MWCC/compiler_and_linker/unsorted/InterferenceGraph.c

375 lines
12 KiB
C
Raw Normal View History

#include "compiler/InterferenceGraph.h"
#include "compiler/CError.h"
#include "compiler/CParser.h"
#include "compiler/BitVectors.h"
#include "compiler/Coloring.h"
#include "compiler/LiveInfo.h"
#include "compiler/PCode.h"
#include "compiler/PCodeListing.h"
#include "compiler/PCodeUtilities.h"
#include "compiler/Registers.h"
#include "compiler/RegisterInfo.h"
#include "compiler/CompilerTools.h"
IGNode **interferencegraph;
static UInt32 *interferencematrix;
Boolean coalesced_nregisters;
static SInt16 *coalesced;
static void makeinterfere(UInt32 a, UInt32 b) {
if (a < b)
bitvectorsetbit(((b * b) / 2) + a, interferencematrix);
else if (a > b)
bitvectorsetbit(((a * a) / 2) + b, interferencematrix);
}
int interferes(UInt32 a, UInt32 b) {
if (a < b)
return bitvectorgetbit(((b * b) / 2) + a, interferencematrix) > 0;
else if (a > b)
return bitvectorgetbit(((a * a) / 2) + b, interferencematrix) > 0;
else
return 0;
}
static void buildinterferencematrix(void) {
UInt32 regs; // r31
PCodeBlock *block; // r30
PCode *instr; // r29
UInt32 *vec; // r28
PCodeArg *op;
long reg;
UInt32 i;
UInt32 j;
regs = used_virtual_registers[coloring_class];
interferencematrix = oalloc(4 * ((((regs * regs) / 2) + 31) >> 5));
bitvectorinitialize(interferencematrix, (regs * regs) / 2, 0);
for (i = 0; i < 32; i++)
for (j = 0; j < 32; j++)
if (i != j)
makeinterfere(i, j);
vec = oalloc(4 * ((regs + 31) >> 5));
for (block = pcbasicblocks; block; block = block->nextBlock) {
bitvectorcopy(vec, liveinfo[block->blockIndex].out, regs);
for (instr = block->lastPCode; instr; instr = instr->prevPCode) {
op = instr->args;
i = instr->argCount;
while (i--) {
if (PC_OP_IS_WRITE_ANY_REGISTER(op, coloring_class)) {
reg = op->data.reg.reg;
bitvectorclearbit(reg, vec);
for (j = 0; j < regs; j++) {
if (bitvectorgetbit(j, vec)) {
if (
(instr->flags & fPCodeFlag10) &&
PC_OP_IS_ANY_REGISTER(&instr->args[0], coloring_class) &&
instr->args[1].data.reg.reg == j
)
continue;
makeinterfere(reg, j);
}
}
}
op++;
}
op = instr->args;
i = instr->argCount;
while (i--) {
if (PC_OP_IS_READ_ANY_REGISTER(op, coloring_class)) {
reg = op->data.reg.reg;
if (bitvectorgetbit(reg, vec) == 0)
op->data.reg.effect |= Effect4;
bitvectorsetbit(reg, vec);
}
op++;
}
if (coloring_class == RegClass_GPR) {
if (PCODE_FLAG_SET_F(instr) & (fPCodeFlag2 | fPCodeFlag4 | fPCodeFlag40000)) {
if (instr->args[1].data.reg.reg >= n_real_registers[coloring_class])
makeinterfere(0, instr->args[1].data.reg.reg);
if (PCODE_FLAG_SET_F(instr) & fPCodeFlag2000000)
makeinterfere(instr->args[0].data.reg.reg, instr->args[1].data.reg.reg);
} else {
switch (instr->op) {
case PC_DCBF:
case PC_DCBST:
case PC_DCBT:
case PC_DCBTST:
case PC_DCBZ:
case PC_DCBI:
case PC_ICBI:
case PC_DCCCI:
case PC_ICBT:
case PC_ICCCI:
case PC_ICREAD:
case PC_DCBA:
case PC_DST:
case PC_DSTT:
case PC_DSTST:
