2015-06-21 15:33:46 +00:00
|
|
|
/*
|
|
|
|
Simple DirectMedia Layer
|
2022-01-03 17:40:00 +00:00
|
|
|
Copyright (C) 1997-2022 Sam Lantinga <slouken@libsdl.org>
|
2015-06-21 15:33:46 +00:00
|
|
|
|
|
|
|
This software is provided 'as-is', without any express or implied
|
|
|
|
warranty. In no event will the authors be held liable for any damages
|
|
|
|
arising from the use of this software.
|
|
|
|
|
|
|
|
Permission is granted to anyone to use this software for any purpose,
|
|
|
|
including commercial applications, and to alter it and redistribute it
|
|
|
|
freely, subject to the following restrictions:
|
|
|
|
|
|
|
|
1. The origin of this software must not be misrepresented; you must not
|
|
|
|
claim that you wrote the original software. If you use this software
|
|
|
|
in a product, an acknowledgment in the product documentation would be
|
|
|
|
appreciated but is not required.
|
|
|
|
2. Altered source versions must be plainly marked as such, and must not be
|
|
|
|
misrepresented as being the original software.
|
|
|
|
3. This notice may not be removed or altered from any source distribution.
|
|
|
|
*/
|
|
|
|
|
|
|
|
/**
|
|
|
|
* \file SDL_rect.h
|
|
|
|
*
|
|
|
|
* Header file for SDL_rect definition and management functions.
|
|
|
|
*/
|
|
|
|
|
2016-11-21 05:34:54 +00:00
|
|
|
#ifndef SDL_rect_h_
|
|
|
|
#define SDL_rect_h_
|
2015-06-21 15:33:46 +00:00
|
|
|
|
|
|
|
#include "SDL_stdinc.h"
|
|
|
|
#include "SDL_error.h"
|
|
|
|
#include "SDL_pixels.h"
|
|
|
|
#include "SDL_rwops.h"
|
|
|
|
|
|
|
|
#include "begin_code.h"
|
|
|
|
/* Set up for C function definitions, even when using C++ */
|
|
|
|
#ifdef __cplusplus
|
|
|
|
extern "C" {
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/**
|
2021-03-21 18:18:39 +00:00
|
|
|
* The structure that defines a point (integer)
|
2015-06-21 15:33:46 +00:00
|
|
|
*
|
2021-03-21 18:18:39 +00:00
|
|
|
* \sa SDL_EnclosePoints
|
|
|
|
* \sa SDL_PointInRect
|
2015-06-21 15:33:46 +00:00
|
|
|
*/
|
|
|
|
typedef struct SDL_Point
|
|
|
|
{
|
|
|
|
int x;
|
|
|
|
int y;
|
|
|
|
} SDL_Point;
|
|
|
|
|
|
|
|
/**
|
2021-03-21 18:18:39 +00:00
|
|
|
* The structure that defines a point (floating point)
|
2018-10-23 05:34:03 +00:00
|
|
|
*
|
2022-03-19 14:27:31 +00:00
|
|
|
* \sa SDL_EncloseFPoints
|
|
|
|
* \sa SDL_PointInFRect
|
2018-10-23 05:34:03 +00:00
|
|
|
*/
|
|
|
|
typedef struct SDL_FPoint
|
|
|
|
{
|
|
|
|
float x;
|
|
|
|
float y;
|
|
|
|
} SDL_FPoint;
|
|
|
|
|
|
|
|
|
|
|
|
/**
|
2021-03-21 18:18:39 +00:00
|
|
|
* A rectangle, with the origin at the upper left (integer).
|
|
|
|
*
|
|
|
|
* \sa SDL_RectEmpty
|
|
|
|
* \sa SDL_RectEquals
|
|
|
|
* \sa SDL_HasIntersection
|
|
|
|
* \sa SDL_IntersectRect
|
2022-04-22 12:24:10 +00:00
|
|
|
* \sa SDL_IntersectRectAndLine
|
2021-03-21 18:18:39 +00:00
|
|
|
* \sa SDL_UnionRect
|
|
|
|
* \sa SDL_EnclosePoints
|
2015-06-21 15:33:46 +00:00
|
|
|
*/
|
|
|
|
typedef struct SDL_Rect
|
|
|
|
{
|
|
|
|
int x, y;
|
|
|
|
int w, h;
|
|
|
|
} SDL_Rect;
|
|
|
|
|
2018-10-23 05:34:03 +00:00
|
|
|
|
|
|
|
/**
|
2021-03-21 18:18:39 +00:00
|
|
|
* A rectangle, with the origin at the upper left (floating point).
