This was causing configure events to not inform SDL of window size
changes, even when they were based on resizes that we fully expected. The
result was fullscreen->windowed not working at all, because it would
retain the desktop resolution instead of reverting to the floating size
that it had before moving to fullscreen mode.
Fixes Super Hexagon fullscreen toggling.
The flush has been removed in e5f9fae034.
Unfortunately, even though ideally the flush shouldn't be necessary,
our resize sequence isn't... well, perfect, and removing that flush causes
tons of troubles.
We're also still flushing in other paths where the window size can be
changed by the compositor and where we may potentially have to obey that
change, like in Wayland_MaximizeWindow.
This also removes the hack introduced in 7f261d3b76,
which introduces problems with protocol violations and seems to not be
necessary when flushing.
We have issues with correct resize sequence and happen to commit old-sized
buffers even after configure event for the new size has been already
acknowledged. While the reason for that stays unknown, let's at least
workaround the problem by faking window geometry into expected size.
This does not fix visual glitch on e.g. fullscreen toggling, but having
a split-second glitch is still a much better outcome than being
terminated by the compositor for protocol violation.
This was causing window changes to completely break, resulting in broken
decorations and bizarre frame timing, I don't know what exactly it's doing
but it's not good. Kept the libdecor_frame_is_floating logic, at least.
Commit 871c11191b removed delayed
resize handling, but it left the whole structure untouched that
now became unnecessary. To help with code clarity, get rid
of the structure where pending resize state used to be stored
and pass all the data directly to Wayland_HandlePendingResize
(now renamed to Wayland_HandleResize, since it's not "pending"
anymore but applied immediately)
Otherwise our windows have no window decoration on compositors that
support xdg-decoration-unstable-v1, but default to client-side mode.
Contrary to what the comment was stating, there is nothing in the protocol
that would make redundant calls to zxdg_toplevel_decoration_v1::set_mode
problematic.
Some Wayland compositors send (0,0) as "suggested" configure event sizes to
indicate that the client has to decide on its own which sizes to used. This
is commonly done when restoring from maximised, fullscreen or tiles states
to fullscreen.
We now store the last known floating states in a new set of variables and
restore them when we receive such a (0,0) configure event.
From the vfork manpage:
> The vfork() function has the same effect as fork(2), except that
> the behavior is undefined if the process created by vfork() either
> modifies any data other than a variable of type pid_t used to store
> the return value from vfork(), or returns from the function in which
> vfork() was called, or calls any other function before successfully
> calling _exit(2) or one of the exec(3) family of functions.
unsetenv is still called inside a child process, so it does not
influence the rest of the application.
This fixes a crash on pressing keyboard button when compositor sends
zero as repeat rate, indicating that key repeat should be disabled.
From Wayland protocol spec:
> Negative values for either rate or delay are illegal. A rate of zero
> will disable any repeating (regardless of the value of delay).
This is a workaround and not a proper fix, but this is possibly complicated,
and possibly a corner case, so this will do for 2.0.16, if not the
foreseeable future.
Reference issue #4561
When we removed the OpenGL resize workaround it introduced a problem for
fullscreen windows in particular: When leaving fullscreen we tried to send a
resize event, but UpdateFullscreenMode would send a SIZE_CHANGED immediately
after, deleting our resize event and causing the following configure event's
resize to be ignored. This timing issue resulted in fullscreen windows not
being resized at all when becoming a floating window.
By always forcing resize events from configure events, we ensure that RESIZED
always makes it through. SetWindowSize-type changes should be unaffected as
they do not fire configure events.
The RenderDrawLinesWithRects and RenderDrawLinesWithRectsF functions can
sometimes call QueueCmdFillRects() with the data pointed to by frects
uninitialised. This can occur if none of the lines can be replaced with
rects, in which case the frects array is empty, and nrects is 0.
gcc 10.3.0 will detect this possibility, and print a warning like:
/home/david/Development/SDL/src/render/SDL_render.c: In function 'RenderDrawLinesWithRectsF':
/home/david/Development/SDL/src/render/SDL_render.c:2725:15: warning: '<unknown>' may be used uninitialized [-Wmaybe-uninitialized]
2725 | retval += QueueCmdFillRects(renderer, frects, nrects);
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
/home/david/Development/SDL/src/render/SDL_render.c:499:1: note: by argument 2 of type 'const SDL_FRect *' to 'QueueCmdFillRects' declared here
499 | QueueCmdFillRects(SDL_Renderer *renderer, const SDL_FRect * rects, const int count)
| ^~~~~~~~~~~~~~~~~
This is harmless, because when this is uninitialised, nrects is always
0, so QueueCmdFillRects() does nothing anyway. We therefore can work
around this by only calling QueueCmdFillRects() when nrects is nonzero.
