spirv-reader: flatten input IO arrays and matrices

Bug: tint:912
Change-Id: I403d504b577bda7918a81d990da5a13ca2036971
Reviewed-on: https://dawn-review.googlesource.com/c/tint/+/56141
Auto-Submit: David Neto <dneto@google.com>
Kokoro: Kokoro <noreply+kokoro@google.com>
Reviewed-by: Ben Clayton <bclayton@google.com>
Reviewed-by: James Price <jrprice@google.com>
This commit is contained in:
David Neto 2021-06-29 14:38:56 +00:00
parent 5ea0fe00bf
commit 1d2f08b4ad
3 changed files with 539 additions and 38 deletions

View File

@ -935,6 +935,101 @@ ast::BlockStatement* FunctionEmitter::MakeFunctionBody() {
return body;
}
bool FunctionEmitter::EmitInputParameter(std::string var_name,
const Type* var_type,
ast::DecorationList* decos,
std::vector<int> index_prefix,
const Type* tip_type,
const Type* forced_param_type,
ast::VariableList* params,
ast::StatementList* statements) {
tip_type = tip_type->UnwrapAlias();
if (auto* ref_type = tip_type->As<Reference>()) {
tip_type = ref_type->type;
}
if (auto* matrix_type = tip_type->As<Matrix>()) {
index_prefix.push_back(0);
const auto num_columns = static_cast<int>(matrix_type->columns);
const Type* vec_ty = ty_.Vector(matrix_type->type, matrix_type->rows);
for (int col = 0; col < num_columns; col++) {
index_prefix.back() = col;
if (!EmitInputParameter(var_name, var_type, decos, index_prefix, vec_ty,
forced_param_type, params, statements)) {
return false;
}
}
return success();
} else if (auto* array_type = tip_type->As<Array>()) {
if (array_type->size == 0) {
return Fail() << "runtime-size array not allowed on pipeline IO";
}
index_prefix.push_back(0);
const Type* elem_ty = array_type->type;
for (int i = 0; i < static_cast<int>(array_type->size); i++) {
index_prefix.back() = i;
if (!EmitInputParameter(var_name, var_type, decos, index_prefix, elem_ty,
forced_param_type, params, statements)) {
return false;
}
}
return success();
}
const bool is_builtin = ast::HasDecoration<ast::BuiltinDecoration>(*decos);
const Type* param_type = is_builtin ? forced_param_type : tip_type;
const auto param_name = namer_.MakeDerivedName(var_name + "_param");
// Create the parameter.
// TODO(dneto): Note: If the parameter has non-location decorations,
// then those decoration AST nodes will be reused between multiple elements
// of a matrix, array, or structure. Normally that's disallowed but currently
// the SPIR-V reader will make duplicates when the entire AST is cloned
// at the top level of the SPIR-V reader flow. Consider rewriting this
// to avoid this node-sharing.
params->push_back(
builder_.Param(param_name, param_type->Build(builder_), *decos));
// Add a body statement to copy the parameter to the corresponding private
// variable.
ast::Expression* param_value = builder_.Expr(param_name);
ast::Expression* store_dest = builder_.Expr(var_name);
// Index into the LHS as needed.
auto* current_type = var_type->UnwrapAlias()->UnwrapRef()->UnwrapAlias();
for (auto index : index_prefix) {
if (auto* matrix_type = current_type->As<Matrix>()) {
store_dest = builder_.IndexAccessor(store_dest, builder_.Expr(index));
current_type = ty_.Vector(matrix_type->type, matrix_type->rows);
} else if (auto* array_type = current_type->As<Array>()) {
store_dest = builder_.IndexAccessor(store_dest, builder_.Expr(index));
current_type = array_type->type->UnwrapAlias();
}
}
if (is_builtin && (tip_type != forced_param_type)) {
// The parameter will have the WGSL type, but we need bitcast to
// the variable store type.
param_value =
create<ast::BitcastExpression>(tip_type->Build(builder_), param_value);
}
statements->push_back(builder_.Assign(store_dest, param_value));
// Increment the location attribute, in case more parameters will follow.
for (auto*& deco : *decos) {
if (auto* loc_deco = deco->As<ast::LocationDecoration>()) {
// Replace this location decoration with a new one with one higher index.
// The old one doesn't leak because it's kept in the builder's AST node
// list.
deco = builder_.Location(loc_deco->source(), loc_deco->value() + 1);
}
}
return success();
}
bool FunctionEmitter::EmitEntryPointAsWrapper() {
Source source;
@ -954,9 +1049,9 @@ bool FunctionEmitter::EmitEntryPointAsWrapper() {
TINT_ASSERT(Reader, var != nullptr);
TINT_ASSERT(Reader, var->opcode() == SpvOpVariable);
auto* store_type = GetVariableStoreType(*var);
auto* forced_store_type = store_type;
auto* forced_param_type = store_type;
ast::DecorationList param_decos;
if (!parser_impl_.ConvertDecorationsForVariable(var_id, &forced_store_type,
if (!parser_impl_.ConvertDecorationsForVariable(var_id, &forced_param_type,
&param_decos, true)) {
// This occurs, and is not an error, for the PointSize builtin.
if (!success()) {
@ -966,49 +1061,31 @@ bool FunctionEmitter::EmitEntryPointAsWrapper() {
continue;
}
// In Vulkan SPIR-V, Input variables must not have an initializer.
// We don't have to handle initializers because in Vulkan SPIR-V, Input
// variables must not have them.
const auto var_name = namer_.GetName(var_id);
const auto var_sym = builder_.Symbols().Register(var_name);
const auto param_name = namer_.MakeDerivedName(var_name + "_param");
const auto param_sym = builder_.Symbols().Register(param_name);
auto* param = create<ast::Variable>(
source, param_sym, ast::StorageClass::kNone, ast::Access::kUndefined,
forced_store_type->Build(builder_), true /* is const */,
nullptr /* no constructor */, param_decos);
decl.params.push_back(param);
// Add a body statement to copy the parameter to the corresponding private
// variable.
ast::Expression* param_value =
create<ast::IdentifierExpression>(source, param_sym);
ast::Expression* store_dest =
create<ast::IdentifierExpression>(source, var_sym);
bool ok = true;
if (HasBuiltinSampleMask(param_decos)) {
// In Vulkan SPIR-V, the sample mask is an array. In WGSL it's a scalar.
// Use the first element only.
store_dest = create<ast::ArrayAccessorExpression>(
source, store_dest, parser_impl_.MakeNullValue(ty_.I32()));
if (const auto* arr_ty = store_type->UnwrapAlias()->As<Array>()) {
if (arr_ty->type->IsSignedScalarOrVector()) {
// sample_mask is unsigned in WGSL. Bitcast it.
param_value = create<ast::BitcastExpression>(
source, ty_.I32()->Build(builder_), param_value);
}
auto* sample_mask_array_type =
store_type->UnwrapRef()->UnwrapAlias()->As<Array>();
TINT_ASSERT(Reader, sample_mask_array_type);
ok = EmitInputParameter(var_name, store_type, &param_decos, {0},
sample_mask_array_type->type, forced_param_type,
&(decl.params), &stmts);
} else {
// Vulkan SPIR-V requires this. Validation should have failed already.
return Fail()
<< "expected SampleMask to be an array of integer scalars";
// The normal path.
ok =
EmitInputParameter(var_name, store_type, &param_decos, {}, store_type,
forced_param_type, &(decl.params), &stmts);
}
} else if (forced_store_type != store_type) {
// The parameter will have the WGSL type, but we need to add
// a bitcast to the variable store type.
param_value = create<ast::BitcastExpression>(
source, store_type->Build(builder_), param_value);
if (!ok) {
return false;
}
stmts.push_back(
create<ast::AssignmentStatement>(source, store_dest, param_value));
}
// Call the inner function. It has no parameters.

