When hint SDL_HINT_OPENGL_ES_DRIVER is set to "1" (e.g. for ANGLE support), assertion due to !_this->gl_config.driver_loaded can be causes while EGL is available.
When relative mode is enabled and not using warp mode, the cursor is
being clipped to the window. Therefore there is no reason to restore the
cursor position to the center.
Avoiding the warp to center simplifies mouse position event flow, as we
are no longer potentially receiving mouse events for the automated
movement of the cursor and can be (mostly) assured that an incoming
event from the windowing system is that of external means.
The implementation of clip logic for relative mode seemed to
unnecessarily limit the usable area to the middle of the window, in a
2x2 pixel region. This has the adverse side effect of moving the
operating system cursor to that location, even if it is in a valid
location in the window.
While in most scenarios this is handled correctly (by storing the
original position of the cursor in the window and restoring when leaving
relative mode), there are edge cases where this clip operation can cause
WM_MOUSEMOVE to fire at a point in time where it counts as a relative
delta from SDL's perspective.
X11_SetDisplayMode currently calls X11_XRRSetCrtcConfig alone. This results
in the monitor's viewport getting changed, but the underlying screen dimensions
stay the same.
The spec indicates that RRSetCrtcConfig only changes the crtc mode and has no effect
on the screen dimensions, only mentioning that the new crtc must fit entirely within the
screen size. For the size to change, RRSetScreenSize also needs to be called.
This affects Metro Exodus on Linux, when changing the resolution in the in-game settings
Metro gets stuck in a loop waiting for the size of its vulkan surface to change. Because
XRRSetScreenSize is not called the screen size is never changed, the vulkan surface dimensions
do not change, and Metro hangs forever watching for a surface size update that will
never come.
This change disables the CRTC, calls XRRSetScreenSize, and then updates the
CRTC configuration. This fixes changing the resolution from the Metro settings.
Tested with:
Metro Exodus, Portal 2
To enter Bluetooth pairing mode hold B and Action (button with circle) buttons for 3 seconds.
It works via usual HIDAPI if special filter driver is not installed:
https://www.amazon.com/gp/help/customer/display.html?nodeId=GZCT4CTFHXLHEB9T
With that driver installed it mimics Xbox One controller and works via XInput under Windows.
Under DInput this controller is not usable at all.
It is called from WGI before the normal joystick detection has been run, so it needs to actually enumerate currently connected devices.
We can skip the logic checking for other drivers also supporting this device, because that logic is duplicated from the call site.
Not only is it more efficient to batch process pending events, it is
necessary for correctness with the Win32 backend. WIN_PumpEvents() runs
periodic updates of the cursor clip region and disambiguation of
left and right shift keys in addition to standard event processing.
SDL_GetBasePath grows its path buffer for long paths, but GetModuleFileNameExW always truncates and succeeds,
so `len` was always equal to (buflen - 1) which is 127. This is easily fixed by checking for (buflen - 1) instead of buflen.
For paths longer than MAX_PATH, this problem sometimes got hidden by Windows path shortening ("C:\PROGRA~1\" etc.).
Tested on Windows 10 x64 19041 and 10586.
SDL_JoystickSetVirtualAxisInner() and SDL_JoystickSetVirtualHatInner()
did not properly sanitize the 'axis' and 'hat' parameters.
Signed-off-by: Paul Cercueil <paul@crapouillou.net>
Based on a patch by Jochen Schäfer <josch1710@live.de> :
The problem is, that in the initialization code uses the same structure for
desktop_mode and current_mode. See SDL_os2video.c:OS2_VideoInit():
stSDLDisplay.desktop_mode = stSDLDisplayMode;
stSDLDisplay.current_mode = stSDLDisplayMode;
...
stSDLDisplayMode.driverdata = pDisplayData;
Then, if you call GetDisplayModes, current_mode will added to the modes
list, with the same driverdata pointer to desktop_mode.
SDL_AddDisplayMode( display, &display->current_mode );
When VideoQuit gets called, first the modes list gets freed including the
driverdata, the desktop_mode gets freed. See SDL_video.c:SDL_VideoQuit():
for (j = display->num_display_modes; j--;) {
SDL_free(display->display_modes[j].driverdata);
display->display_modes[j].driverdata = NULL;
}
SDL_free(display->display_modes);
display->display_modes = NULL;
SDL_free(display->desktop_mode.driverdata);
display->desktop_mode.driverdata = NULL;
So, the display_modes[j].driverdata gets freed, but desktop_mode->driverdata
points to the same memory, but is not NULL'ed. When desktop_mode->driverdata
gets freed the memory is already freed, and libcx crashes the application on
SDL_Quit.
Based on a patch by Jochen Schäfer <josch1710@live.de> :
On a T420 pressing the ACPI button for volume control, big scancodes
were emitted. This was causing an overflow, because missing guards.
