f& origin) const { return CTransform(CMatrix3f(*this), origin); }
float dot(const CQuaternion& rhs) const { return mSimd.dot4(rhs.mSimd); }
static CQuaternion lerp(const CQuaternion& a, const CQuaternion& b, double t);
static CQuaternion slerp(const CQuaternion& a, const CQuaternion& b, double t);
static CQuaternion slerpShort(const CQuaternion& a, const CQuaternion& b, double t);
static CQuaternion nlerp(const CQuaternion& a, const CQuaternion& b, double t);
static CQuaternion shortestRotationArc(const zeus::CVector3f& v0, const zeus::CVector3f& v1);
static CQuaternion clampedRotateTo(const zeus::CUnitVector3f& v0, const zeus::CUnitVector3f& v1,
const zeus::CRelAngle& angle);
float roll() const {
simd_floats f(mSimd);
return std::asin(-2.f * (f[1] * f[3] - f[0] * f[2]));
}
float pitch() const {
simd_floats f(mSimd);
return std::atan2(2.f * (f[2] * f[3] + f[0] * f[1]), f[0] * f[0] - f[1] * f[1] - f[2] * f[2] + f[3] * f[3]);
}
float yaw() const {
simd_floats f(mSimd);
return std::atan2(2.f * (f[1] * f[2] + f[0] * f[3]), f[0] * f[0] + f[1] * f[1] - f[2] * f[2] - f[3] * f[3]);
}
CQuaternion buildEquivalent() const;
zeus::CVector3f getImaginary() const { return mSimd.shuffle<1, 2, 3, 3>(); }
void setImaginary(const zeus::CVector3f& i) {
x() = i.x();
y() = i.y();
z() = i.z();
}
CRelAngle angleFrom(const zeus::CQuaternion& other);
simd<float>::reference operator[](size_t idx) {
assert(idx < 4);
return mSimd[idx];
}
float operator[](size_t idx) const {
assert(idx < 4);
return mSimd[idx];
}
float w() const { return mSimd[0]; }
float x() const { return mSimd[1]; }
float y() const { return mSimd[2]; }
float z() const { return mSimd[3]; }
simd<float>::reference w() { return mSimd[0]; }
simd<float>::reference x() { return mSimd[1]; }
simd<float>::reference y() { return mSimd[2]; }
simd<float>::reference z() { return mSimd[3]; }
simd<float> mSimd;
static const CQuaternion skNoRotation;
static CQuaternion fromNUQuaternion(const CNUQuaternion& q);
};
/** Non-unit quaternion, no guarantee that it's normalized.
* Converting to CQuaternion will perform normalize operation.
*/
class CNUQuaternion {
public:
CNUQuaternion() : mSimd(1.f, 0.f, 0.f, 0.f) {}
CNUQuaternion(float wi, float xi, float yi, float zi) : mSimd(wi, xi, yi, zi) {}
CNUQuaternion(float win, const zeus::CVector3f& vec) : mSimd(vec.mSimd.shuffle<0, 0, 1, 2>()) { w() = win; }
CNUQuaternion(const CQuaternion& other) : mSimd(other.mSimd) {}
CNUQuaternion(const CMatrix3f& mtx) : CNUQuaternion(CQuaternion(mtx)) {}
CNUQuaternion(const simd<float>& s) : mSimd(s) {}
static CNUQuaternion fromAxisAngle(const CUnitVector3f& axis, const CRelAngle& angle) {
return CNUQuaternion(CQuaternion::fromAxisAngle(axis, angle));
}
float magnitude() const { return std::sqrt(magSquared()); }
float magSquared() const { return mSimd.dot4(mSimd); }
void normalize() {
float magDiv = 1.f / magnitude();
mSimd *= magDiv;
}
CNUQuaternion normalized() const {
float magDiv = 1.f / magnitude();
return mSimd * simd<float>(magDiv);
}
CNUQuaternion operator*(const CNUQuaternion& q) const;
CNUQuaternion operator*(float f) const;
const CNUQuaternion& operator+=(const CNUQuaternion& q);
zeus::simd<float>::reference operator[](size_t idx) {
assert(idx < 4);
return mSimd[idx];
}
float operator[](size_t idx) const {
assert(idx < 4);
return mSimd[idx];
}
float w() const { return mSimd[0]; }
float x() const { return mSimd[1]; }
float y() const { return mSimd[2]; }
float z() const { return mSimd[3]; }
simd<float>::reference w() { return mSimd[0]; }
simd<float>::reference x() { return mSimd[1]; }
simd<float>::reference y() { return mSimd[2]; }
simd<float>::reference z() { return mSimd[3]; }
simd<float> mSimd;
};
inline CQuaternion CQuaternion::fromNUQuaternion(const CNUQuaternion& q) {
auto norm = q.normalized();
return norm.mSimd;
}
CQuaternion operator+(float lhs, const CQuaternion& rhs);
CQuaternion operator-(float lhs, const CQuaternion& rhs);
CQuaternion operator*(float lhs, const CQuaternion& rhs);
CNUQuaternion operator*(float lhs, const CNUQuaternion& rhs);
} // namespace zeus