dawn-cmake/src/type_determiner.cc

995 lines
31 KiB
C++
Raw Normal View History

2020-03-02 20:47:43 +00:00
// Copyright 2020 The Tint Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "src/type_determiner.h"
#include <memory>
#include <utility>
#include <vector>
#include "src/ast/array_accessor_expression.h"
#include "src/ast/assignment_statement.h"
#include "src/ast/binary_expression.h"
#include "src/ast/bitcast_expression.h"
#include "src/ast/block_statement.h"
#include "src/ast/break_statement.h"
#include "src/ast/call_expression.h"
#include "src/ast/call_statement.h"
#include "src/ast/case_statement.h"
#include "src/ast/continue_statement.h"
#include "src/ast/discard_statement.h"
#include "src/ast/else_statement.h"
#include "src/ast/fallthrough_statement.h"
#include "src/ast/identifier_expression.h"
#include "src/ast/if_statement.h"
#include "src/ast/loop_statement.h"
#include "src/ast/member_accessor_expression.h"
#include "src/ast/return_statement.h"
#include "src/ast/scalar_constructor_expression.h"
#include "src/ast/switch_statement.h"
#include "src/ast/type_constructor_expression.h"
#include "src/ast/unary_op_expression.h"
#include "src/ast/variable_decl_statement.h"
#include "src/program_builder.h"
#include "src/semantic/call.h"
#include "src/semantic/expression.h"
#include "src/semantic/function.h"
#include "src/semantic/intrinsic.h"
#include "src/semantic/member_accessor_expression.h"
#include "src/semantic/statement.h"
#include "src/semantic/variable.h"
#include "src/type/array_type.h"
#include "src/type/bool_type.h"
#include "src/type/depth_texture_type.h"
#include "src/type/f32_type.h"
#include "src/type/i32_type.h"
#include "src/type/matrix_type.h"
#include "src/type/multisampled_texture_type.h"
#include "src/type/pointer_type.h"
#include "src/type/sampled_texture_type.h"
#include "src/type/storage_texture_type.h"
#include "src/type/struct_type.h"
#include "src/type/texture_type.h"
#include "src/type/u32_type.h"
#include "src/type/vector_type.h"
#include "src/type/void_type.h"
2020-03-02 20:47:43 +00:00
namespace tint {
namespace {
using IntrinsicType = tint::semantic::IntrinsicType;
// Helper class that temporarily assigns a value to a reference for the scope of
// the object. Once the ScopedAssignment is destructed, the original value is
// restored.
template <typename T>
class ScopedAssignment {
public:
ScopedAssignment(T& ref, T val) : ref_(ref) {
old_value_ = ref;
ref = val;
}
~ScopedAssignment() { ref_ = old_value_; }
private:
T& ref_;
T old_value_;
};
} // namespace
2020-03-02 20:47:43 +00:00
Add IntrinsicTable Provides a centeralized table for all intrinsic overloads. IntrinsicTable::Lookup() takes the intrinsic type and list of arguments, returning either the matched overload, or a sensible error message. The validator has expectations that the TypeDeterminer resolves the return type of an intrinsic call, even when the signature doesn't match. To handle this, create semantic::Intrinsic nodes even when the overload fails to match. A significant portion of the Validator's logic for handling intrinsics can be removed (future change). There are a number of benefits to migrating the TypeDeterminer and Validator over to the IntrinsicTable: * There's far less intrininsic-bespoke code to maintain (no more duplicate `kIntrinsicData` tables in TypeDeterminer and Validator). * Adding or adjusting an intrinsic overload involves adding or adjusting a single Register() line. * Error messages give helpful suggestions for related overloads when given incorrect arguments. * Error messages are consistent for all intrinsics. * Error messages are far more understandable than those produced by the TypeDeterminer. * Further improvements on the error messages produced by the IntrinsicTable will benefit _all_ the intrinsics and their overloads. * The IntrinsicTable generates correct parameter information, including whether parameters are pointers or not. * The IntrinsicTable will help with implementing autocomplete for a language server Change-Id: I4bfa88533396b0b372aef41a62fe47b738531aed Reviewed-on: https://dawn-review.googlesource.com/c/tint/+/40504 Commit-Queue: Ben Clayton <bclayton@google.com> Reviewed-by: dan sinclair <dsinclair@chromium.org>
2021-02-08 22:42:54 +00:00
TypeDeterminer::TypeDeterminer(ProgramBuilder* builder)
: builder_(builder), intrinsic_table_(IntrinsicTable::Create()) {}
2020-03-02 20:47:43 +00:00
TypeDeterminer::~TypeDeterminer() = default;
diag::List TypeDeterminer::Run(Program* program) {
ProgramBuilder builder = program->CloneAsBuilder();
TypeDeterminer td(&builder);
if (!td.Determine()) {
diag::List diagnostics;
diagnostics.add_error(td.error());
return diagnostics;
}
*program = Program(std::move(builder));
return {};
}
void TypeDeterminer::set_error(const Source& src, const std::string& msg) {
error_ = "";
if (src.range.begin.line > 0) {
error_ += std::to_string(src.range.begin.line) + ":" +
std::to_string(src.range.begin.column) + ": ";
}
error_ += msg;
}
void TypeDeterminer::set_referenced_from_function_if_needed(VariableInfo* var,
bool local) {
if (current_function_ == nullptr) {
return;
}
if (var->storage_class == ast::StorageClass::kNone ||
var->storage_class == ast::StorageClass::kFunction) {
return;
}
current_function_->referenced_module_vars.Add(var);
if (local) {
current_function_->local_referenced_module_vars.Add(var);
}
}
bool TypeDeterminer::Determine() {
bool result = DetermineInternal();
// Even if resolving failed, create all the semantic nodes for information we
// did generate.