View File

@ -410,6 +410,33 @@ class FunctionEmitter {
/// @returns false if emission failed.
bool EmitEntryPointAsWrapper();
/// Creates one or more entry point input parameters corresponding to a
/// part of an input variable. The part of the input variable is specfied
/// by the `index_prefix`, which successively indexes into the variable.
/// Also generates the assignment statements that copy the input parameter
/// to the corresponding part of the variable. Assumes the variable
/// has already been created in the Private storage class.
/// @param var_name The name of the variable
/// @param var_type The store type of the variable
/// @param decos The variable's decorations
/// @param index_prefix Indices stepping into the variable, indicating
/// what part of the variable to populate.
/// @param tip_type The type of the component inside variable, after indexing
/// with the indices in `index_prefix`.
/// @param forced_param_type The type forced by WGSL, if the variable is a
/// builtin, otherwise the same as var_type.
/// @param params The parameter list where the new parameter is appended.
/// @param statements The statement list where the assignment is appended.
/// @returns false if emission failed
bool EmitInputParameter(std::string var_name,
const Type* var_type,
ast::DecorationList* decos,
std::vector<int> index_prefix,
const Type* tip_type,
const Type* forced_param_type,
ast::VariableList* params,
ast::StatementList* statements);
/// Create an ast::BlockStatement representing the body of the function.
/// This creates the statement stack, which is non-empty for the lifetime
/// of the function.