Somewhat impressively, gcc recognises that this is now safe.
This is needed to support CHERI, and thus Arm's experimental Morello
prototype, where pointers are implemented using unforgeable capabilities
that include bounds and permissions metadata to provide fine-grained
spatial and referential memory safety, as well as revocation by sweeping
memory to provide heap temporal memory safety.
The C standard does not guarantee that if two pointers compare equal
they are the same pointer, as C pointers have a notion of provenance,
and compilers have been known to exploit this during optimisation. For
CHERI, this becomes even more important, as in-place expansion can
result in realloc returning a capability to the same address but with
increased capability bounds, and so reusing the old capability will trap
trying to access outside the bounds of the original allocation.
In the case that ptr == mem, memdiff and ptrdiff should still be equal,
so the only overhead is a small amount of pointer arithmetic and a store
of the new pointer (which is required per the C standard in order to not
be undefined behaviour when next loaded).
This also fixes the calculation of oldmem to use uintptr_t rather than
size_t as casting the pointer to size_t on CHERI will strip the
capability metadata, including the validity tag, with the subsequent
cast back to void * resulting in a null-derived capability whose
validity tag is clear and thus cannot be dereferenced without trapping.
This is needed to support CHERI, and thus Arm's experimental Morello
prototype, where pointers are implemented using unforgeable capabilities
that include bounds and permissions metadata to provide fine-grained
spatial and referential memory safety, as well as revocation by sweeping
memory to provide heap temporal memory safety.
On most systems (anything with a flat memory hierarchy rather than using
segment-based addressing), size_t and uintptr_t are the same type.
However, on CHERI, size_t is just an integer offset, whereas uintptr_t
is still a capability as described above. Casting a pointer to size_t
will strip the metadata and validity tag, and casting from size_t to a
pointer will result in a null-derived capability whose validity tag is
not set, and thus cannot be dereferenced without faulting.
The audio and cursor casts were harmless as they intend to stuff an
integer into a pointer, but using uintptr_t is the idiomatic way to do
that and silences our compiler warnings (which our build tool makes
fatal by default as they often indicate real problems). The iconv and
egl casts were true positives as SDL_iconv_t and iconv_t are pointer
types, as is NativeDisplayType on most OSes, so this would have trapped
at run time when using the round-tripped pointers. The gles2 casts were
also harmless; the OpenGL API defines this argument to be a pointer type
(and uses the argument name "pointer"), but it in fact represents an
integer offset, so like audio and cursor the additional idiomatic cast
is needed to silence the warning.
When choosing an X11 Visual for a window based on its GLX capabilities, first
try glXChooseFBConfig (if available) before falling back to glXChooseVisual.
This normally does not make a difference because most GLX drivers create a
Visual for every GLXFBConfig, exposing all of the same capabilities.
For GLX render offload configurations (also know as "PRIME") where one GPU is
providing GLX rendering support for windows on an X screen running on a
different GPU, the GPU doing the offloading needs to use the Visuals that were
created by the host GPU's driver rather than being able to add its own. This
means that there may be fewer Visuals available for all of the GLXFBConfigs the
guest driver wants to expose. In order to handle that situation, the NVIDIA GLX
driver creates many GLXFBConfigs that map to the same Visual when running in a
render offload configuration.
This can result in a glXChooseVisual request failing to find a supported Visual
when there is a GLXFBConfig for that configuration that would have worked. For
example, when the game "Unnamed SDVX Clone" [1] tries to create a configuration
with multisample, glXChooseVisual fails because the Visual assigned to the
multisample GLXFBConfigs is shared with the GLXFBConfigs without multisample.
Avoid this problem by using glXChooseFBConfig, when available, to find a
GLXFBConfig with the requested capabilities and then using
glXGetVisualFromFBConfig to find the corresponding X11 Visual. This allows the
game to run, although it doesn't make me any better at actually playing it...
Signed-off-by: Aaron Plattner <aplattner@nvidia.com>
Fixes: https://forums.developer.nvidia.com/t/prime-run-cannot-create-window-x-glxcreatecontext/180214
[1] https://github.com/Drewol/unnamed-sdvx-clone