dawn-cmake/src/type_determiner.cc

1285 lines
44 KiB
C++
Raw Normal View History

2020-03-02 20:47:43 +00:00
// Copyright 2020 The Tint Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "src/type_determiner.h"
#include <memory>
#include <vector>
#include "src/ast/array_accessor_expression.h"
#include "src/ast/assignment_statement.h"
#include "src/ast/binary_expression.h"
#include "src/ast/bitcast_expression.h"
#include "src/ast/block_statement.h"
#include "src/ast/break_statement.h"
#include "src/ast/call_expression.h"
#include "src/ast/call_statement.h"
#include "src/ast/case_statement.h"
#include "src/ast/continue_statement.h"
#include "src/ast/discard_statement.h"
#include "src/ast/else_statement.h"
#include "src/ast/fallthrough_statement.h"
#include "src/ast/identifier_expression.h"
#include "src/ast/if_statement.h"
#include "src/ast/intrinsic.h"
#include "src/ast/loop_statement.h"
#include "src/ast/member_accessor_expression.h"
#include "src/ast/return_statement.h"
#include "src/ast/scalar_constructor_expression.h"
#include "src/ast/switch_statement.h"
#include "src/ast/type_constructor_expression.h"
#include "src/ast/unary_op_expression.h"
#include "src/ast/variable_decl_statement.h"
#include "src/type/array_type.h"
#include "src/type/bool_type.h"
#include "src/type/depth_texture_type.h"
#include "src/type/f32_type.h"
#include "src/type/i32_type.h"
#include "src/type/matrix_type.h"
#include "src/type/multisampled_texture_type.h"
#include "src/type/pointer_type.h"
#include "src/type/sampled_texture_type.h"
#include "src/type/storage_texture_type.h"
#include "src/type/struct_type.h"
#include "src/type/texture_type.h"
#include "src/type/u32_type.h"
#include "src/type/vector_type.h"
#include "src/type/void_type.h"
2020-03-02 20:47:43 +00:00
namespace tint {
TypeDeterminer::TypeDeterminer(Program* program) : program_(program) {}
2020-03-02 20:47:43 +00:00
TypeDeterminer::~TypeDeterminer() = default;
diag::List TypeDeterminer::Run(Program* program) {
TypeDeterminer td(program);
if (!td.Determine()) {
diag::Diagnostic err;
err.severity = diag::Severity::Error;
err.message = td.error();
return {err};
}
return {};
}
void TypeDeterminer::set_error(const Source& src, const std::string& msg) {
error_ = "";
if (src.range.begin.line > 0) {
error_ += std::to_string(src.range.begin.line) + ":" +
std::to_string(src.range.begin.column) + ": ";
}
error_ += msg;
}
void TypeDeterminer::set_referenced_from_function_if_needed(ast::Variable* var,
bool local) {
if (current_function_ == nullptr) {
return;
}
if (var->storage_class() == ast::StorageClass::kNone ||
var->storage_class() == ast::StorageClass::kFunction) {
return;
}
current_function_->add_referenced_module_variable(var);
if (local) {
current_function_->add_local_referenced_module_variable(var);
}
}
bool TypeDeterminer::Determine() {
std::vector<type::StorageTexture*> storage_textures;
for (auto& it : program_->types()) {
if (auto* storage =
it.second->UnwrapIfNeeded()->As<type::StorageTexture>()) {
storage_textures.emplace_back(storage);
}
}
for (auto* storage : storage_textures) {
if (!DetermineStorageTextureSubtype(storage)) {
set_error(Source{}, "unable to determine storage texture subtype for: " +
storage->type_name());
return false;
}
}
for (auto* var : program_->AST().GlobalVariables()) {
variable_stack_.set_global(var->symbol(), var);
if (var->has_constructor()) {
if (!DetermineResultType(var->constructor())) {
return false;
}
}
}
if (!DetermineFunctions(program_->Functions())) {
return false;
}
// Walk over the caller to callee information and update functions with which
// entry points call those functions.
for (auto* func : program_->Functions()) {
if (!func->IsEntryPoint()) {
continue;
}
for (const auto& callee : caller_to_callee_[func->symbol()]) {
set_entry_points(callee, func->symbol());
}
}
return true;
}
void TypeDeterminer::set_entry_points(const Symbol& fn_sym, Symbol ep_sym) {
symbol_to_function_[fn_sym]->add_ancestor_entry_point(ep_sym);
for (const auto& callee : caller_to_callee_[fn_sym]) {
set_entry_points(callee, ep_sym);
}
}
bool TypeDeterminer::DetermineFunctions(const ast::FunctionList& funcs) {
for (auto* func : funcs) {
if (!DetermineFunction(func)) {
return false;
}
}
return true;
}
bool TypeDeterminer::DetermineFunction(ast::Function* func) {
symbol_to_function_[func->symbol()] = func;
current_function_ = func;
variable_stack_.push_scope();
for (auto* param : func->params()) {
variable_stack_.set(param->symbol(), param);
}
if (!DetermineStatements(func->body())) {
return false;
}
variable_stack_.pop_scope();
current_function_ = nullptr;
2020-03-02 20:47:43 +00:00
return true;
}
bool TypeDeterminer::DetermineStatements(const ast::BlockStatement* stmts) {
for (auto* stmt : *stmts) {
if (!DetermineVariableStorageClass(stmt)) {
return false;
}
if (!DetermineResultType(stmt)) {
return false;
}
}
return true;
}
bool TypeDeterminer::DetermineVariableStorageClass(ast::Statement* stmt) {
auto* var_decl = stmt->As<ast::VariableDeclStatement>();
if (var_decl == nullptr) {
return true;
}