View File

@ -6288,7 +6288,404 @@ TEST_F(SpvModuleScopeVarParserTest,
EXPECT_EQ(got, expected) << got;
}
// TODO(dneto): pipeline IO: flatten structures, and distribute locations
TEST_F(SpvModuleScopeVarParserTest, Input_FlattenArray_OneLevel) {
const std::string assembly = R"(
OpCapability Shader
OpMemoryModel Logical Simple
OpEntryPoint Vertex %main "main" %1 %2
OpDecorate %1 Location 4
OpDecorate %2 BuiltIn Position
%void = OpTypeVoid
%voidfn = OpTypeFunction %void
%float = OpTypeFloat 32
%v4float = OpTypeVector %float 4
%uint = OpTypeInt 32 0
%uint_0 = OpConstant %uint 0
%uint_1 = OpConstant %uint 1
%uint_3 = OpConstant %uint 3
%arr = OpTypeArray %float %uint_3
%11 = OpTypePointer Input %arr
%1 = OpVariable %11 Input
%12 = OpTypePointer Output %v4float
%2 = OpVariable %12 Output
%main = OpFunction %void None %voidfn
%entry = OpLabel
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->Parse()) << p->error() << assembly;
EXPECT_TRUE(p->error().empty());
const auto got = p->program().to_str();
const std::string expected = R"(Module{
Struct main_out {
StructMember{[[ BuiltinDecoration{position}
]] x_2: __vec_4__f32}
}
Variable{
x_1
private
undefined
__array__f32_3
}
Variable{
x_2
private
undefined
__vec_4__f32
}
Function main_1 -> __void
()
{
Return{}
}
Function main -> __type_name_main_out
StageDecoration{vertex}
(
VariableConst{
Decorations{
LocationDecoration{4}
}
x_1_param
none
undefined
__f32
}
VariableConst{
Decorations{
LocationDecoration{5}
}
x_1_param_1
none
undefined
__f32
}
VariableConst{
Decorations{
LocationDecoration{6}
}
x_1_param_2
none
undefined
__f32
}
)
{
Assignment{
ArrayAccessor[not set]{
Identifier[not set]{x_1}
ScalarConstructor[not set]{0}
}
Identifier[not set]{x_1_param}
}
Assignment{
ArrayAccessor[not set]{
Identifier[not set]{x_1}
ScalarConstructor[not set]{1}
}
Identifier[not set]{x_1_param_1}
}
Assignment{
ArrayAccessor[not set]{
Identifier[not set]{x_1}
ScalarConstructor[not set]{2}
}
Identifier[not set]{x_1_param_2}
}
Call[not set]{
Identifier[not set]{main_1}
(
)
}
Return{
{
TypeConstructor[not set]{
__type_name_main_out
Identifier[not set]{x_2}
}
}
}
}
}
)";
EXPECT_EQ(got, expected) << got;
}
TEST_F(SpvModuleScopeVarParserTest, Input_FlattenMatrix) {
const std::string assembly = R"(
OpCapability Shader
OpMemoryModel Logical Simple
OpEntryPoint Vertex %main "main" %1 %2
OpDecorate %1 Location 9
OpDecorate %2 BuiltIn Position
%void = OpTypeVoid
%voidfn = OpTypeFunction %void
%float = OpTypeFloat 32
%v4float = OpTypeVector %float 4
%m2v4float = OpTypeMatrix %v4float 2
%uint = OpTypeInt 32 0
%11 = OpTypePointer Input %m2v4float
%1 = OpVariable %11 Input
%12 = OpTypePointer Output %v4float
%2 = OpVariable %12 Output
%main = OpFunction %void None %voidfn
%entry = OpLabel
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->Parse()) << p->error() << assembly;
EXPECT_TRUE(p->error().empty());
const auto got = p->program().to_str();
const std::string expected = R"(Module{
Struct main_out {
StructMember{[[ BuiltinDecoration{position}
]] x_2: __vec_4__f32}
}
Variable{
x_1
private
undefined
__mat_4_2__f32
}
Variable{
x_2
private
undefined
__vec_4__f32
}
Function main_1 -> __void
()
{
Return{}
}