CreateSemanticNodes();
return result;
}
bool TypeDeterminer::DetermineInternal() {
for (auto* var : builder_->AST().GlobalVariables()) {
variable_stack_.set_global(var->symbol(), CreateVariableInfo(var));
if (var->has_constructor()) {
if (!DetermineResultType(var->constructor())) {
return false;
}
}
}
if (!DetermineFunctions(builder_->AST().Functions())) {
return false;
}
// Walk over the caller to callee information and update functions with
// which entry points call those functions.
for (auto* func : builder_->AST().Functions()) {
if (!func->IsEntryPoint()) {
continue;
}
for (const auto& callee : caller_to_callee_[func->symbol()]) {
set_entry_points(callee, func->symbol());
}
}
return true;
}
void TypeDeterminer::set_entry_points(const Symbol& fn_sym, Symbol ep_sym) {
auto* info = symbol_to_function_.at(fn_sym);
info->ancestor_entry_points.Add(ep_sym);
for (const auto& callee : caller_to_callee_[fn_sym]) {
set_entry_points(callee, ep_sym);
}
}
bool TypeDeterminer::DetermineFunctions(const ast::FunctionList& funcs) {
for (auto* func : funcs) {
if (!DetermineFunction(func)) {
return false;
}
}
return true;
}
bool TypeDeterminer::DetermineFunction(ast::Function* func) {
auto* func_info = function_infos_.Create<FunctionInfo>(func);
symbol_to_function_[func->symbol()] = func_info;
function_to_info_.emplace(func, func_info);
ScopedAssignment<FunctionInfo*> sa(current_function_, func_info);
variable_stack_.push_scope();
for (auto* param : func->params()) {
variable_stack_.set(param->symbol(), CreateVariableInfo(param));
}
if (!DetermineStatements(func->body())) {
return false;
}
variable_stack_.pop_scope();
2020-03-02 20:47:43 +00:00
return true;
}
bool TypeDeterminer::DetermineStatements(const ast::BlockStatement* stmts) {
for (auto* stmt : *stmts) {
if (!DetermineVariableStorageClass(stmt)) {
return false;
}
if (!DetermineResultType(stmt)) {
return false;
}
}
return true;
}
bool TypeDeterminer::DetermineVariableStorageClass(ast::Statement* stmt) {
auto* var_decl = stmt->As<ast::VariableDeclStatement>();
if (var_decl == nullptr) {
return true;
}
auto* var = var_decl->variable();
auto* info = CreateVariableInfo(var);
variable_to_info_.emplace(var, info);
// Nothing to do for const
if (var->is_const()) {
return true;
}
if (info->storage_class == ast::StorageClass::kFunction) {
return true;
}
if (info->storage_class != ast::StorageClass::kNone) {
set_error(stmt->source(),
"function variable has a non-function storage class");
return false;
}
info->storage_class = ast::StorageClass::kFunction;
return true;
}
bool TypeDeterminer::DetermineResultType(ast::Statement* stmt) {
auto* sem_statement = builder_->create<semantic::Statement>(stmt);
ScopedAssignment<semantic::Statement*> sa(current_statement_, sem_statement);
if (auto* a = stmt->As<ast::AssignmentStatement>()) {
return DetermineResultType(a->lhs()) && DetermineResultType(a->rhs());
}
if (auto* b = stmt->As<ast::BlockStatement>()) {
return DetermineStatements(b);
}
if (stmt->Is<ast::BreakStatement>()) {
return true;
}
if (auto* c = stmt->As<ast::CallStatement>()) {
return DetermineResultType(c->expr());
}
if (auto* c = stmt->As<ast::CaseStatement>()) {
return DetermineStatements(c->body());
}
if (stmt->Is<ast::ContinueStatement>()) {
return true;
}
if (stmt->Is<ast::DiscardStatement>()) {
return true;
}
if (auto* e = stmt->As<ast::ElseStatement>()) {
return DetermineResultType(e->condition()) &&
DetermineStatements(e->body());
}
if (stmt->Is<ast::FallthroughStatement>()) {
return true;
}
if (auto* i = stmt->As<ast::IfStatement>()) {
if (!DetermineResultType(i->condition()) ||
!DetermineStatements(i->body())) {
return false;
}
for (auto* else_stmt : i->else_statements()) {
if (!DetermineResultType(else_stmt)) {
return false;
}
}
return true;
}
if (auto* l = stmt->As<ast::LoopStatement>()) {
return DetermineStatements(l->body()) &&
DetermineStatements(l->continuing());
}
if (auto* r = stmt->As<ast::ReturnStatement>()) {
return DetermineResultType(r->value());
}
if (auto* s = stmt->As<ast::SwitchStatement>()) {
if (!DetermineResultType(s->condition())) {
return false;
}
for (auto* case_stmt : s->body()) {
if (!DetermineResultType(case_stmt)) {
return false;
}
}
return true;
}
if (auto* v = stmt->As<ast::VariableDeclStatement>()) {
variable_stack_.set(v->variable()->symbol(),
variable_to_info_.at(v->variable()));
return DetermineResultType(v->variable()->constructor());
}
set_error(stmt->source(), "unknown statement type for type determination: " +
builder_->str(stmt));
return false;
}
bool TypeDeterminer::DetermineResultType(const ast::ExpressionList& list) {
for (auto* expr : list) {
if (!DetermineResultType(expr)) {
return false;
}
}
return true;
}
bool TypeDeterminer::DetermineResultType(ast::Expression* expr) {
// This is blindly called above, so in some cases the expression won't exist.