auto* var = var_decl->variable();
// Nothing to do for const
if (var->is_const()) {
return true;
}
if (var->storage_class() == ast::StorageClass::kFunction) {
return true;
}
if (var->storage_class() != ast::StorageClass::kNone) {
set_error(stmt->source(),
"function variable has a non-function storage class");
return false;
}
var->set_storage_class(ast::StorageClass::kFunction);
return true;
}
bool TypeDeterminer::DetermineResultType(ast::Statement* stmt) {
if (auto* a = stmt->As<ast::AssignmentStatement>()) {
return DetermineResultType(a->lhs()) && DetermineResultType(a->rhs());
}
if (auto* b = stmt->As<ast::BlockStatement>()) {
return DetermineStatements(b);
}
if (stmt->Is<ast::BreakStatement>()) {
return true;
}
if (auto* c = stmt->As<ast::CallStatement>()) {
return DetermineResultType(c->expr());
}
if (auto* c = stmt->As<ast::CaseStatement>()) {
return DetermineStatements(c->body());
}
if (stmt->Is<ast::ContinueStatement>()) {
return true;
}
if (stmt->Is<ast::DiscardStatement>()) {
return true;
}
if (auto* e = stmt->As<ast::ElseStatement>()) {
return DetermineResultType(e->condition()) &&
DetermineStatements(e->body());
}
if (stmt->Is<ast::FallthroughStatement>()) {
return true;
}
if (auto* i = stmt->As<ast::IfStatement>()) {
if (!DetermineResultType(i->condition()) ||
!DetermineStatements(i->body())) {
return false;
}
for (auto* else_stmt : i->else_statements()) {
if (!DetermineResultType(else_stmt)) {
return false;
}
}
return true;
}
if (auto* l = stmt->As<ast::LoopStatement>()) {
return DetermineStatements(l->body()) &&
DetermineStatements(l->continuing());
}
if (auto* r = stmt->As<ast::ReturnStatement>()) {
return DetermineResultType(r->value());
}
if (auto* s = stmt->As<ast::SwitchStatement>()) {
if (!DetermineResultType(s->condition())) {
return false;
}
for (auto* case_stmt : s->body()) {
if (!DetermineResultType(case_stmt)) {
return false;
}
}
return true;
}
if (auto* v = stmt->As<ast::VariableDeclStatement>()) {
variable_stack_.set(v->variable()->symbol(), v->variable());
return DetermineResultType(v->variable()->constructor());
}
set_error(stmt->source(),
"unknown statement type for type determination: " + stmt->str());
return false;
}
bool TypeDeterminer::DetermineResultType(const ast::ExpressionList& list) {
for (auto* expr : list) {
if (!DetermineResultType(expr)) {
return false;
}
}
return true;
}
bool TypeDeterminer::DetermineResultType(ast::Expression* expr) {
// This is blindly called above, so in some cases the expression won't exist.
if (!expr) {
return true;
}
if (auto* a = expr->As<ast::ArrayAccessorExpression>()) {
return DetermineArrayAccessor(a);
}
if (auto* b = expr->As<ast::BinaryExpression>()) {
return DetermineBinary(b);
}
if (auto* b = expr->As<ast::BitcastExpression>()) {
return DetermineBitcast(b);
}
if (auto* c = expr->As<ast::CallExpression>()) {
return DetermineCall(c);
}
if (auto* c = expr->As<ast::ConstructorExpression>()) {
return DetermineConstructor(c);
}
if (auto* i = expr->As<ast::IdentifierExpression>()) {
return DetermineIdentifier(i);
}
if (auto* m = expr->As<ast::MemberAccessorExpression>()) {
return DetermineMemberAccessor(m);
}
if (auto* u = expr->As<ast::UnaryOpExpression>()) {
return DetermineUnaryOp(u);
}
set_error(expr->source(), "unknown expression for type determination");
return false;
}
bool TypeDeterminer::DetermineArrayAccessor(
ast::ArrayAccessorExpression* expr) {
if (!DetermineResultType(expr->array())) {
return false;
}
if (!DetermineResultType(expr->idx_expr())) {
return false;
}
auto* res = expr->array()->result_type();
auto* parent_type = res->UnwrapAll();
type::Type* ret = nullptr;
if (auto* arr = parent_type->As<type::Array>()) {
ret = arr->type();
} else if (auto* vec = parent_type->As<type::Vector>()) {
ret = vec->type();
} else if (auto* mat = parent_type->As<type::Matrix>()) {
ret = program_->create<type::Vector>(mat->type(), mat->rows());
} else {
set_error(expr->source(), "invalid parent type (" +
parent_type->type_name() +
") in array accessor");
return false;
}
// If we're extracting from a pointer, we return a pointer.
if (auto* ptr = res->As<type::Pointer>()) {
ret = program_->create<type::Pointer>(ret, ptr->storage_class());
} else if (auto* arr = parent_type->As<type::Array>()) {
if (!arr->type()->is_scalar()) {
// If we extract a non-scalar from an array then we also get a pointer. We
// will generate a Function storage class variable to store this
// into.
ret = program_->create<type::Pointer>(ret, ast::StorageClass::kFunction);
}
}
expr->set_result_type(ret);
return true;
}
bool TypeDeterminer::DetermineBitcast(ast::BitcastExpression* expr) {
if (!DetermineResultType(expr->expr())) {
return false;
}
expr->set_result_type(expr->type());
return true;
}
bool TypeDeterminer::DetermineCall(ast::CallExpression* expr) {
if (!DetermineResultType(expr->func())) {
return false;
}
if (!DetermineResultType(expr->params())) {
return false;
}
// The expression has to be an identifier as you can't store function pointers
// but, if it isn't we'll just use the normal result determination to be on
// the safe side.