|
2022-04-22 12:24:10 +00:00
|
|
|
*
|
|
|
|
* \sa SDL_FRectEmpty
|
|
|
|
* \sa SDL_FRectEquals
|
|
|
|
* \sa SDL_FRectEqualsEpsilon
|
|
|
|
* \sa SDL_HasIntersectionF
|
|
|
|
* \sa SDL_IntersectFRect
|
|
|
|
* \sa SDL_IntersectFRectAndLine
|
|
|
|
* \sa SDL_UnionFRect
|
|
|
|
* \sa SDL_EncloseFPoints
|
|
|
|
* \sa SDL_PointInFRect
|
2018-10-23 05:34:03 +00:00
|
|
|
*/
|
|
|
|
typedef struct SDL_FRect
|
|
|
|
{
|
|
|
|
float x;
|
|
|
|
float y;
|
|
|
|
float w;
|
|
|
|
float h;
|
|
|
|
} SDL_FRect;
|
|
|
|
|
|
|
|
|
2015-06-21 15:33:46 +00:00
|
|
|
/**
|
2021-03-21 18:18:39 +00:00
|
|
|
* Returns true if point resides inside a rectangle.
|
2015-06-21 15:33:46 +00:00
|
|
|
*/
|
|
|
|
SDL_FORCE_INLINE SDL_bool SDL_PointInRect(const SDL_Point *p, const SDL_Rect *r)
|
|
|
|
{
|
|
|
|
return ( (p->x >= r->x) && (p->x < (r->x + r->w)) &&
|
|
|
|
(p->y >= r->y) && (p->y < (r->y + r->h)) ) ? SDL_TRUE : SDL_FALSE;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
2021-03-21 18:18:39 +00:00
|
|
|
* Returns true if the rectangle has no area.
|
2015-06-21 15:33:46 +00:00
|
|
|
*/
|
|
|
|
SDL_FORCE_INLINE SDL_bool SDL_RectEmpty(const SDL_Rect *r)
|
|
|
|
{
|
|
|
|
return ((!r) || (r->w <= 0) || (r->h <= 0)) ? SDL_TRUE : SDL_FALSE;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
2021-03-21 18:18:39 +00:00
|
|
|
* Returns true if the two rectangles are equal.
|
2015-06-21 15:33:46 +00:00
|
|
|
*/
|
|
|
|
SDL_FORCE_INLINE SDL_bool SDL_RectEquals(const SDL_Rect *a, const SDL_Rect *b)
|
|
|
|
{
|
|
|
|
return (a && b && (a->x == b->x) && (a->y == b->y) &&
|
|
|
|
(a->w == b->w) && (a->h == b->h)) ? SDL_TRUE : SDL_FALSE;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
2021-03-21 18:18:39 +00:00
|
|
|
* Determine whether two rectangles intersect.
|
|
|
|
*
|
|
|
|
* If either pointer is NULL the function will return SDL_FALSE.
|
|
|
|
*
|
|
|
|
* \param A an SDL_Rect structure representing the first rectangle
|
|
|
|
* \param B an SDL_Rect structure representing the second rectangle
|
|
|
|
* \returns SDL_TRUE if there is an intersection, SDL_FALSE otherwise.
|
2015-06-21 15:33:46 +00:00
|
|
|
*
|
2021-03-21 18:18:39 +00:00
|
|
|
* \since This function is available since SDL 2.0.0.
|
|
|
|
*
|
|
|
|
* \sa SDL_IntersectRect
|
2015-06-21 15:33:46 +00:00
|
|
|
*/
|
|
|
|
extern DECLSPEC SDL_bool SDLCALL SDL_HasIntersection(const SDL_Rect * A,
|
|
|
|
const SDL_Rect * B);
|
|
|
|
|
|
|
|
/**
|
2021-03-21 18:18:39 +00:00
|
|
|
* Calculate the intersection of two rectangles.
|
|
|
|
*
|
|
|
|
* If `result` is NULL then this function will return SDL_FALSE.
|
2015-06-21 15:33:46 +00:00
|
|
|
*
|
2021-03-21 18:18:39 +00:00
|
|
|
* \param A an SDL_Rect structure representing the first rectangle
|
|
|
|
* \param B an SDL_Rect structure representing the second rectangle
|
|
|
|
* \param result an SDL_Rect structure filled in with the intersection of
|
|
|
|
* rectangles `A` and `B`
|
|
|
|
* \returns SDL_TRUE if there is an intersection, SDL_FALSE otherwise.