if (!expr) {
return true;
}
if (TypeOf(expr)) {
return true; // Already resolved
}
if (auto* a = expr->As<ast::ArrayAccessorExpression>()) {
return DetermineArrayAccessor(a);
}
if (auto* b = expr->As<ast::BinaryExpression>()) {
return DetermineBinary(b);
}
if (auto* b = expr->As<ast::BitcastExpression>()) {
return DetermineBitcast(b);
}
if (auto* c = expr->As<ast::CallExpression>()) {
return DetermineCall(c);
}
if (auto* c = expr->As<ast::ConstructorExpression>()) {
return DetermineConstructor(c);
}
if (auto* i = expr->As<ast::IdentifierExpression>()) {
return DetermineIdentifier(i);
}
if (auto* m = expr->As<ast::MemberAccessorExpression>()) {
return DetermineMemberAccessor(m);
}
if (auto* u = expr->As<ast::UnaryOpExpression>()) {
return DetermineUnaryOp(u);
}
set_error(expr->source(), "unknown expression for type determination");
return false;
}
bool TypeDeterminer::DetermineArrayAccessor(
ast::ArrayAccessorExpression* expr) {
if (!DetermineResultType(expr->array())) {
return false;
}
if (!DetermineResultType(expr->idx_expr())) {
return false;
}
auto* res = TypeOf(expr->array());
auto* parent_type = res->UnwrapAll();
type::Type* ret = nullptr;
if (auto* arr = parent_type->As<type::Array>()) {
ret = arr->type();
} else if (auto* vec = parent_type->As<type::Vector>()) {
ret = vec->type();
} else if (auto* mat = parent_type->As<type::Matrix>()) {
ret = builder_->create<type::Vector>(mat->type(), mat->rows());
} else {
set_error(expr->source(), "invalid parent type (" +
parent_type->type_name() +
") in array accessor");
return false;
}
// If we're extracting from a pointer, we return a pointer.
if (auto* ptr = res->As<type::Pointer>()) {
ret = builder_->create<type::Pointer>(ret, ptr->storage_class());
} else if (auto* arr = parent_type->As<type::Array>()) {
if (!arr->type()->is_scalar()) {
// If we extract a non-scalar from an array then we also get a pointer. We
// will generate a Function storage class variable to store this
// into.
ret = builder_->create<type::Pointer>(ret, ast::StorageClass::kFunction);
}
}
SetType(expr, ret);
return true;
}
bool TypeDeterminer::DetermineBitcast(ast::BitcastExpression* expr) {
if (!DetermineResultType(expr->expr())) {
return false;
}
SetType(expr, expr->type());
return true;
}
bool TypeDeterminer::DetermineCall(ast::CallExpression* call) {
if (!DetermineResultType(call->func())) {
return false;
}
if (!DetermineResultType(call->params())) {
return false;
}
// The expression has to be an identifier as you can't store function pointers
// but, if it isn't we'll just use the normal result determination to be on
// the safe side.
auto* ident = call->func()->As<ast::IdentifierExpression>();
if (!ident) {
set_error(call->source(), "call target is not an identifier");
return false;
}
auto name = builder_->Symbols().NameFor(ident->symbol());
auto intrinsic_type = MatchIntrinsicType(name);
if (intrinsic_type != IntrinsicType::kNone) {
if (!DetermineIntrinsicCall(call, intrinsic_type)) {
return false;
}
} else {
if (current_function_) {
caller_to_callee_[current_function_->declaration->symbol()].push_back(
ident->symbol());
auto callee_func_it = symbol_to_function_.find(ident->symbol());
if (callee_func_it == symbol_to_function_.end()) {
set_error(call->source(), "unable to find called function: " + name);
return false;
}
auto* callee_func = callee_func_it->second;
// We inherit any referenced variables from the callee.
for (auto* var : callee_func->referenced_module_vars) {
set_referenced_from_function_if_needed(var, false);
}
}
auto iter = symbol_to_function_.find(ident->symbol());
if (iter == symbol_to_function_.end()) {
set_error(call->source(),
"v-0005: function must be declared before use: '" + name + "'");
return false;
}
auto* function = iter->second;
function_calls_.emplace(call,
FunctionCallInfo{function, current_statement_});
SetType(call, function->declaration->return_type());
}
return true;
}
Add IntrinsicTable Provides a centeralized table for all intrinsic overloads. IntrinsicTable::Lookup() takes the intrinsic type and list of arguments, returning either the matched overload, or a sensible error message. The validator has expectations that the TypeDeterminer resolves the return type of an intrinsic call, even when the signature doesn't match. To handle this, create semantic::Intrinsic nodes even when the overload fails to match. A significant portion of the Validator's logic for handling intrinsics can be removed (future change). There are a number of benefits to migrating the TypeDeterminer and Validator over to the IntrinsicTable: * There's far less intrininsic-bespoke code to maintain (no more duplicate `kIntrinsicData` tables in TypeDeterminer and Validator). * Adding or adjusting an intrinsic overload involves adding or adjusting a single Register() line. * Error messages give helpful suggestions for related overloads when given incorrect arguments. * Error messages are consistent for all intrinsics. * Error messages are far more understandable than those produced by the TypeDeterminer. * Further improvements on the error messages produced by the IntrinsicTable will benefit _all_ the intrinsics and their overloads. * The IntrinsicTable generates correct parameter information, including whether parameters are pointers or not. * The IntrinsicTable will help with implementing autocomplete for a language server Change-Id: I4bfa88533396b0b372aef41a62fe47b738531aed Reviewed-on: https://dawn-review.googlesource.com/c/tint/+/40504 Commit-Queue: Ben Clayton <bclayton@google.com> Reviewed-by: dan sinclair <dsinclair@chromium.org>
2021-02-08 22:42:54 +00:00
bool TypeDeterminer::DetermineIntrinsicCall(
ast::CallExpression* call,
semantic::IntrinsicType intrinsic_type) {
std::vector<type::Type*> arg_tys;
arg_tys.reserve(call->params().size());
for (auto* expr : call->params()) {
arg_tys.emplace_back(TypeOf(expr));
}
Add IntrinsicTable Provides a centeralized table for all intrinsic overloads. IntrinsicTable::Lookup() takes the intrinsic type and list of arguments, returning either the matched overload, or a sensible error message. The validator has expectations that the TypeDeterminer resolves the return type of an intrinsic call, even when the signature doesn't match. To handle this, create semantic::Intrinsic nodes even when the overload fails to match. A significant portion of the Validator's logic for handling intrinsics can be removed (future change). There are a number of benefits to migrating the TypeDeterminer and Validator over to the IntrinsicTable: * There's far less intrininsic-bespoke code to maintain (no more duplicate `kIntrinsicData` tables in TypeDeterminer and Validator). * Adding or adjusting an intrinsic overload involves adding or adjusting a single Register() line. * Error messages give helpful suggestions for related overloads when given incorrect arguments. * Error messages are consistent for all intrinsics. * Error messages are far more understandable than those produced by the TypeDeterminer. * Further improvements on the error messages produced by the IntrinsicTable will benefit _all_ the intrinsics and their overloads. * The IntrinsicTable generates correct parameter information, including whether parameters are pointers or not. * The IntrinsicTable will help with implementing autocomplete for a language server Change-Id: I4bfa88533396b0b372aef41a62fe47b738531aed Reviewed-on: https://dawn-review.googlesource.com/c/tint/+/40504 Commit-Queue: Ben Clayton <bclayton@google.com> Reviewed-by: dan sinclair <dsinclair@chromium.org>
2021-02-08 22:42:54 +00:00
auto result = intrinsic_table_->Lookup(*builder_, intrinsic_type, arg_tys);
if (!result.intrinsic) {
// Intrinsic lookup failed.