case PC_DSTSTT:
if (instr->args[0].data.reg.reg >= n_real_registers[coloring_class])
makeinterfere(0, instr->args[0].data.reg.reg);
break;
}
}
}
if (coloring_class == RegClass_GPR && (instr->flags & fPCodeFlag8)) {
i = branch_count_volatiles();
op = instr->args;
2022-12-29 12:32:55 +00:00
CError_ASSERT(219, instr->argCount != 0);
while (op->kind != PCOp_REGISTER && !(op->data.reg.effect & EffectWrite)) {
i++;
op++;
2022-12-29 12:32:55 +00:00
CError_ASSERT(226, i <= instr->argCount);
}
op = instr->args + i;
while (i < instr->argCount) {
if (op->kind == PCOp_REGISTER && op->arg == RegClass_GPR) {
for (j = 0; j < n_scratch_registers[coloring_class]; j++)
makeinterfere(op->data.reg.reg, scratch_registers[coloring_class][j]);
}
op++;
}
}
}
}
}
static short coalesced_path(short id) {
while (id != coalesced[id])
id = coalesced[id];
return id;
}
static void coalescenodes(void) {
PCodeArg *op;
UInt32 regs;
PCodeBlock *block;
PCode *instr;
UInt32 i;
short path1;
short path2;
short node1;
short node2;
regs = used_virtual_registers[coloring_class];
coalesced = oalloc(sizeof(SInt16) * regs);
for (i = 0; i < regs; i++)
coalesced[i] = i;
for (block = pcbasicblocks; block; block = block->nextBlock) {
for (instr = block->firstPCode; instr; instr = instr->nextPCode) {
if ((instr->flags & fPCodeFlag10) && !(instr->flags & fSideEffects)) {
if (PCODE_FLAG_SET_F(instr) & fPCodeFlag20000000) {
2022-12-29 12:32:55 +00:00
CError_FATAL(309);
continue;
}
if (instr->argCount > 2) {
if (instr->argCount != 3 || instr->args[2].kind != PCOp_PLACEHOLDEROPERAND) {
2022-12-29 12:32:55 +00:00
CError_FATAL(316);
continue;
}
}
if (PC_OP_IS_ANY_REGISTER(&instr->args[0], coloring_class)) {
path1 = coalesced_path(instr->args[0].data.reg.reg);
path2 = coalesced_path(instr->args[1].data.reg.reg);
if (path1 == path2) {
deletepcode(instr);
continue;
}
if (!interferes(path1, path2)) {
if (path1 >= n_real_registers[coloring_class] && path2 >= n_real_registers[coloring_class]) {
if (path1 < first_fe_temporary_register[coloring_class])
continue;
if (path1 > last_temporary_register[coloring_class])
continue;
if (path2 < first_fe_temporary_register[coloring_class])
continue;
if (path2 > last_temporary_register[coloring_class])
continue;
}
node1 = (path2 < path1) ? path2 : path1;
node2 = (path2 > path1) ? path2 : path1;
if (coloring_class == RegClass_GPR && node2 == _CALLER_SP_)
continue;
coalesced[node2] = node1;
for (i = 0; i < regs; i++) {
if (interferes(node2, i))
makeinterfere(node1, i);
}
deletepcode(instr);
}
}
}
}
}
for (block = pcbasicblocks; block; block = block->nextBlock) {
for (instr = block->firstPCode; instr; instr = instr->nextPCode) {
op = instr->args;
i = instr->argCount;
while (i--) {
if (PC_OP_IS_ANY_REGISTER(op, coloring_class) && op->data.reg.reg != coalesced[op->data.reg.reg])
op->data.reg.reg = coalesced_path(op->data.reg.reg);
op++;
}
}
}
}
static void buildadjacencyvectors(void) {