|
|
|
|
*
|
|
|
|
* \since This function is available since SDL 2.0.0.
|
|
|
|
*
|
|
|
|
* \sa SDL_HasIntersection
|
2015-06-21 15:33:46 +00:00
|
|
|
*/
|
|
|
|
extern DECLSPEC SDL_bool SDLCALL SDL_IntersectRect(const SDL_Rect * A,
|
|
|
|
const SDL_Rect * B,
|
|
|
|
SDL_Rect * result);
|
|
|
|
|
|
|
|
/**
|
2021-03-21 18:18:39 +00:00
|
|
|
* Calculate the union of two rectangles.
|
|
|
|
*
|
|
|
|
* \param A an SDL_Rect structure representing the first rectangle
|
|
|
|
* \param B an SDL_Rect structure representing the second rectangle
|
|
|
|
* \param result an SDL_Rect structure filled in with the union of rectangles
|
|
|
|
* `A` and `B`
|
2021-10-27 01:36:05 +00:00
|
|
|
*
|
|
|
|
* \since This function is available since SDL 2.0.0.
|
2015-06-21 15:33:46 +00:00
|
|
|
*/
|
|
|
|
extern DECLSPEC void SDLCALL SDL_UnionRect(const SDL_Rect * A,
|
|
|
|
const SDL_Rect * B,
|
|
|
|
SDL_Rect * result);
|
|
|
|
|
|
|
|
/**
|
2021-03-21 18:18:39 +00:00
|
|
|
* Calculate a minimal rectangle enclosing a set of points.
|
2015-06-21 15:33:46 +00:00
|
|
|
*
|
2021-07-14 21:07:04 +00:00
|
|
|
* If `clip` is not NULL then only points inside of the clipping rectangle are
|
|
|
|
* considered.
|
2021-03-21 18:18:39 +00:00
|
|
|
*
|
|
|
|
* \param points an array of SDL_Point structures representing points to be
|
|
|
|
* enclosed
|
|
|
|
* \param count the number of structures in the `points` array
|
|
|
|
* \param clip an SDL_Rect used for clipping or NULL to enclose all points
|
|
|
|
* \param result an SDL_Rect structure filled in with the minimal enclosing
|
|
|
|
* rectangle
|
|
|
|
* \returns SDL_TRUE if any points were enclosed or SDL_FALSE if all the
|
|
|
|
* points were outside of the clipping rectangle.
|
2021-10-27 01:36:05 +00:00
|
|
|
*
|
|
|
|
* \since This function is available since SDL 2.0.0.
|
2015-06-21 15:33:46 +00:00
|
|
|
*/
|
|
|
|
extern DECLSPEC SDL_bool SDLCALL SDL_EnclosePoints(const SDL_Point * points,
|
|
|
|
int count,
|
|
|
|
const SDL_Rect * clip,
|
|
|
|
SDL_Rect * result);
|
|
|
|
|
|
|
|
/**
|
2021-03-21 18:18:39 +00:00
|
|
|
* Calculate the intersection of a rectangle and line segment.
|
|
|
|
*
|
|
|
|
* This function is used to clip a line segment to a rectangle. A line segment
|
|
|
|
* contained entirely within the rectangle or that does not intersect will
|
|
|
|
* remain unchanged. A line segment that crosses the rectangle at either or
|
|
|
|
* both ends will be clipped to the boundary of the rectangle and the new
|
|
|
|
* coordinates saved in `X1`, `Y1`, `X2`, and/or `Y2` as necessary.
|
2015-06-21 15:33:46 +00:00
|
|
|
*
|
2021-03-21 18:18:39 +00:00
|
|
|
* \param rect an SDL_Rect structure representing the rectangle to intersect
|
|
|
|
* \param X1 a pointer to the starting X-coordinate of the line
|
|
|
|
* \param Y1 a pointer to the starting Y-coordinate of the line
|
|
|
|
* \param X2 a pointer to the ending X-coordinate of the line
|
|
|
|
* \param Y2 a pointer to the ending Y-coordinate of the line
|
|
|
|
* \returns SDL_TRUE if there is an intersection, SDL_FALSE otherwise.
|
2021-10-27 01:36:05 +00:00
|
|
|
*
|
|
|
|
* \since This function is available since SDL 2.0.0.
|
2015-06-21 15:33:46 +00:00
|
|
|
*/
|
|
|
|
extern DECLSPEC SDL_bool SDLCALL SDL_IntersectRectAndLine(const SDL_Rect *
|
|
|
|
rect, int *X1,
|
|
|
|
int *Y1, int *X2,
|
|
|
|
int *Y2);
|
|
|
|
|
2022-03-19 14:27:31 +00:00
|
|
|
|
|
|
|
/* SDL_FRect versions... */
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Returns true if point resides inside a rectangle.