if (auto* ident = expr->func()->As<ast::IdentifierExpression>()) {
if (ident->IsIntrinsic()) {
if (!DetermineIntrinsic(ident, expr)) {
return false;
}
} else {
if (current_function_) {
caller_to_callee_[current_function_->symbol()].push_back(
ident->symbol());
auto* callee_func = program_->Functions().Find(ident->symbol());
if (callee_func == nullptr) {
set_error(expr->source(),
"unable to find called function: " +
program_->SymbolToName(ident->symbol()));
return false;
}
// We inherit any referenced variables from the callee.
for (auto* var : callee_func->referenced_module_variables()) {
set_referenced_from_function_if_needed(var, false);
}
}
// An identifier with a single name is a function call, not an import
// lookup which we can handle with the regular identifier lookup.
if (!DetermineResultType(ident)) {
return false;
}
}
} else {
if (!DetermineResultType(expr->func())) {
return false;
}
}
if (!expr->func()->result_type()) {
auto func_sym = expr->func()->As<ast::IdentifierExpression>()->symbol();
set_error(expr->source(),
"v-0005: function must be declared before use: '" +
program_->SymbolToName(func_sym) + "'");
return false;
}
expr->set_result_type(expr->func()->result_type());
return true;
}
namespace {
enum class IntrinsicDataType {
kFloatOrIntScalarOrVector,
kFloatScalarOrVector,
kIntScalarOrVector,
kFloatVector,
kMatrix,
};
struct IntrinsicData {
ast::Intrinsic intrinsic;
uint8_t param_count;
IntrinsicDataType data_type;
uint8_t vector_size;
};
// Note, this isn't all the intrinsics. Some are handled specially before
// we get to the generic code. See the DetermineIntrinsic code below.
constexpr const IntrinsicData kIntrinsicData[] = {
{ast::Intrinsic::kAbs, 1, IntrinsicDataType::kFloatOrIntScalarOrVector, 0},
{ast::Intrinsic::kAcos, 1, IntrinsicDataType::kFloatScalarOrVector, 0},
{ast::Intrinsic::kAsin, 1, IntrinsicDataType::kFloatScalarOrVector, 0},
{ast::Intrinsic::kAtan, 1, IntrinsicDataType::kFloatScalarOrVector, 0},
{ast::Intrinsic::kAtan2, 2, IntrinsicDataType::kFloatScalarOrVector, 0},
{ast::Intrinsic::kCeil, 1, IntrinsicDataType::kFloatScalarOrVector, 0},
{ast::Intrinsic::kClamp, 3, IntrinsicDataType::kFloatOrIntScalarOrVector,
0},
{ast::Intrinsic::kCos, 1, IntrinsicDataType::kFloatScalarOrVector, 0},
{ast::Intrinsic::kCosh, 1, IntrinsicDataType::kFloatScalarOrVector, 0},
{ast::Intrinsic::kCountOneBits, 1, IntrinsicDataType::kIntScalarOrVector,
0},
{ast::Intrinsic::kCross, 2, IntrinsicDataType::kFloatVector, 3},
{ast::Intrinsic::kDeterminant, 1, IntrinsicDataType::kMatrix, 0},
{ast::Intrinsic::kDistance, 2, IntrinsicDataType::kFloatScalarOrVector, 0},
{ast::Intrinsic::kExp, 1, IntrinsicDataType::kFloatScalarOrVector, 0},
{ast::Intrinsic::kExp2, 1, IntrinsicDataType::kFloatScalarOrVector, 0},
{ast::Intrinsic::kFaceForward, 3, IntrinsicDataType::kFloatScalarOrVector,
0},
{ast::Intrinsic::kFloor, 1, IntrinsicDataType::kFloatScalarOrVector, 0},
{ast::Intrinsic::kFma, 3, IntrinsicDataType::kFloatScalarOrVector, 0},
{ast::Intrinsic::kFract, 1, IntrinsicDataType::kFloatScalarOrVector, 0},
{ast::Intrinsic::kFrexp, 2, IntrinsicDataType::kFloatScalarOrVector, 0},
{ast::Intrinsic::kInverseSqrt, 1, IntrinsicDataType::kFloatScalarOrVector,
0},
{ast::Intrinsic::kLdexp, 2, IntrinsicDataType::kFloatScalarOrVector, 0},
{ast::Intrinsic::kLength, 1, IntrinsicDataType::kFloatScalarOrVector, 0},
{ast::Intrinsic::kLog, 1, IntrinsicDataType::kFloatScalarOrVector, 0},
{ast::Intrinsic::kLog2, 1, IntrinsicDataType::kFloatScalarOrVector, 0},
{ast::Intrinsic::kMax, 2, IntrinsicDataType::kFloatOrIntScalarOrVector, 0},
{ast::Intrinsic::kMin, 2, IntrinsicDataType::kFloatOrIntScalarOrVector, 0},
{ast::Intrinsic::kMix, 3, IntrinsicDataType::kFloatScalarOrVector, 0},
{ast::Intrinsic::kModf, 2, IntrinsicDataType::kFloatScalarOrVector, 0},
{ast::Intrinsic::kNormalize, 1, IntrinsicDataType::kFloatScalarOrVector, 0},
{ast::Intrinsic::kPow, 2, IntrinsicDataType::kFloatScalarOrVector, 0},
{ast::Intrinsic::kReflect, 2, IntrinsicDataType::kFloatScalarOrVector, 0},
{ast::Intrinsic::kReverseBits, 1, IntrinsicDataType::kIntScalarOrVector, 0},
{ast::Intrinsic::kRound, 1, IntrinsicDataType::kFloatScalarOrVector, 0},
{ast::Intrinsic::kSign, 1, IntrinsicDataType::kFloatScalarOrVector, 0},
{ast::Intrinsic::kSin, 1, IntrinsicDataType::kFloatScalarOrVector, 0},
{ast::Intrinsic::kSinh, 1, IntrinsicDataType::kFloatScalarOrVector, 0},
{ast::Intrinsic::kSmoothStep, 3, IntrinsicDataType::kFloatScalarOrVector,
0},
{ast::Intrinsic::kSqrt, 1, IntrinsicDataType::kFloatScalarOrVector, 0},
{ast::Intrinsic::kStep, 2, IntrinsicDataType::kFloatScalarOrVector, 0},
{ast::Intrinsic::kTan, 1, IntrinsicDataType::kFloatScalarOrVector, 0},
{ast::Intrinsic::kTanh, 1, IntrinsicDataType::kFloatScalarOrVector, 0},
{ast::Intrinsic::kTrunc, 1, IntrinsicDataType::kFloatScalarOrVector, 0},
};
constexpr const uint32_t kIntrinsicDataCount =
sizeof(kIntrinsicData) / sizeof(IntrinsicData);
} // namespace
bool TypeDeterminer::DetermineIntrinsic(ast::IdentifierExpression* ident,
ast::CallExpression* expr) {
if (ast::intrinsic::IsDerivative(ident->intrinsic())) {
if (expr->params().size() != 1) {
set_error(expr->source(), "incorrect number of parameters for " +
program_->SymbolToName(ident->symbol()));
return false;
}
// The result type must be the same as the type of the parameter.