set_error(call->source(), result.error);
// TODO(bclayton): https://crbug.com/tint/487
// The Validator expects intrinsic signature mismatches to still produce
// type information. The rules for what the Validator expects are rather
// bespoke. Try to match what the Validator expects. As the Validator's
// checks on intrinsics is now almost entirely covered by the
// IntrinsicTable, we should remove the Validator checks on intrinsic
// signatures and remove these hacks.
semantic::ParameterList parameters;
Add IntrinsicTable Provides a centeralized table for all intrinsic overloads. IntrinsicTable::Lookup() takes the intrinsic type and list of arguments, returning either the matched overload, or a sensible error message. The validator has expectations that the TypeDeterminer resolves the return type of an intrinsic call, even when the signature doesn't match. To handle this, create semantic::Intrinsic nodes even when the overload fails to match. A significant portion of the Validator's logic for handling intrinsics can be removed (future change). There are a number of benefits to migrating the TypeDeterminer and Validator over to the IntrinsicTable: * There's far less intrininsic-bespoke code to maintain (no more duplicate `kIntrinsicData` tables in TypeDeterminer and Validator). * Adding or adjusting an intrinsic overload involves adding or adjusting a single Register() line. * Error messages give helpful suggestions for related overloads when given incorrect arguments. * Error messages are consistent for all intrinsics. * Error messages are far more understandable than those produced by the TypeDeterminer. * Further improvements on the error messages produced by the IntrinsicTable will benefit _all_ the intrinsics and their overloads. * The IntrinsicTable generates correct parameter information, including whether parameters are pointers or not. * The IntrinsicTable will help with implementing autocomplete for a language server Change-Id: I4bfa88533396b0b372aef41a62fe47b738531aed Reviewed-on: https://dawn-review.googlesource.com/c/tint/+/40504 Commit-Queue: Ben Clayton <bclayton@google.com> Reviewed-by: dan sinclair <dsinclair@chromium.org>
2021-02-08 22:42:54 +00:00
parameters.reserve(arg_tys.size());
for (auto* arg : arg_tys) {
parameters.emplace_back(semantic::Parameter{arg});
}
Add IntrinsicTable Provides a centeralized table for all intrinsic overloads. IntrinsicTable::Lookup() takes the intrinsic type and list of arguments, returning either the matched overload, or a sensible error message. The validator has expectations that the TypeDeterminer resolves the return type of an intrinsic call, even when the signature doesn't match. To handle this, create semantic::Intrinsic nodes even when the overload fails to match. A significant portion of the Validator's logic for handling intrinsics can be removed (future change). There are a number of benefits to migrating the TypeDeterminer and Validator over to the IntrinsicTable: * There's far less intrininsic-bespoke code to maintain (no more duplicate `kIntrinsicData` tables in TypeDeterminer and Validator). * Adding or adjusting an intrinsic overload involves adding or adjusting a single Register() line. * Error messages give helpful suggestions for related overloads when given incorrect arguments. * Error messages are consistent for all intrinsics. * Error messages are far more understandable than those produced by the TypeDeterminer. * Further improvements on the error messages produced by the IntrinsicTable will benefit _all_ the intrinsics and their overloads. * The IntrinsicTable generates correct parameter information, including whether parameters are pointers or not. * The IntrinsicTable will help with implementing autocomplete for a language server Change-Id: I4bfa88533396b0b372aef41a62fe47b738531aed Reviewed-on: https://dawn-review.googlesource.com/c/tint/+/40504 Commit-Queue: Ben Clayton <bclayton@google.com> Reviewed-by: dan sinclair <dsinclair@chromium.org>
2021-02-08 22:42:54 +00:00
type::Type* ret_ty = nullptr;
switch (intrinsic_type) {
case IntrinsicType::kCross:
ret_ty = builder_->ty.vec3<ProgramBuilder::f32>();
break;
Add IntrinsicTable Provides a centeralized table for all intrinsic overloads. IntrinsicTable::Lookup() takes the intrinsic type and list of arguments, returning either the matched overload, or a sensible error message. The validator has expectations that the TypeDeterminer resolves the return type of an intrinsic call, even when the signature doesn't match. To handle this, create semantic::Intrinsic nodes even when the overload fails to match. A significant portion of the Validator's logic for handling intrinsics can be removed (future change). There are a number of benefits to migrating the TypeDeterminer and Validator over to the IntrinsicTable: * There's far less intrininsic-bespoke code to maintain (no more duplicate `kIntrinsicData` tables in TypeDeterminer and Validator). * Adding or adjusting an intrinsic overload involves adding or adjusting a single Register() line. * Error messages give helpful suggestions for related overloads when given incorrect arguments. * Error messages are consistent for all intrinsics. * Error messages are far more understandable than those produced by the TypeDeterminer. * Further improvements on the error messages produced by the IntrinsicTable will benefit _all_ the intrinsics and their overloads. * The IntrinsicTable generates correct parameter information, including whether parameters are pointers or not. * The IntrinsicTable will help with implementing autocomplete for a language server Change-Id: I4bfa88533396b0b372aef41a62fe47b738531aed Reviewed-on: https://dawn-review.googlesource.com/c/tint/+/40504 Commit-Queue: Ben Clayton <bclayton@google.com> Reviewed-by: dan sinclair <dsinclair@chromium.org>