- Do not call IDirectInputDevice8_QueryInterface(device, &IID_IDirectInputDevice8,...) on DIRECTINPUTDEVICE8 device
- Get joystick VendorID and ProductID via IDirectInputDevice8_GetProperty(.., DIPROP_VIDPID, ..) call instead of messing with DIDEVICEINSTANCE.guidProduct
- Normalize HID device interface path to upper case for stable operation of XInput check
- Remove useless RawInput calls in SDL_IsXInputDevice() - just check for "IG_" string in HID device interface path that we already have
There shouldn't be any observable behavior changes.
We can be in a situation where we receive a win32 hook callback on the same
thread that is currently waiting. In that case, we do still need to trigger
a wakeup when an event is pushed because the hook itself won't necessarily
do that (depending on what we return from the hook).
When possible use native os functions to make a blocking call waiting for
an incoming event. Previous behavior was to continuously poll the event
queue with a small delay between each poll.
The blocking call uses a new optional video driver event,
WaitEventTimeout, if available. It is called only if an window
already shown is available. If present the window is designated
using the variable wakeup_window to receive a wakeup event if
needed.
The WaitEventTimeout function accept a timeout parameter. If
positive the call will wait for an event or return if the timeout
expired without any event. If the timeout is zero it will
implement a polling behavior. If the timeout is negative the
function will block indefinetely waiting for an event.
To let the main thread sees events sent form a different thread
a "wake-up" signal is sent to the main thread if the main thread
is in a blocking state. The wake-up event is sent to the designated
wakeup_window if present.
The wake-up event is sent only if the PushEvent call is coming
from a different thread. Before sending the wake-up event
the ID of the thread making the blocking call is saved using the
variable blocking_thread_id and it is compared to the current
thread's id to decide if the wake-up event should be sent.
Two new optional video device methods are introduced:
WaitEventTimeout
SendWakeupEvent
in addition the mutex
wakeup_lock
which is defined and initialized but only for the drivers supporting the
methods above.
If the methods are not present the system behaves as previously
performing a periodic polling of the events queue.
The blocking call is disabled if a joystick or sensor is detected
and falls back to previous behavior.
This add controller mappings for the Atari vcs (modern) controller as
well as the classic controller, for both bluetooth and USB connectivity.
Signed-off-by: Sjoerd Simons <sjoerd@collabora.com>
At least on bluetooth the guid user the version reported by the
bluetooth device. Which for Atari vcs controllers is the firmware
version. However the mapping will stay the same regardless of firmware
version, so ignore the version entirely to avoid needing a new mapping
entry for each firmware version.
Signed-off-by: Sjoerd Simons <sjoerd@collabora.com>
this variable was added in commit 2067a7db8e and
ultimately tracks if this is a surface's first present. checking if the current
bo is NULL provides the same functionality and cuts down on a redundant piece
of state potentially getting out of sync in the future
SetDisplayMode needs to recreate the EGL surfaces, which then need to be
bound along with the correct context in each rendering thread
commit 3a1d7d9c9a removed this behavior which
has broken using SetDisplayMode when rendering with multiple contexts
the commit message was rather vague, but if the surfaces do need to be
created immediately, this process probably needs to be split such that
surface is created immediately, but the binding is deferred
and remove duplicate SDL_WINDOWEVENT_RESIZED event
commit 2067a7db8e made SDL_SetWindowSize and
SDL_SetWindowFullscreen modify the display mode previously set by a call to
SDL_SetWindowDisplayMode
as far as I understand the SDL API, calling SDL_SetWindowDisplayMode followed
by calling SDL_SetWindowFullscreen(..., SDL_WINDOW_FULLSCREEN) is the correct
way to mode set / switch to fullscreen
this change restores that functionaliy when switching to SDL_WINDOW_FULLSCREEN,
but other cases are still modifying the display mode set by the user. rather
than modifying the display mode set by the user, it seems this logic inside of
KMSDRM_ReconfigureWindow should be pushed further down into KMSDRM_CreateSurfaces
(as it was originally) to only modify the final mode that's set (based on the
fullscreen flags), but not override the mode requested by the user
commit 2067a7db8e introduced new surface_w and surface_h
variables which were passed to gbm_surface_create rather than the dimensions from the
drmModeModeInfo structure. commit 5105ecf8b1 further
refactored this code and no longer synchronized these variables inside
KMSDRM_SetDisplayMode, breaking it
this change removes the variables since they're seemingly redundant to begin with
When Xbox One/Series Controllers are connected via USB on Windows they all are using `XBOXGIP` driver and produce a special ProductID `0x02FF` (GIP software PID) for any connected controller.
On the other hand `Xbox 360 Wireless Controller Reciever` (PID 0x0719) is using `XUSB` driver and produces special ProductID `0x02A1` (XUSB software PID) for each connected Xbox 360 Wireless Controller.
Also fixed Xbox One Series X Controller comment.