auto* param_type = expr->params()[0]->result_type()->UnwrapPtrIfNeeded();
expr->func()->set_result_type(param_type);
return true;
}
if (ident->intrinsic() == ast::Intrinsic::kAny ||
ident->intrinsic() == ast::Intrinsic::kAll) {
expr->func()->set_result_type(program_->create<type::Bool>());
return true;
}
if (ident->intrinsic() == ast::Intrinsic::kArrayLength) {
expr->func()->set_result_type(program_->create<type::U32>());
return true;
}
if (ast::intrinsic::IsFloatClassificationIntrinsic(ident->intrinsic())) {
if (expr->params().size() != 1) {
set_error(expr->source(), "incorrect number of parameters for " +
program_->SymbolToName(ident->symbol()));
return false;
}
auto* bool_type = program_->create<type::Bool>();
auto* param_type = expr->params()[0]->result_type()->UnwrapPtrIfNeeded();
if (auto* vec = param_type->As<type::Vector>()) {
expr->func()->set_result_type(
program_->create<type::Vector>(bool_type, vec->size()));
} else {
expr->func()->set_result_type(bool_type);
}
return true;
}
if (ast::intrinsic::IsTextureIntrinsic(ident->intrinsic())) {
ast::intrinsic::TextureSignature::Parameters param;
auto* texture_param = expr->params()[0];
if (!texture_param->result_type()->UnwrapAll()->Is<type::Texture>()) {
set_error(expr->source(), "invalid first argument for " +
program_->SymbolToName(ident->symbol()));
return false;
}
type::Texture* texture =
texture_param->result_type()->UnwrapAll()->As<type::Texture>();
bool is_array = type::IsTextureArray(texture->dim());
bool is_multisampled = texture->Is<type::MultisampledTexture>();
switch (ident->intrinsic()) {
case ast::Intrinsic::kTextureDimensions:
param.idx.texture = param.count++;
if (expr->params().size() > param.count) {
param.idx.level = param.count++;
}
break;
case ast::Intrinsic::kTextureNumLayers:
case ast::Intrinsic::kTextureNumLevels:
case ast::Intrinsic::kTextureNumSamples:
param.idx.texture = param.count++;
break;
case ast::Intrinsic::kTextureLoad:
param.idx.texture = param.count++;
param.idx.coords = param.count++;
if (is_array) {
param.idx.array_index = param.count++;
}
if (expr->params().size() > param.count) {
if (is_multisampled) {
param.idx.sample_index = param.count++;
} else {
param.idx.level = param.count++;
}
}
break;
case ast::Intrinsic::kTextureSample:
param.idx.texture = param.count++;
param.idx.sampler = param.count++;
param.idx.coords = param.count++;
if (is_array) {
param.idx.array_index = param.count++;
}
if (expr->params().size() > param.count) {
param.idx.offset = param.count++;
}
break;
case ast::Intrinsic::kTextureSampleBias:
param.idx.texture = param.count++;
param.idx.sampler = param.count++;
param.idx.coords = param.count++;
if (is_array) {
param.idx.array_index = param.count++;
}
param.idx.bias = param.count++;
if (expr->params().size() > param.count) {
param.idx.offset = param.count++;
}
break;
case ast::Intrinsic::kTextureSampleLevel:
param.idx.texture = param.count++;
param.idx.sampler = param.count++;
param.idx.coords = param.count++;
if (is_array) {
param.idx.array_index = param.count++;
}
param.idx.level = param.count++;
if (expr->params().size() > param.count) {
param.idx.offset = param.count++;
}
break;
case ast::Intrinsic::kTextureSampleCompare:
param.idx.texture = param.count++;
param.idx.sampler = param.count++;
param.idx.coords = param.count++;
if (is_array) {
param.idx.array_index = param.count++;
}
param.idx.depth_ref = param.count++;
if (expr->params().size() > param.count) {
param.idx.offset = param.count++;
}
break;
case ast::Intrinsic::kTextureSampleGrad:
param.idx.texture = param.count++;
param.idx.sampler = param.count++;
param.idx.coords = param.count++;
if (is_array) {
param.idx.array_index = param.count++;
}
param.idx.ddx = param.count++;
param.idx.ddy = param.count++;
if (expr->params().size() > param.count) {
param.idx.offset = param.count++;
}
break;
case ast::Intrinsic::kTextureStore:
param.idx.texture = param.count++;
param.idx.coords = param.count++;
if (is_array) {
param.idx.array_index = param.count++;
}
param.idx.value = param.count++;
break;
default:
set_error(expr->source(),
"Internal compiler error: Unreachable intrinsic " +
std::to_string(static_cast<int>(ident->intrinsic())));
return false;
}
if (expr->params().size() != param.count) {
set_error(expr->source(),
"incorrect number of parameters for " +
program_->SymbolToName(ident->symbol()) + ", got " +
std::to_string(expr->params().size()) + " and expected " +
std::to_string(param.count));
return false;
}
ident->set_intrinsic_signature(
std::make_unique<ast::intrinsic::TextureSignature>(param));
// Set the function return type
type::Type* return_type = nullptr;
switch (ident->intrinsic()) {
case ast::Intrinsic::kTextureDimensions: {
auto* i32 = program_->create<type::I32>();