IGNode *node;
UInt32 regs;
UInt32 i;
UInt32 counter;
short *array;
short *dest;
short *src;
UInt32 j;
regs = used_virtual_registers[coloring_class];
interferencegraph = oalloc(sizeof(IGNode *) * regs);
array = oalloc(sizeof(short) * regs);
for (i = 0; i < regs; i++) {
counter = 0;
for (j = 0; j < regs; j++) {
if (interferes(i, j))
array[counter++] = j;
}
node = interferencegraph[i] = oalloc(sizeof(IGNode) + sizeof(short) * (counter - 1));
memclrw(node, sizeof(IGNode) + sizeof(short) * (counter - 1));
node->x10 = i;
node->x14 = -1;
node->arraySize = counter;
node->x12 = counter;
dest = node->array;
src = array;
for (j = 0; j < counter; j++)
*(dest++) = *(src++);
if (i != coalesced[i]) {
node->flags |= fCoalesced;
j = coalesced_path(i);
interferencegraph[j]->flags |= fCoalescedInto;
node->x14 = j;
}
}
}
static void eliminatedeadcode(void) {
UInt32 regs;
PCodeBlock *block;
PCode *instr;
UInt32 *vec;
UInt32 i;
PCodeArg *op;
regs = used_virtual_registers[coloring_class];
vec = oalloc(4 * ((regs + 31) >> 5));
for (block = pcbasicblocks; block; block = block->nextBlock) {
bitvectorcopy(vec, liveinfo[block->blockIndex].out, regs);
for (instr = block->lastPCode; instr; instr = instr->prevPCode) {
if (dead(instr, coloring_class, vec)) {
deletepcode(instr);
continue;
}
op = instr->args;
i = instr->argCount;
while (i--) {
if (PC_OP_IS_WRITE_ANY_REGISTER(op, coloring_class))
bitvectorclearbit(op->data.reg.reg, vec);
op++;
}
op = instr->args;
i = instr->argCount;
while (i--) {
if (PC_OP_IS_READ_ANY_REGISTER(op, coloring_class)) {
int reg = op->data.reg.reg;
if (!bitvectorgetbit(reg, vec))
op->data.reg.effect |= Effect4;
bitvectorsetbit(reg, vec);
}
op++;
}
}
}
}
static void findrematerializations(void) {
UInt32 regs;
UInt32 i;
PCodeBlock *block;
PCode *instr;
PCodeArg *op;
IGNode *node;
regs = used_virtual_registers[coloring_class];
for (block = pcbasicblocks; block; block = block->nextBlock) {
for (instr = block->lastPCode; instr; instr = instr->prevPCode) {
op = instr->args;
i = instr->argCount;
while (i--) {
if (
PC_OP_IS_WRITE_ANY_REGISTER(op, coloring_class) &&
op->data.reg.reg >= n_real_registers[coloring_class] &&
!(interferencegraph[op->data.reg.reg]->flags & (fPairLow | fPairHigh)) &&
!(interferencegraph[op->data.reg.reg]->flags & fIGNode40)
)
{
node = interferencegraph[op->data.reg.reg];
if (!node->instr8) {
node->instr8 = instr;
} else {
node->instr8 = NULL;
node->flags |= fIGNode40;
}
}
op++;
}
}
}
for (i = 0; i < regs; i++) {
node = interferencegraph[i];
if (node->instr8 && !is_location_independent(node->instr8))
node->instr8 = NULL;
}
}
void buildinterferencegraph(Object *proc) {
int regs = used_virtual_registers[coloring_class];
computelivevariables(proc);
eliminatedeadcode();
buildinterferencematrix();
if (copts.debuglisting)
pclistinterferences(register_class_format[coloring_class], regs);
coalescenodes();
buildadjacencyvectors();
findrematerializations();
}