zeus/include/CAABox.hpp

328 lines
9.8 KiB
C++

#ifndef CAABOX_HPP
#define CAABOX_HPP
#include "CVector3f.hpp"
#include "CUnitVector.hpp"
#include "CTransform.hpp"
#include "CPlane.hpp"
#include "CLine.hpp"
#include "CSphere.hpp"
#include "Math.hpp"
#if ZE_ATHENA_TYPES
#include <Athena/IStreamReader.hpp>
#endif
namespace Zeus
{
class alignas(16) CAABox
{
public:
ZE_DECLARE_ALIGNED_ALLOCATOR();
enum EBoxEdgeId
{
UnknownEdge0,
UnknownEdge1,
UnknownEdge2,
UnknownEdge3,
UnknownEdge4,
UnknownEdge5,
UnknownEdge6,
UnknownEdge7,
UnknownEdge8,
UnknownEdge9,
UnknownEdge10,
UnknownEdge11
};
enum EBoxFaceID
{
};
static const CAABox skInvertedBox;
CVector3f m_min;
CVector3f m_max;
// set default AABox to insane inverse min/max to allow for accumulation
inline CAABox()
: m_min(1e16f), m_max(-1e16f)
{}
CAABox(const CVector3f& min, const CVector3f& max)
: m_min(min),
m_max(max)
{
}
CAABox(float minX, float minY, float minZ,
float maxX, float maxY, float maxZ)
: m_min(minX, minY, minZ),
m_max(maxX, maxY, maxZ)
{
}
#if ZE_ATHENA_TYPES
CAABox(Athena::io::IStreamReader& in) {readBoundingBox(in);}
inline void readBoundingBox(Athena::io::IStreamReader& in)
{
m_min = CVector3f(in);
m_max = CVector3f(in);
}
#endif
float distanceFromPointSquared(const CVector3f& other) const
{
float dist = 0;
for (int i = 0; i < 3; i++)
{
if (other[i] < m_min[i])
{
const float tmp = (m_min[i] - other[i]);
dist += tmp * tmp;
}
else if (other[i] > m_max[i])
{
const float tmp = (other[i] - m_max[i]);
dist += tmp * tmp;
}
}
return dist;
}
float distanceFromPoint(const CVector3f &other) const
{
return Math::sqrtF(distanceFromPointSquared(other));
}
inline bool intersects(const CAABox& other) const
{
bool x1 = (m_max[0] < other.m_min[0]);
bool x2 = (m_min[0] > other.m_max[0]);
bool y1 = (m_max[1] < other.m_min[1]);
bool y2 = (m_min[1] > other.m_max[1]);
bool z1 = (m_max[2] < other.m_min[2]);
bool z2 = (m_min[2] > other.m_max[2]);
return x1 && x2 && y1 && y2 && z1 && z2;
}
bool intersects(const CSphere& other) const
{
return distanceFromPointSquared(other.position) <= other.radius * other.radius;
}
inline bool inside(const CAABox& other) const
{
bool x = m_min[0] >= other.m_min[0] && m_max[0] <= other.m_max[0];
bool y = m_min[1] >= other.m_min[1] && m_max[1] <= other.m_max[1];
bool z = m_min[2] >= other.m_min[2] && m_max[2] <= other.m_max[2];
return x && y && z;
}
inline bool insidePlane(const CPlane& plane) const
{
CVector3f vmin, vmax;
/* X axis */
if (plane.a >= 0) {
vmin[0] = m_min[0];
vmax[0] = m_max[0];
} else {
vmin[0] = m_max[0];
vmax[0] = m_min[0];
}
/* Y axis */
if (plane.b >= 0) {
vmin[1] = m_min[1];
vmax[1] = m_max[1];
} else {
vmin[1] = m_max[1];
vmax[1] = m_min[1];
}
/* Z axis */
if (plane.c >= 0) {
vmin[2] = m_min[2];
vmax[2] = m_max[2];
} else {
vmin[2] = m_max[2];
vmax[2] = m_min[2];
}
float dadot = plane.vec.dot(vmax);
if (dadot + plane.d < 0)
return false;
return true;
}
CVector3f center() const {return (m_min + m_max) * 0.5f;}
CVector3f volume() const {return (m_max - m_min) * 0.5f;}
inline CLine getEdge(EBoxEdgeId id)
{
switch (id)
{
case UnknownEdge0:
return CLine({m_min.x, m_min.y, m_min.z},
CUnitVector3f({m_min.x, m_min.y, m_max.z}));
case UnknownEdge1:
return CLine({m_max.x, m_min.y, m_min.z},
CUnitVector3f({m_min.x, m_min.y, m_min.z}));
case UnknownEdge2:
return CLine({m_max.x, m_min.y, m_max.z},
CUnitVector3f({m_max.x, m_min.y, m_max.z}));
case UnknownEdge3:
return CLine({m_min.x, m_min.y, m_max.z},
CUnitVector3f({m_max.x, m_min.y, m_max.z}));
case UnknownEdge4:
return CLine({m_max.x, m_max.y, m_min.z},
CUnitVector3f({m_max.x, m_max.y, m_max.z}));
case UnknownEdge5:
return CLine({m_min.x, m_max.y, m_min.z},
CUnitVector3f({m_max.x, m_max.y, m_min.z}));
case UnknownEdge6:
return CLine({m_min.x, m_max.y, m_max.z},