|
|
|
|
*/
|
|
|
|
SDL_FORCE_INLINE SDL_bool SDL_PointInFRect(const SDL_FPoint *p, const SDL_FRect *r)
|
|
|
|
{
|
|
|
|
return ( (p->x >= r->x) && (p->x < (r->x + r->w)) &&
|
|
|
|
(p->y >= r->y) && (p->y < (r->y + r->h)) ) ? SDL_TRUE : SDL_FALSE;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Returns true if the rectangle has no area.
|
|
|
|
*/
|
|
|
|
SDL_FORCE_INLINE SDL_bool SDL_FRectEmpty(const SDL_FRect *r)
|
|
|
|
{
|
|
|
|
return ((!r) || (r->w <= 0.0f) || (r->h <= 0.0f)) ? SDL_TRUE : SDL_FALSE;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
2022-04-20 03:46:45 +00:00
|
|
|
* Returns true if the two rectangles are equal, within some given epsilon.
|
|
|
|
*
|
|
|
|
* \since This function is available since SDL 2.0.22.
|
|
|
|
*/
|
|
|
|
SDL_FORCE_INLINE SDL_bool SDL_FRectEqualsEpsilon(const SDL_FRect *a, const SDL_FRect *b, const float epsilon)
|
|
|
|
{
|
|
|
|
return (a && b && ((a == b) ||
|
|
|
|
((SDL_fabs(a->x - b->x) <= epsilon) &&
|
|
|
|
(SDL_fabs(a->y - b->y) <= epsilon) &&
|
|
|
|
(SDL_fabs(a->w - b->w) <= epsilon) &&
|
|
|
|
(SDL_fabs(a->h - b->h) <= epsilon))))
|
|
|
|
? SDL_TRUE : SDL_FALSE;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Returns true if the two rectangles are equal, using a default epsilon.
|
|
|
|
*
|
|
|
|
* \since This function is available since SDL 2.0.22.
|
2022-03-19 14:27:31 +00:00
|
|
|
*/
|
|
|
|
SDL_FORCE_INLINE SDL_bool SDL_FRectEquals(const SDL_FRect *a, const SDL_FRect *b)
|
|
|
|
{
|
2022-04-20 03:46:45 +00:00
|
|
|
return SDL_FRectEqualsEpsilon(a, b, SDL_FLT_EPSILON);
|
2022-03-19 14:27:31 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Determine whether two rectangles intersect with float precision.
|
|
|
|
*
|
|
|
|
* If either pointer is NULL the function will return SDL_FALSE.
|
|
|
|
*
|
|
|
|
* \param A an SDL_FRect structure representing the first rectangle
|
|
|
|
* \param B an SDL_FRect structure representing the second rectangle
|
|
|
|
* \returns SDL_TRUE if there is an intersection, SDL_FALSE otherwise.
|
|
|
|
*
|
2022-03-21 03:17:14 +00:00
|
|
|
* \since This function is available since SDL 2.0.22.
|
|
|
|
*
|
2022-03-19 14:27:31 +00:00
|
|
|
* \sa SDL_IntersectRect
|
|
|
|
*/
|
|
|
|
extern DECLSPEC SDL_bool SDLCALL SDL_HasIntersectionF(const SDL_FRect * A,
|
|
|
|
const SDL_FRect * B);
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Calculate the intersection of two rectangles with float precision.
|
|
|
|
*
|
|
|
|
* If `result` is NULL then this function will return SDL_FALSE.
|
|
|
|
*
|
|
|
|
* \param A an SDL_FRect structure representing the first rectangle
|
|
|
|
* \param B an SDL_FRect structure representing the second rectangle
|
|
|
|
* \param result an SDL_FRect structure filled in with the intersection of
|
|
|
|
* rectangles `A` and `B`
|
|
|
|
* \returns SDL_TRUE if there is an intersection, SDL_FALSE otherwise.
|
|
|
|
*
|
2022-03-21 03:17:14 +00:00
|
|
|
* \since This function is available since SDL 2.0.22.
|
|
|
|
*
|
2022-03-19 14:27:31 +00:00
|
|
|
* \sa SDL_HasIntersectionF
|
|
|
|
*/
|
|
|
|
extern DECLSPEC SDL_bool SDLCALL SDL_IntersectFRect(const SDL_FRect * A,
|
|
|
|
const SDL_FRect * B,
|
|
|
|
SDL_FRect * result);
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Calculate the union of two rectangles with float precision.