switch (texture->dim()) {
default:
set_error(expr->source(), "invalid texture dimensions");
break;
case type::TextureDimension::k1d:
case type::TextureDimension::k1dArray:
return_type = i32;
break;
case type::TextureDimension::k2d:
case type::TextureDimension::k2dArray:
return_type = program_->create<type::Vector>(i32, 2);
break;
case type::TextureDimension::k3d:
case type::TextureDimension::kCube:
case type::TextureDimension::kCubeArray:
return_type = program_->create<type::Vector>(i32, 3);
break;
}
break;
}
case ast::Intrinsic::kTextureNumLayers:
case ast::Intrinsic::kTextureNumLevels:
case ast::Intrinsic::kTextureNumSamples:
return_type = program_->create<type::I32>();
break;
case ast::Intrinsic::kTextureStore:
return_type = program_->create<type::Void>();
break;
default: {
if (texture->Is<type::DepthTexture>()) {
return_type = program_->create<type::F32>();
} else {
type::Type* type = nullptr;
if (auto* storage = texture->As<type::StorageTexture>()) {
type = storage->type();
} else if (auto* sampled = texture->As<type::SampledTexture>()) {
type = sampled->type();
} else if (auto* msampled =
texture->As<type::MultisampledTexture>()) {
type = msampled->type();
} else {
set_error(expr->source(),
"unknown texture type for texture sampling");
return false;
}
return_type = program_->create<type::Vector>(type, 4);
}
}
}
expr->func()->set_result_type(return_type);
return true;
}
if (ident->intrinsic() == ast::Intrinsic::kDot) {
expr->func()->set_result_type(program_->create<type::F32>());
return true;
}
if (ident->intrinsic() == ast::Intrinsic::kSelect) {
if (expr->params().size() != 3) {
set_error(expr->source(), "incorrect number of parameters for " +
program_->SymbolToName(ident->symbol()) +
" expected 3 got " +
std::to_string(expr->params().size()));
return false;
}
// The result type must be the same as the type of the parameter.
auto* param_type = expr->params()[0]->result_type()->UnwrapPtrIfNeeded();
expr->func()->set_result_type(param_type);
return true;
}
const IntrinsicData* data = nullptr;
for (uint32_t i = 0; i < kIntrinsicDataCount; ++i) {
if (ident->intrinsic() == kIntrinsicData[i].intrinsic) {
data = &kIntrinsicData[i];
break;
}
}
if (data == nullptr) {
error_ =
"unable to find intrinsic " + program_->SymbolToName(ident->symbol());
return false;
}
if (expr->params().size() != data->param_count) {
set_error(expr->source(), "incorrect number of parameters for " +
program_->SymbolToName(ident->symbol()) +
". Expected " +
std::to_string(data->param_count) + " got " +
std::to_string(expr->params().size()));
return false;
}
std::vector<type::Type*> result_types;
for (uint32_t i = 0; i < data->param_count; ++i) {
result_types.push_back(
expr->params()[i]->result_type()->UnwrapPtrIfNeeded());
switch (data->data_type) {
case IntrinsicDataType::kFloatOrIntScalarOrVector:
if (!result_types.back()->is_float_scalar_or_vector() &&
!result_types.back()->is_integer_scalar_or_vector()) {
set_error(expr->source(),
"incorrect type for " +
program_->SymbolToName(ident->symbol()) + ". " +
"Requires float or int, scalar or vector values");
return false;
}
break;
case IntrinsicDataType::kFloatScalarOrVector:
if (!result_types.back()->is_float_scalar_or_vector()) {
set_error(expr->source(),
"incorrect type for " +
program_->SymbolToName(ident->symbol()) + ". " +
"Requires float scalar or float vector values");
return false;
}
break;
case IntrinsicDataType::kIntScalarOrVector:
if (!result_types.back()->is_integer_scalar_or_vector()) {
set_error(expr->source(),
"incorrect type for " +
program_->SymbolToName(ident->symbol()) + ". " +
"Requires integer scalar or integer vector values");
return false;
}
break;
case IntrinsicDataType::kFloatVector:
if (!result_types.back()->is_float_vector()) {
set_error(expr->source(),
"incorrect type for " +
program_->SymbolToName(ident->symbol()) + ". " +
"Requires float vector values");
return false;
}
if (data->vector_size > 0 &&
result_types.back()->As<type::Vector>()->size() !=
data->vector_size) {
set_error(expr->source(),
"incorrect vector size for " +
program_->SymbolToName(ident->symbol()) + ". " +
"Requires " + std::to_string(data->vector_size) +
" elements");
return false;
}
break;
case IntrinsicDataType::kMatrix:
if (!result_types.back()->Is<type::Matrix>()) {
set_error(expr->source(),
"incorrect type for " +
program_->SymbolToName(ident->symbol()) +
". Requires matrix value");
return false;
}
break;
}
}
// Verify all the parameter types match
for (size_t i = 1; i < data->param_count; ++i) {
if (result_types[0] != result_types[i]) {
set_error(expr->source(), "mismatched parameter types for " +
program_->SymbolToName(ident->symbol()));
return false;
}
}
// Handle functions which aways return the type, even if a vector is
// provided.