2021-02-08 22:42:54 +00:00
case IntrinsicType::kDeterminant:
ret_ty = builder_->create<type::F32>();
break;
Add IntrinsicTable Provides a centeralized table for all intrinsic overloads. IntrinsicTable::Lookup() takes the intrinsic type and list of arguments, returning either the matched overload, or a sensible error message. The validator has expectations that the TypeDeterminer resolves the return type of an intrinsic call, even when the signature doesn't match. To handle this, create semantic::Intrinsic nodes even when the overload fails to match. A significant portion of the Validator's logic for handling intrinsics can be removed (future change). There are a number of benefits to migrating the TypeDeterminer and Validator over to the IntrinsicTable: * There's far less intrininsic-bespoke code to maintain (no more duplicate `kIntrinsicData` tables in TypeDeterminer and Validator). * Adding or adjusting an intrinsic overload involves adding or adjusting a single Register() line. * Error messages give helpful suggestions for related overloads when given incorrect arguments. * Error messages are consistent for all intrinsics. * Error messages are far more understandable than those produced by the TypeDeterminer. * Further improvements on the error messages produced by the IntrinsicTable will benefit _all_ the intrinsics and their overloads. * The IntrinsicTable generates correct parameter information, including whether parameters are pointers or not. * The IntrinsicTable will help with implementing autocomplete for a language server Change-Id: I4bfa88533396b0b372aef41a62fe47b738531aed Reviewed-on: https://dawn-review.googlesource.com/c/tint/+/40504 Commit-Queue: Ben Clayton <bclayton@google.com> Reviewed-by: dan sinclair <dsinclair@chromium.org>
2021-02-08 22:42:54 +00:00
case IntrinsicType::kArrayLength:
ret_ty = builder_->create<type::U32>();
break;
default:
Add IntrinsicTable Provides a centeralized table for all intrinsic overloads. IntrinsicTable::Lookup() takes the intrinsic type and list of arguments, returning either the matched overload, or a sensible error message. The validator has expectations that the TypeDeterminer resolves the return type of an intrinsic call, even when the signature doesn't match. To handle this, create semantic::Intrinsic nodes even when the overload fails to match. A significant portion of the Validator's logic for handling intrinsics can be removed (future change). There are a number of benefits to migrating the TypeDeterminer and Validator over to the IntrinsicTable: * There's far less intrininsic-bespoke code to maintain (no more duplicate `kIntrinsicData` tables in TypeDeterminer and Validator). * Adding or adjusting an intrinsic overload involves adding or adjusting a single Register() line. * Error messages give helpful suggestions for related overloads when given incorrect arguments. * Error messages are consistent for all intrinsics. * Error messages are far more understandable than those produced by the TypeDeterminer. * Further improvements on the error messages produced by the IntrinsicTable will benefit _all_ the intrinsics and their overloads. * The IntrinsicTable generates correct parameter information, including whether parameters are pointers or not. * The IntrinsicTable will help with implementing autocomplete for a language server Change-Id: I4bfa88533396b0b372aef41a62fe47b738531aed Reviewed-on: https://dawn-review.googlesource.com/c/tint/+/40504 Commit-Queue: Ben Clayton <bclayton@google.com> Reviewed-by: dan sinclair <dsinclair@chromium.org>
2021-02-08 22:42:54 +00:00
ret_ty = arg_tys.empty() ? builder_->ty.void_() : arg_tys[0];
break;
}
Add IntrinsicTable Provides a centeralized table for all intrinsic overloads. IntrinsicTable::Lookup() takes the intrinsic type and list of arguments, returning either the matched overload, or a sensible error message. The validator has expectations that the TypeDeterminer resolves the return type of an intrinsic call, even when the signature doesn't match. To handle this, create semantic::Intrinsic nodes even when the overload fails to match. A significant portion of the Validator's logic for handling intrinsics can be removed (future change). There are a number of benefits to migrating the TypeDeterminer and Validator over to the IntrinsicTable: * There's far less intrininsic-bespoke code to maintain (no more duplicate `kIntrinsicData` tables in TypeDeterminer and Validator). * Adding or adjusting an intrinsic overload involves adding or adjusting a single Register() line. * Error messages give helpful suggestions for related overloads when given incorrect arguments. * Error messages are consistent for all intrinsics. * Error messages are far more understandable than those produced by the TypeDeterminer. * Further improvements on the error messages produced by the IntrinsicTable will benefit _all_ the intrinsics and their overloads. * The IntrinsicTable generates correct parameter information, including whether parameters are pointers or not. * The IntrinsicTable will help with implementing autocomplete for a language server Change-Id: I4bfa88533396b0b372aef41a62fe47b738531aed Reviewed-on: https://dawn-review.googlesource.com/c/tint/+/40504 Commit-Queue: Ben Clayton <bclayton@google.com> Reviewed-by: dan sinclair <dsinclair@chromium.org>