|
|
|
|
*
|
|
|
|
* \param A an SDL_FRect structure representing the first rectangle
|
|
|
|
* \param B an SDL_FRect structure representing the second rectangle
|
|
|
|
* \param result an SDL_FRect structure filled in with the union of rectangles
|
|
|
|
* `A` and `B`
|
2022-03-21 03:17:14 +00:00
|
|
|
*
|
|
|
|
* \since This function is available since SDL 2.0.22.
|
2022-03-19 14:27:31 +00:00
|
|
|
*/
|
|
|
|
extern DECLSPEC void SDLCALL SDL_UnionFRect(const SDL_FRect * A,
|
|
|
|
const SDL_FRect * B,
|
|
|
|
SDL_FRect * result);
|
|
|
|
|
|
|
|
/**
|
2022-03-21 03:17:14 +00:00
|
|
|
* Calculate a minimal rectangle enclosing a set of points with float
|
|
|
|
* precision.
|
2022-03-19 14:27:31 +00:00
|
|
|
*
|
|
|
|
* If `clip` is not NULL then only points inside of the clipping rectangle are
|
|
|
|
* considered.
|
|
|
|
*
|
|
|
|
* \param points an array of SDL_FPoint structures representing points to be
|
|
|
|
* enclosed
|
|
|
|
* \param count the number of structures in the `points` array
|
|
|
|
* \param clip an SDL_FRect used for clipping or NULL to enclose all points
|
|
|
|
* \param result an SDL_FRect structure filled in with the minimal enclosing
|
|
|
|
* rectangle
|
|
|
|
* \returns SDL_TRUE if any points were enclosed or SDL_FALSE if all the
|
|
|
|
* points were outside of the clipping rectangle.
|
2022-03-21 03:17:14 +00:00
|
|
|
*
|
|
|
|
* \since This function is available since SDL 2.0.22.
|
2022-03-19 14:27:31 +00:00
|
|
|
*/
|
|
|
|
extern DECLSPEC SDL_bool SDLCALL SDL_EncloseFPoints(const SDL_FPoint * points,
|
|
|
|
int count,
|
|
|
|
const SDL_FRect * clip,
|
|
|
|
SDL_FRect * result);
|
|
|
|
|
|
|
|
/**
|
2022-03-21 03:17:14 +00:00
|
|
|
* Calculate the intersection of a rectangle and line segment with float
|
|
|
|
* precision.
|
2022-03-19 14:27:31 +00:00
|
|
|
*
|
|
|
|
* This function is used to clip a line segment to a rectangle. A line segment
|
|
|
|
* contained entirely within the rectangle or that does not intersect will
|
|
|
|
* remain unchanged. A line segment that crosses the rectangle at either or
|
|
|
|
* both ends will be clipped to the boundary of the rectangle and the new
|
|
|
|
* coordinates saved in `X1`, `Y1`, `X2`, and/or `Y2` as necessary.
|
|
|
|
*
|
|
|
|
* \param rect an SDL_FRect structure representing the rectangle to intersect
|
|
|
|
* \param X1 a pointer to the starting X-coordinate of the line
|
|
|
|
* \param Y1 a pointer to the starting Y-coordinate of the line
|
|
|
|
* \param X2 a pointer to the ending X-coordinate of the line
|
|
|
|
* \param Y2 a pointer to the ending Y-coordinate of the line
|
|
|
|
* \returns SDL_TRUE if there is an intersection, SDL_FALSE otherwise.
|
2022-03-21 03:17:14 +00:00
|
|
|
*
|
|
|
|
* \since This function is available since SDL 2.0.22.
|
2022-03-19 14:27:31 +00:00
|
|
|
*/
|
|
|
|
extern DECLSPEC SDL_bool SDLCALL SDL_IntersectFRectAndLine(const SDL_FRect *
|
|
|
|
rect, float *X1,
|
|
|
|
float *Y1, float *X2,
|
|
|
|
float *Y2);
|
|
|
|
|
2015-06-21 15:33:46 +00:00
|
|
|
/* Ends C function definitions when using C++ */
|
|
|
|
#ifdef __cplusplus
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
#include "close_code.h"
|
|
|
|
|
2016-11-21 05:34:54 +00:00
|
|
|
#endif /* SDL_rect_h_ */
|
2015-06-21 15:33:46 +00:00
|
|
|
|
|
|
|
/* vi: set ts=4 sw=4 expandtab: */
|