CUnitVector3f({m_min.x, m_max.y, m_min.z}));
case UnknownEdge7:
return CLine({m_max.x, m_max.y, m_max.z},
CUnitVector3f({m_min.x, m_max.y, m_max.z}));
case UnknownEdge8:
return CLine({m_min.x, m_max.y, m_max.z},
CUnitVector3f({m_min.x, m_min.y, m_max.z}));
case UnknownEdge9:
return CLine({m_min.x, m_max.y, m_min.z},
CUnitVector3f({m_min.x, m_min.y, m_min.z}));
case UnknownEdge10:
return CLine({m_max.x, m_max.y, m_min.z},
CUnitVector3f({m_max.x, m_min.y, m_min.z}));
case UnknownEdge11:
return CLine({m_max.x, m_max.y, m_max.z},
CUnitVector3f({m_max.x, m_min.y, m_max.z}));
default:
return CLine({m_min.x, m_min.y, m_min.z},
CUnitVector3f({m_min.x, m_min.y, m_max.z}));
}
}
inline CAABox getTransformedAABox(const CTransform& xfrm)
{
CAABox box;
CVector3f point = xfrm * getPoint(0);
box.accumulateBounds(point);
point = xfrm * getPoint(1);
box.accumulateBounds(point);
point = xfrm * getPoint(2);
box.accumulateBounds(point);
point = xfrm * getPoint(3);
box.accumulateBounds(point);
point = xfrm * getPoint(4);
box.accumulateBounds(point);
point = xfrm * getPoint(5);
box.accumulateBounds(point);
point = xfrm * getPoint(6);
box.accumulateBounds(point);
point = xfrm * getPoint(7);
box.accumulateBounds(point);
return box;
}
inline void accumulateBounds(const CVector3f& point)
{
if (m_min.x > point.x)
m_min.x = point.x;
if (m_min.y > point.y)
m_min.y = point.y;
if (m_min.z > point.z)
m_min.z = point.z;
if (m_max.x < point.x)
m_max.x = point.x;
if (m_max.y < point.y)
m_max.y = point.y;
if (m_max.z < point.z)
m_max.z = point.z;
}
inline bool pointInside(const CVector3f& other) const
{
return (m_min.x <= other.x && other.x <= m_max.z &&
m_min.y <= other.y && other.y <= m_max.z &&
m_min.z <= other.z && other.z <= m_max.z);
}
inline CVector3f closestPointAlongVector(const CVector3f& other)
{
CVector3f center = this->center();
return {(other.x < center.x ? m_min.x : m_max.x),
(other.y < center.y ? m_min.y : m_max.y),
(other.z < center.z ? m_min.z : m_max.z)};
}
inline CVector3f furthestPointAlongVector(const CVector3f& other)
{
CVector3f center = this->center();
return {(other.x < center.x ? m_max.x : m_min.x),
(other.y < center.y ? m_max.y : m_min.y),
(other.z < center.z ? m_max.z : m_min.z)};
}
inline CVector3f getPoint(const int point)
{
int zOff = point & 4;
int yOff = (point * 2) & 4;
int xOff = (point * 4) & 4;
float z = ((float*)(&m_min.x) + zOff)[2];
float y = ((float*)(&m_min.x) + yOff)[1];
float x = ((float*)(&m_min.x) + xOff)[0];
return CVector3f(x, y, z);
}
inline CVector3f clampToBox(const CVector3f& vec)
{
CVector3f ret = vec;
Math::clamp(m_min.x, ret.x, m_max.x);
Math::clamp(m_min.y, ret.y, m_max.y);
Math::clamp(m_min.z, ret.z, m_max.z);
return ret;
}
inline void splitX(CAABox& posX, CAABox& negX) const
{
float midX = (m_max.x - m_min.x) * .5 + m_min.x;
posX.m_max = m_max;
posX.m_min = m_min;
posX.m_min.x = midX;
negX.m_max = m_max;
negX.m_max.x = midX;
negX.m_min = m_min;
}
inline void splitY(CAABox& posY, CAABox& negY) const
{
float midY = (m_max.y - m_min.y) * .5 + m_min.y;
posY.m_max = m_max;
posY.m_min = m_min;
posY.m_min.y = midY;
negY.m_max = m_max;
negY.m_max.y = midY;
negY.m_min = m_min;
}
inline void splitZ(CAABox& posZ, CAABox& negZ) const
{
float midZ = (m_max.z - m_min.z) * .5 + m_min.z;
posZ.m_max = m_max;
posZ.m_min = m_min;
posZ.m_min.z = midZ;
negZ.m_max = m_max;
negZ.m_max.z = midZ;
negZ.m_min = m_min;
}
inline bool invalid() {return (m_max.x < m_min.x || m_max.y < m_min.y || m_max.z < m_min.z);}
};
inline bool operator ==(const CAABox& left, const CAABox& right) {return (left.m_min == right.m_min && left.m_max == right.m_max);}
inline bool operator !=(const CAABox& left, const CAABox& right) {return (left.m_min != right.m_min || left.m_max != right.m_max);}
}
#endif // CAABOX_HPP