2021-02-08 22:42:54 +00:00
auto* intrinsic = builder_->create<semantic::Intrinsic>(intrinsic_type,
ret_ty, parameters);
builder_->Sem().Add(
call, builder_->create<semantic::Call>(intrinsic, current_statement_));
SetType(call, ret_ty);
Add IntrinsicTable Provides a centeralized table for all intrinsic overloads. IntrinsicTable::Lookup() takes the intrinsic type and list of arguments, returning either the matched overload, or a sensible error message. The validator has expectations that the TypeDeterminer resolves the return type of an intrinsic call, even when the signature doesn't match. To handle this, create semantic::Intrinsic nodes even when the overload fails to match. A significant portion of the Validator's logic for handling intrinsics can be removed (future change). There are a number of benefits to migrating the TypeDeterminer and Validator over to the IntrinsicTable: * There's far less intrininsic-bespoke code to maintain (no more duplicate `kIntrinsicData` tables in TypeDeterminer and Validator). * Adding or adjusting an intrinsic overload involves adding or adjusting a single Register() line. * Error messages give helpful suggestions for related overloads when given incorrect arguments. * Error messages are consistent for all intrinsics. * Error messages are far more understandable than those produced by the TypeDeterminer. * Further improvements on the error messages produced by the IntrinsicTable will benefit _all_ the intrinsics and their overloads. * The IntrinsicTable generates correct parameter information, including whether parameters are pointers or not. * The IntrinsicTable will help with implementing autocomplete for a language server Change-Id: I4bfa88533396b0b372aef41a62fe47b738531aed Reviewed-on: https://dawn-review.googlesource.com/c/tint/+/40504 Commit-Queue: Ben Clayton <bclayton@google.com> Reviewed-by: dan sinclair <dsinclair@chromium.org>
2021-02-08 22:42:54 +00:00
return false;
}
builder_->Sem().Add(call, builder_->create<semantic::Call>(
result.intrinsic, current_statement_));
SetType(call, result.intrinsic->ReturnType());
return true;
}
bool TypeDeterminer::DetermineConstructor(ast::ConstructorExpression* expr) {
if (auto* ty = expr->As<ast::TypeConstructorExpression>()) {
for (auto* value : ty->values()) {
if (!DetermineResultType(value)) {
return false;
}
}
SetType(expr, ty->type());
} else {
SetType(expr,
expr->As<ast::ScalarConstructorExpression>()->literal()->type());
}
return true;
}
bool TypeDeterminer::DetermineIdentifier(ast::IdentifierExpression* expr) {
auto symbol = expr->symbol();
VariableInfo* var;
if (variable_stack_.get(symbol, &var)) {
// A constant is the type, but a variable is always a pointer so synthesize
// the pointer around the variable type.
if (var->declaration->is_const()) {
SetType(expr, var->declaration->type());
} else if (var->declaration->type()->Is<type::Pointer>()) {
SetType(expr, var->declaration->type());
} else {
SetType(expr, builder_->create<type::Pointer>(var->declaration->type(),
var->storage_class));
}
set_referenced_from_function_if_needed(var, true);
return true;
}
auto iter = symbol_to_function_.find(symbol);
if (iter != symbol_to_function_.end()) {
// Identifier is to a function, which has no type (currently).
return true;
}
std::string name = builder_->Symbols().NameFor(symbol);
if (MatchIntrinsicType(name) != IntrinsicType::kNone) {
// Identifier is to an intrinsic function, which has no type (currently).
return true;
}
set_error(expr->source(),
"v-0006: identifier must be declared before use: " + name);
return false;
}
IntrinsicType TypeDeterminer::MatchIntrinsicType(const std::string& name) {
if (name == "abs") {
return IntrinsicType::kAbs;
} else if (name == "acos") {
return IntrinsicType::kAcos;
} else if (name == "all") {
return IntrinsicType::kAll;
} else if (name == "any") {
return IntrinsicType::kAny;
} else if (name == "arrayLength") {
return IntrinsicType::kArrayLength;
} else if (name == "asin") {
return IntrinsicType::kAsin;
} else if (name == "atan") {
return IntrinsicType::kAtan;
} else if (name == "atan2") {
return IntrinsicType::kAtan2;
} else if (name == "ceil") {
return IntrinsicType::kCeil;
} else if (name == "clamp") {
return IntrinsicType::kClamp;
} else if (name == "cos") {
return IntrinsicType::kCos;
} else if (name == "cosh") {
return IntrinsicType::kCosh;
} else if (name == "countOneBits") {
return IntrinsicType::kCountOneBits;
} else if (name == "cross") {
return IntrinsicType::kCross;
} else if (name == "determinant") {
return IntrinsicType::kDeterminant;
} else if (name == "distance") {
return IntrinsicType::kDistance;
} else if (name == "dot") {
return IntrinsicType::kDot;
} else if (name == "dpdx") {
return IntrinsicType::kDpdx;
} else if (name == "dpdxCoarse") {
return IntrinsicType::kDpdxCoarse;
} else if (name == "dpdxFine") {
return IntrinsicType::kDpdxFine;
} else if (name == "dpdy") {
return IntrinsicType::kDpdy;
} else if (name == "dpdyCoarse") {
return IntrinsicType::kDpdyCoarse;
} else if (name == "dpdyFine") {
return IntrinsicType::kDpdyFine;
} else if (name == "exp") {