Function main -> __type_name_main_out
StageDecoration{vertex}
(
VariableConst{
Decorations{
LocationDecoration{9}
}
x_1_param
none
undefined
__vec_4__f32
}
VariableConst{
Decorations{
LocationDecoration{10}
}
x_1_param_1
none
undefined
__vec_4__f32
}
)
{
Assignment{
ArrayAccessor[not set]{
Identifier[not set]{x_1}
ScalarConstructor[not set]{0}
}
Identifier[not set]{x_1_param}
}
Assignment{
ArrayAccessor[not set]{
Identifier[not set]{x_1}
ScalarConstructor[not set]{1}
}
Identifier[not set]{x_1_param_1}
}
Call[not set]{
Identifier[not set]{main_1}
(
)
}
Return{
{
TypeConstructor[not set]{
__type_name_main_out
Identifier[not set]{x_2}
}
}
}
}
}
)";
EXPECT_EQ(got, expected) << got;
}
TEST_F(SpvModuleScopeVarParserTest, Input_FlattenNested) {
const std::string assembly = R"(
OpCapability Shader
OpMemoryModel Logical Simple
OpEntryPoint Vertex %main "main" %1 %2
OpDecorate %1 Location 7
OpDecorate %2 BuiltIn Position
%void = OpTypeVoid
%voidfn = OpTypeFunction %void
%float = OpTypeFloat 32
%v4float = OpTypeVector %float 4
%m2v4float = OpTypeMatrix %v4float 2
%uint = OpTypeInt 32 0
%uint_2 = OpConstant %uint 2
%arr = OpTypeArray %m2v4float %uint_2
%11 = OpTypePointer Input %arr
%1 = OpVariable %11 Input
%12 = OpTypePointer Output %v4float
%2 = OpVariable %12 Output
%main = OpFunction %void None %voidfn
%entry = OpLabel
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->Parse()) << p->error() << assembly;
EXPECT_TRUE(p->error().empty());
const auto got = p->program().to_str();
const std::string expected = R"(Module{
Struct main_out {
StructMember{[[ BuiltinDecoration{position}
]] x_2: __vec_4__f32}
}
Variable{
x_1
private
undefined
__array__mat_4_2__f32_2
}
Variable{
x_2
private
undefined
__vec_4__f32
}
Function main_1 -> __void
()
{
Return{}
}
Function main -> __type_name_main_out
StageDecoration{vertex}
(
VariableConst{
Decorations{
LocationDecoration{7}
}
x_1_param
none
undefined
__vec_4__f32
}
VariableConst{
Decorations{
LocationDecoration{8}
}
x_1_param_1
none
undefined
__vec_4__f32
}
VariableConst{
Decorations{
LocationDecoration{9}
}
x_1_param_2
none
undefined
__vec_4__f32
}
VariableConst{
Decorations{
LocationDecoration{10}
}
x_1_param_3
none
undefined
__vec_4__f32
}
)
{
Assignment{
ArrayAccessor[not set]{
ArrayAccessor[not set]{
Identifier[not set]{x_1}
ScalarConstructor[not set]{0}
}
ScalarConstructor[not set]{0}
}
Identifier[not set]{x_1_param}
}
Assignment{
ArrayAccessor[not set]{
ArrayAccessor[not set]{
Identifier[not set]{x_1}
ScalarConstructor[not set]{0}
}
ScalarConstructor[not set]{1}
}
Identifier[not set]{x_1_param_1}
}
Assignment{
ArrayAccessor[not set]{
ArrayAccessor[not set]{
Identifier[not set]{x_1}
ScalarConstructor[not set]{1}
}
ScalarConstructor[not set]{0}
}
Identifier[not set]{x_1_param_2}
}
Assignment{
ArrayAccessor[not set]{
ArrayAccessor[not set]{
Identifier[not set]{x_1}
ScalarConstructor[not set]{1}
}
ScalarConstructor[not set]{1}
}
Identifier[not set]{x_1_param_3}
}
Call[not set]{
Identifier[not set]{main_1}
(
)
}
Return{
{
TypeConstructor[not set]{
__type_name_main_out
Identifier[not set]{x_2}
}
}
}
}
}
)";
EXPECT_EQ(got, expected) << got;
}
// TODO(dneto): flatting structures
} // namespace
} // namespace spirv