if (ident->intrinsic() == ast::Intrinsic::kLength ||
ident->intrinsic() == ast::Intrinsic::kDistance) {
expr->func()->set_result_type(
result_types[0]->is_float_scalar()
? result_types[0]
: result_types[0]->As<type::Vector>()->type());
return true;
}
// The determinant returns the component type of the columns
if (ident->intrinsic() == ast::Intrinsic::kDeterminant) {
expr->func()->set_result_type(result_types[0]->As<type::Matrix>()->type());
return true;
}
expr->func()->set_result_type(result_types[0]);
return true;
}
bool TypeDeterminer::DetermineConstructor(ast::ConstructorExpression* expr) {
if (auto* ty = expr->As<ast::TypeConstructorExpression>()) {
for (auto* value : ty->values()) {
if (!DetermineResultType(value)) {
return false;
}
}
expr->set_result_type(ty->type());
} else {
expr->set_result_type(
expr->As<ast::ScalarConstructorExpression>()->literal()->type());
}
return true;
}
bool TypeDeterminer::DetermineIdentifier(ast::IdentifierExpression* expr) {
auto symbol = expr->symbol();
ast::Variable* var;
if (variable_stack_.get(symbol, &var)) {
// A constant is the type, but a variable is always a pointer so synthesize
// the pointer around the variable type.
if (var->is_const()) {
expr->set_result_type(var->type());
} else if (var->type()->Is<type::Pointer>()) {
expr->set_result_type(var->type());
} else {
expr->set_result_type(
program_->create<type::Pointer>(var->type(), var->storage_class()));
}
set_referenced_from_function_if_needed(var, true);
return true;
}
auto iter = symbol_to_function_.find(symbol);
if (iter != symbol_to_function_.end()) {
expr->set_result_type(iter->second->return_type());
return true;
}
if (!SetIntrinsicIfNeeded(expr)) {
set_error(expr->source(),
"v-0006: identifier must be declared before use: " +
program_->SymbolToName(symbol));
return false;
}
return true;
}
bool TypeDeterminer::SetIntrinsicIfNeeded(ast::IdentifierExpression* ident) {
auto name = program_->SymbolToName(ident->symbol());
if (name == "abs") {
ident->set_intrinsic(ast::Intrinsic::kAbs);
} else if (name == "acos") {
ident->set_intrinsic(ast::Intrinsic::kAcos);
} else if (name == "all") {
ident->set_intrinsic(ast::Intrinsic::kAll);
} else if (name == "any") {
ident->set_intrinsic(ast::Intrinsic::kAny);
} else if (name == "arrayLength") {
ident->set_intrinsic(ast::Intrinsic::kArrayLength);
} else if (name == "asin") {
ident->set_intrinsic(ast::Intrinsic::kAsin);
} else if (name == "atan") {
ident->set_intrinsic(ast::Intrinsic::kAtan);
} else if (name == "atan2") {
ident->set_intrinsic(ast::Intrinsic::kAtan2);
} else if (name == "ceil") {
ident->set_intrinsic(ast::Intrinsic::kCeil);
} else if (name == "clamp") {
ident->set_intrinsic(ast::Intrinsic::kClamp);
} else if (name == "cos") {
ident->set_intrinsic(ast::Intrinsic::kCos);
} else if (name == "cosh") {
ident->set_intrinsic(ast::Intrinsic::kCosh);
} else if (name == "countOneBits") {
ident->set_intrinsic(ast::Intrinsic::kCountOneBits);
} else if (name == "cross") {
ident->set_intrinsic(ast::Intrinsic::kCross);
} else if (name == "determinant") {
ident->set_intrinsic(ast::Intrinsic::kDeterminant);
} else if (name == "distance") {
ident->set_intrinsic(ast::Intrinsic::kDistance);
} else if (name == "dot") {
ident->set_intrinsic(ast::Intrinsic::kDot);
} else if (name == "dpdx") {
ident->set_intrinsic(ast::Intrinsic::kDpdx);
} else if (name == "dpdxCoarse") {
ident->set_intrinsic(ast::Intrinsic::kDpdxCoarse);
} else if (name == "dpdxFine") {
ident->set_intrinsic(ast::Intrinsic::kDpdxFine);
} else if (name == "dpdy") {
ident->set_intrinsic(ast::Intrinsic::kDpdy);
} else if (name == "dpdyCoarse") {
ident->set_intrinsic(ast::Intrinsic::kDpdyCoarse);
} else if (name == "dpdyFine") {
ident->set_intrinsic(ast::Intrinsic::kDpdyFine);
} else if (name == "exp") {
ident->set_intrinsic(ast::Intrinsic::kExp);
} else if (name == "exp2") {
ident->set_intrinsic(ast::Intrinsic::kExp2);
} else if (name == "faceForward") {
ident->set_intrinsic(ast::Intrinsic::kFaceForward);
} else if (name == "floor") {
ident->set_intrinsic(ast::Intrinsic::kFloor);
} else if (name == "fma") {
ident->set_intrinsic(ast::Intrinsic::kFma);
} else if (name == "fract") {
ident->set_intrinsic(ast::Intrinsic::kFract);
} else if (name == "frexp") {
ident->set_intrinsic(ast::Intrinsic::kFrexp);
} else if (name == "fwidth") {
ident->set_intrinsic(ast::Intrinsic::kFwidth);
} else if (name == "fwidthCoarse") {
ident->set_intrinsic(ast::Intrinsic::kFwidthCoarse);
} else if (name == "fwidthFine") {
ident->set_intrinsic(ast::Intrinsic::kFwidthFine);
} else if (name == "inverseSqrt") {
ident->set_intrinsic(ast::Intrinsic::kInverseSqrt);