return IntrinsicType::kExp;
} else if (name == "exp2") {
return IntrinsicType::kExp2;
} else if (name == "faceForward") {
return IntrinsicType::kFaceForward;
} else if (name == "floor") {
return IntrinsicType::kFloor;
} else if (name == "fma") {
return IntrinsicType::kFma;
} else if (name == "fract") {
return IntrinsicType::kFract;
} else if (name == "frexp") {
return IntrinsicType::kFrexp;
} else if (name == "fwidth") {
return IntrinsicType::kFwidth;
} else if (name == "fwidthCoarse") {
return IntrinsicType::kFwidthCoarse;
} else if (name == "fwidthFine") {
return IntrinsicType::kFwidthFine;
} else if (name == "inverseSqrt") {
return IntrinsicType::kInverseSqrt;
} else if (name == "isFinite") {
return IntrinsicType::kIsFinite;
} else if (name == "isInf") {
return IntrinsicType::kIsInf;
} else if (name == "isNan") {
return IntrinsicType::kIsNan;
} else if (name == "isNormal") {
return IntrinsicType::kIsNormal;
} else if (name == "ldexp") {
return IntrinsicType::kLdexp;
} else if (name == "length") {
return IntrinsicType::kLength;
} else if (name == "log") {
return IntrinsicType::kLog;
} else if (name == "log2") {
return IntrinsicType::kLog2;
} else if (name == "max") {
return IntrinsicType::kMax;
} else if (name == "min") {
return IntrinsicType::kMin;
} else if (name == "mix") {
return IntrinsicType::kMix;
} else if (name == "modf") {
return IntrinsicType::kModf;
} else if (name == "normalize") {
return IntrinsicType::kNormalize;
} else if (name == "pack4x8snorm") {
return IntrinsicType::kPack4x8Snorm;
} else if (name == "pack4x8unorm") {
return IntrinsicType::kPack4x8Unorm;
} else if (name == "pack2x16snorm") {
return IntrinsicType::kPack2x16Snorm;
} else if (name == "pack2x16unorm") {
return IntrinsicType::kPack2x16Unorm;
} else if (name == "pack2x16float") {
return IntrinsicType::kPack2x16Float;
} else if (name == "pow") {
return IntrinsicType::kPow;
} else if (name == "reflect") {
return IntrinsicType::kReflect;
} else if (name == "reverseBits") {
return IntrinsicType::kReverseBits;
} else if (name == "round") {
return IntrinsicType::kRound;
} else if (name == "select") {
return IntrinsicType::kSelect;
} else if (name == "sign") {
return IntrinsicType::kSign;
} else if (name == "sin") {
return IntrinsicType::kSin;
} else if (name == "sinh") {
return IntrinsicType::kSinh;
} else if (name == "smoothStep") {
return IntrinsicType::kSmoothStep;
} else if (name == "sqrt") {
return IntrinsicType::kSqrt;
} else if (name == "step") {
return IntrinsicType::kStep;
} else if (name == "tan") {
return IntrinsicType::kTan;
} else if (name == "tanh") {
return IntrinsicType::kTanh;
} else if (name == "textureDimensions") {
return IntrinsicType::kTextureDimensions;
} else if (name == "textureNumLayers") {
return IntrinsicType::kTextureNumLayers;
} else if (name == "textureNumLevels") {
return IntrinsicType::kTextureNumLevels;
} else if (name == "textureNumSamples") {
return IntrinsicType::kTextureNumSamples;
} else if (name == "textureLoad") {
return IntrinsicType::kTextureLoad;
} else if (name == "textureStore") {
return IntrinsicType::kTextureStore;
} else if (name == "textureSample") {
return IntrinsicType::kTextureSample;
} else if (name == "textureSampleBias") {
return IntrinsicType::kTextureSampleBias;
} else if (name == "textureSampleCompare") {
return IntrinsicType::kTextureSampleCompare;
} else if (name == "textureSampleGrad") {
return IntrinsicType::kTextureSampleGrad;
} else if (name == "textureSampleLevel") {
return IntrinsicType::kTextureSampleLevel;
} else if (name == "trunc") {
return IntrinsicType::kTrunc;
} else if (name == "unpack4x8snorm") {
return IntrinsicType::kUnpack4x8Snorm;
} else if (name == "unpack4x8unorm") {
return IntrinsicType::kUnpack4x8Unorm;
} else if (name == "unpack2x16snorm") {
return IntrinsicType::kUnpack2x16Snorm;
} else if (name == "unpack2x16unorm") {
return IntrinsicType::kUnpack2x16Unorm;
} else if (name == "unpack2x16float") {
return IntrinsicType::kUnpack2x16Float;
}
return IntrinsicType::kNone;
}
bool TypeDeterminer::DetermineMemberAccessor(
ast::MemberAccessorExpression* expr) {
if (!DetermineResultType(expr->structure())) {
return false;
}
auto* res = TypeOf(expr->structure());
auto* data_type = res->UnwrapPtrIfNeeded()->UnwrapIfNeeded();
type::Type* ret = nullptr;
bool is_swizzle = false;
if (auto* ty = data_type->As<type::Struct>()) {
auto* strct = ty->impl();
auto symbol = expr->member()->symbol();
for (auto* member : strct->members()) {
if (member->symbol() == symbol) {
ret = member->type();
break;
}
}
if (ret == nullptr) {
set_error(expr->source(), "struct member " +
builder_->Symbols().NameFor(symbol) +
" not found");
return false;
}
// If we're extracting from a pointer, we return a pointer.
if (auto* ptr = res->As<type::Pointer>()) {
ret = builder_->create<type::Pointer>(ret, ptr->storage_class());
}
} else if (auto* vec = data_type->As<type::Vector>()) {
is_swizzle = true;
auto size = builder_->Symbols().NameFor(expr->member()->symbol()).size();
if (size == 1) {
// A single element swizzle is just the type of the vector.
ret = vec->type();
// If we're extracting from a pointer, we return a pointer.
if (auto* ptr = res->As<type::Pointer>()) {
ret = builder_->create<type::Pointer>(ret, ptr->storage_class());
}
} else {
// The vector will have a number of components equal to the length of the
// swizzle. This assumes the validator will check that the swizzle
// is correct.