} else if (name == "isFinite") {
ident->set_intrinsic(ast::Intrinsic::kIsFinite);
} else if (name == "isInf") {
ident->set_intrinsic(ast::Intrinsic::kIsInf);
} else if (name == "isNan") {
ident->set_intrinsic(ast::Intrinsic::kIsNan);
} else if (name == "isNormal") {
ident->set_intrinsic(ast::Intrinsic::kIsNormal);
} else if (name == "ldexp") {
ident->set_intrinsic(ast::Intrinsic::kLdexp);
} else if (name == "length") {
ident->set_intrinsic(ast::Intrinsic::kLength);
} else if (name == "log") {
ident->set_intrinsic(ast::Intrinsic::kLog);
} else if (name == "log2") {
ident->set_intrinsic(ast::Intrinsic::kLog2);
} else if (name == "max") {
ident->set_intrinsic(ast::Intrinsic::kMax);
} else if (name == "min") {
ident->set_intrinsic(ast::Intrinsic::kMin);
} else if (name == "mix") {
ident->set_intrinsic(ast::Intrinsic::kMix);
} else if (name == "modf") {
ident->set_intrinsic(ast::Intrinsic::kModf);
} else if (name == "normalize") {
ident->set_intrinsic(ast::Intrinsic::kNormalize);
} else if (name == "pow") {
ident->set_intrinsic(ast::Intrinsic::kPow);
} else if (name == "reflect") {
ident->set_intrinsic(ast::Intrinsic::kReflect);
} else if (name == "reverseBits") {
ident->set_intrinsic(ast::Intrinsic::kReverseBits);
} else if (name == "round") {
ident->set_intrinsic(ast::Intrinsic::kRound);
} else if (name == "select") {
ident->set_intrinsic(ast::Intrinsic::kSelect);
} else if (name == "sign") {
ident->set_intrinsic(ast::Intrinsic::kSign);
} else if (name == "sin") {
ident->set_intrinsic(ast::Intrinsic::kSin);
} else if (name == "sinh") {
ident->set_intrinsic(ast::Intrinsic::kSinh);
} else if (name == "smoothStep") {
ident->set_intrinsic(ast::Intrinsic::kSmoothStep);
} else if (name == "sqrt") {
ident->set_intrinsic(ast::Intrinsic::kSqrt);
} else if (name == "step") {
ident->set_intrinsic(ast::Intrinsic::kStep);
} else if (name == "tan") {
ident->set_intrinsic(ast::Intrinsic::kTan);
} else if (name == "tanh") {
ident->set_intrinsic(ast::Intrinsic::kTanh);
} else if (name == "textureDimensions") {
ident->set_intrinsic(ast::Intrinsic::kTextureDimensions);
} else if (name == "textureNumLayers") {
ident->set_intrinsic(ast::Intrinsic::kTextureNumLayers);
} else if (name == "textureNumLevels") {
ident->set_intrinsic(ast::Intrinsic::kTextureNumLevels);
} else if (name == "textureNumSamples") {
ident->set_intrinsic(ast::Intrinsic::kTextureNumSamples);
} else if (name == "textureLoad") {
ident->set_intrinsic(ast::Intrinsic::kTextureLoad);
} else if (name == "textureStore") {
ident->set_intrinsic(ast::Intrinsic::kTextureStore);
} else if (name == "textureSample") {
ident->set_intrinsic(ast::Intrinsic::kTextureSample);
} else if (name == "textureSampleBias") {
ident->set_intrinsic(ast::Intrinsic::kTextureSampleBias);
} else if (name == "textureSampleCompare") {
ident->set_intrinsic(ast::Intrinsic::kTextureSampleCompare);
} else if (name == "textureSampleGrad") {
ident->set_intrinsic(ast::Intrinsic::kTextureSampleGrad);
} else if (name == "textureSampleLevel") {
ident->set_intrinsic(ast::Intrinsic::kTextureSampleLevel);
} else if (name == "trunc") {
ident->set_intrinsic(ast::Intrinsic::kTrunc);
} else {
return false;
}
return true;
}
bool TypeDeterminer::DetermineMemberAccessor(
ast::MemberAccessorExpression* expr) {
if (!DetermineResultType(expr->structure())) {
return false;
}
auto* res = expr->structure()->result_type();
auto* data_type = res->UnwrapPtrIfNeeded()->UnwrapIfNeeded();
type::Type* ret = nullptr;
if (auto* ty = data_type->As<type::Struct>()) {
auto* strct = ty->impl();
auto symbol = expr->member()->symbol();
for (auto* member : strct->members()) {
if (member->symbol() == symbol) {
ret = member->type();
break;
}
}
if (ret == nullptr) {
set_error(
expr->source(),
"struct member " + program_->SymbolToName(symbol) + " not found");
return false;
}
// If we're extracting from a pointer, we return a pointer.
if (auto* ptr = res->As<type::Pointer>()) {
ret = program_->create<type::Pointer>(ret, ptr->storage_class());
}
} else if (auto* vec = data_type->As<type::Vector>()) {
// TODO(dsinclair): Swizzle, record into the identifier experesion
auto size = program_->SymbolToName(expr->member()->symbol()).size();
if (size == 1) {
// A single element swizzle is just the type of the vector.
ret = vec->type();
// If we're extracting from a pointer, we return a pointer.
if (auto* ptr = res->As<type::Pointer>()) {
ret = program_->create<type::Pointer>(ret, ptr->storage_class());
}
} else {
// The vector will have a number of components equal to the length of the
// swizzle. This assumes the validator will check that the swizzle
// is correct.