ret = builder_->create<type::Vector>(vec->type(),
static_cast<uint32_t>(size));
}
} else {
set_error(
expr->source(),
"v-0007: invalid use of member accessor on a non-vector/non-struct " +
data_type->type_name());
return false;
}
builder_->Sem().Add(expr,
builder_->create<semantic::MemberAccessorExpression>(
ret, current_statement_, is_swizzle));
SetType(expr, ret);
return true;
}
bool TypeDeterminer::DetermineBinary(ast::BinaryExpression* expr) {
if (!DetermineResultType(expr->lhs()) || !DetermineResultType(expr->rhs())) {
return false;
}
// Result type matches first parameter type
if (expr->IsAnd() || expr->IsOr() || expr->IsXor() || expr->IsShiftLeft() ||
expr->IsShiftRight() || expr->IsAdd() || expr->IsSubtract() ||
expr->IsDivide() || expr->IsModulo()) {
SetType(expr, TypeOf(expr->lhs())->UnwrapPtrIfNeeded());
return true;
}
// Result type is a scalar or vector of boolean type
if (expr->IsLogicalAnd() || expr->IsLogicalOr() || expr->IsEqual() ||
expr->IsNotEqual() || expr->IsLessThan() || expr->IsGreaterThan() ||
expr->IsLessThanEqual() || expr->IsGreaterThanEqual()) {
auto* bool_type = builder_->create<type::Bool>();
auto* param_type = TypeOf(expr->lhs())->UnwrapPtrIfNeeded();
type::Type* result_type = bool_type;
if (auto* vec = param_type->As<type::Vector>()) {
result_type = builder_->create<type::Vector>(bool_type, vec->size());
}
SetType(expr, result_type);
return true;
}
if (expr->IsMultiply()) {
auto* lhs_type = TypeOf(expr->lhs())->UnwrapPtrIfNeeded();
auto* rhs_type = TypeOf(expr->rhs())->UnwrapPtrIfNeeded();
// Note, the ordering here matters. The later checks depend on the prior
// checks having been done.
auto* lhs_mat = lhs_type->As<type::Matrix>();
auto* rhs_mat = rhs_type->As<type::Matrix>();
auto* lhs_vec = lhs_type->As<type::Vector>();
auto* rhs_vec = rhs_type->As<type::Vector>();
type::Type* result_type;
if (lhs_mat && rhs_mat) {
result_type = builder_->create<type::Matrix>(
lhs_mat->type(), lhs_mat->rows(), rhs_mat->columns());
} else if (lhs_mat && rhs_vec) {
result_type =
builder_->create<type::Vector>(lhs_mat->type(), lhs_mat->rows());
} else if (lhs_vec && rhs_mat) {
result_type =
builder_->create<type::Vector>(rhs_mat->type(), rhs_mat->columns());
} else if (lhs_mat) {
// matrix * scalar
result_type = lhs_type;
} else if (rhs_mat) {
// scalar * matrix
result_type = rhs_type;
} else if (lhs_vec && rhs_vec) {
result_type = lhs_type;
} else if (lhs_vec) {
// Vector * scalar
result_type = lhs_type;
} else if (rhs_vec) {
// Scalar * vector
result_type = rhs_type;
} else {
// Scalar * Scalar
result_type = lhs_type;
}
SetType(expr, result_type);
return true;
}
set_error(expr->source(), "Unknown binary expression");
return false;
}
bool TypeDeterminer::DetermineUnaryOp(ast::UnaryOpExpression* expr) {
// Result type matches the parameter type.
if (!DetermineResultType(expr->expr())) {
return false;
}
auto* result_type = TypeOf(expr->expr())->UnwrapPtrIfNeeded();
SetType(expr, result_type);
return true;
}
TypeDeterminer::VariableInfo* TypeDeterminer::CreateVariableInfo(
ast::Variable* var) {
auto* info = variable_infos_.Create(var);
variable_to_info_.emplace(var, info);
return info;
}
type::Type* TypeDeterminer::TypeOf(ast::Expression* expr) {
auto it = expr_info_.find(expr);
if (it != expr_info_.end()) {
return it->second.type;
}
return nullptr;
}
void TypeDeterminer::SetType(ast::Expression* expr, type::Type* type) {
assert(expr_info_.count(expr) == 0);
expr_info_.emplace(expr, ExpressionInfo{type, current_statement_});
}
void TypeDeterminer::CreateSemanticNodes() const {
auto& sem = builder_->Sem();
// Create semantic nodes for all ast::Variables
for (auto it : variable_to_info_) {
auto* var = it.first;
auto* info = it.second;
sem.Add(var,
builder_->create<semantic::Variable>(var, info->storage_class));
}
auto remap_vars = [&sem](const std::vector<VariableInfo*>& in) {
std::vector<const semantic::Variable*> out;
out.reserve(in.size());
for (auto* info : in) {
out.emplace_back(sem.Get(info->declaration));
}
return out;
};
// Create semantic nodes for all ast::Functions
std::unordered_map<FunctionInfo*, semantic::Function*> func_info_to_sem_func;
for (auto it : function_to_info_) {
auto* func = it.first;
auto* info = it.second;
auto* sem_func = builder_->create<semantic::Function>(
info->declaration, remap_vars(info->referenced_module_vars),
remap_vars(info->local_referenced_module_vars),
info->ancestor_entry_points);
func_info_to_sem_func.emplace(info, sem_func);
sem.Add(func, sem_func);
}
// Create semantic nodes for all ast::CallExpressions
for (auto it : function_calls_) {
auto* call = it.first;
auto info = it.second;
auto* sem_func = func_info_to_sem_func.at(info.function);
sem.Add(call, builder_->create<semantic::Call>(sem_func, info.statement));
}
// Create semantic nodes for all remaining expression types
for (auto it : expr_info_) {
auto* expr = it.first;
auto& info = it.second;
if (sem.Get(expr)) {
// Expression has already been assigned a semantic node
continue;
}
sem.Add(expr,
builder_->create<semantic::Expression>(info.type, info.statement));
}
}
TypeDeterminer::VariableInfo::VariableInfo(ast::Variable* decl)
: declaration(decl), storage_class(decl->declared_storage_class()) {}
TypeDeterminer::VariableInfo::~VariableInfo() = default;
TypeDeterminer::FunctionInfo::FunctionInfo(ast::Function* decl)
: declaration(decl) {}
TypeDeterminer::FunctionInfo::~FunctionInfo() = default;
2020-03-02 20:47:43 +00:00
} // namespace tint