ret = program_->create<type::Vector>(vec->type(),
static_cast<uint32_t>(size));
}
} else {
set_error(
expr->source(),
"v-0007: invalid use of member accessor on a non-vector/non-struct " +
data_type->type_name());
return false;
}
expr->set_result_type(ret);
return true;
}
bool TypeDeterminer::DetermineBinary(ast::BinaryExpression* expr) {
if (!DetermineResultType(expr->lhs()) || !DetermineResultType(expr->rhs())) {
return false;
}
// Result type matches first parameter type
if (expr->IsAnd() || expr->IsOr() || expr->IsXor() || expr->IsShiftLeft() ||
expr->IsShiftRight() || expr->IsAdd() || expr->IsSubtract() ||
expr->IsDivide() || expr->IsModulo()) {
expr->set_result_type(expr->lhs()->result_type()->UnwrapPtrIfNeeded());
return true;
}
// Result type is a scalar or vector of boolean type
if (expr->IsLogicalAnd() || expr->IsLogicalOr() || expr->IsEqual() ||
expr->IsNotEqual() || expr->IsLessThan() || expr->IsGreaterThan() ||
expr->IsLessThanEqual() || expr->IsGreaterThanEqual()) {
auto* bool_type = program_->create<type::Bool>();
auto* param_type = expr->lhs()->result_type()->UnwrapPtrIfNeeded();
if (auto* vec = param_type->As<type::Vector>()) {
expr->set_result_type(
program_->create<type::Vector>(bool_type, vec->size()));
} else {
expr->set_result_type(bool_type);
}
return true;
}
if (expr->IsMultiply()) {
auto* lhs_type = expr->lhs()->result_type()->UnwrapPtrIfNeeded();
auto* rhs_type = expr->rhs()->result_type()->UnwrapPtrIfNeeded();
// Note, the ordering here matters. The later checks depend on the prior
// checks having been done.
auto* lhs_mat = lhs_type->As<type::Matrix>();
auto* rhs_mat = rhs_type->As<type::Matrix>();
auto* lhs_vec = lhs_type->As<type::Vector>();
auto* rhs_vec = rhs_type->As<type::Vector>();
if (lhs_mat && rhs_mat) {
expr->set_result_type(program_->create<type::Matrix>(
lhs_mat->type(), lhs_mat->rows(), rhs_mat->columns()));
} else if (lhs_mat && rhs_vec) {
expr->set_result_type(
program_->create<type::Vector>(lhs_mat->type(), lhs_mat->rows()));
} else if (lhs_vec && rhs_mat) {
expr->set_result_type(
program_->create<type::Vector>(rhs_mat->type(), rhs_mat->columns()));
} else if (lhs_mat) {
// matrix * scalar
expr->set_result_type(lhs_type);
} else if (rhs_mat) {
// scalar * matrix
expr->set_result_type(rhs_type);
} else if (lhs_vec && rhs_vec) {
expr->set_result_type(lhs_type);
} else if (lhs_vec) {
// Vector * scalar
expr->set_result_type(lhs_type);
} else if (rhs_vec) {
// Scalar * vector
expr->set_result_type(rhs_type);
} else {
// Scalar * Scalar
expr->set_result_type(lhs_type);
}
return true;
}
set_error(expr->source(), "Unknown binary expression");
return false;
}
bool TypeDeterminer::DetermineUnaryOp(ast::UnaryOpExpression* expr) {
// Result type matches the parameter type.
if (!DetermineResultType(expr->expr())) {
return false;
}
expr->set_result_type(expr->expr()->result_type()->UnwrapPtrIfNeeded());
return true;
}
bool TypeDeterminer::DetermineStorageTextureSubtype(type::StorageTexture* tex) {
if (tex->type() != nullptr) {
return true;
}
switch (tex->image_format()) {
case type::ImageFormat::kR8Uint:
case type::ImageFormat::kR16Uint:
case type::ImageFormat::kRg8Uint:
case type::ImageFormat::kR32Uint:
case type::ImageFormat::kRg16Uint:
case type::ImageFormat::kRgba8Uint:
case type::ImageFormat::kRg32Uint:
case type::ImageFormat::kRgba16Uint:
case type::ImageFormat::kRgba32Uint: {
tex->set_type(program_->create<type::U32>());
return true;
}
case type::ImageFormat::kR8Sint:
case type::ImageFormat::kR16Sint:
case type::ImageFormat::kRg8Sint:
case type::ImageFormat::kR32Sint:
case type::ImageFormat::kRg16Sint:
case type::ImageFormat::kRgba8Sint:
case type::ImageFormat::kRg32Sint:
case type::ImageFormat::kRgba16Sint:
case type::ImageFormat::kRgba32Sint: {
tex->set_type(program_->create<type::I32>());
return true;
}
case type::ImageFormat::kR8Unorm:
case type::ImageFormat::kRg8Unorm:
case type::ImageFormat::kRgba8Unorm:
case type::ImageFormat::kRgba8UnormSrgb:
case type::ImageFormat::kBgra8Unorm:
case type::ImageFormat::kBgra8UnormSrgb:
case type::ImageFormat::kRgb10A2Unorm:
case type::ImageFormat::kR8Snorm:
case type::ImageFormat::kRg8Snorm:
case type::ImageFormat::kRgba8Snorm:
case type::ImageFormat::kR16Float:
case type::ImageFormat::kR32Float:
case type::ImageFormat::kRg16Float:
case type::ImageFormat::kRg11B10Float:
case type::ImageFormat::kRg32Float:
case type::ImageFormat::kRgba16Float:
case type::ImageFormat::kRgba32Float: {
tex->set_type(program_->create<type::F32>());
return true;
}
case type::ImageFormat::kNone:
break;
}
return false;
}
2020-03-02 20:47:43 +00:00
} // namespace tint