dawn_wire: Implement MapRead/WriteAsync on top of MapAsync

This inverts the shimming to have the old mapping entrypoints be
implemented on top of the new mapping entrypoint.

Bug: dawn:445

Change-Id: I98c81b2873d506790b1b19048c5289c62d1b83ae
Reviewed-on: https://dawn-review.googlesource.com/c/dawn/+/25700
Reviewed-by: Stephen White <senorblanco@chromium.org>
Reviewed-by: Austin Eng <enga@chromium.org>
Commit-Queue: Corentin Wallez <cwallez@chromium.org>
This commit is contained in:
Corentin Wallez 2020-07-28 09:00:11 +00:00 committed by Commit Bot service account
parent c11a19145f
commit 5b007a519a
2 changed files with 130 additions and 160 deletions

View File

@ -19,37 +19,6 @@
namespace dawn_wire { namespace client {
namespace {
template <typename Handle>
void SerializeBufferMapAsync(const Buffer* buffer,
uint32_t serial,
Handle* handle,
size_t size) {
// TODO(enga): Remove the template when Read/Write handles are combined in a tagged
// pointer.
constexpr bool isWrite =
std::is_same<Handle, MemoryTransferService::WriteHandle>::value;
// Get the serialization size of the handle.
size_t handleCreateInfoLength = handle->SerializeCreateSize();
BufferMapAsyncCmd cmd;
cmd.bufferId = buffer->id;
cmd.requestSerial = serial;
cmd.mode = isWrite ? WGPUMapMode_Write : WGPUMapMode_Read;
cmd.handleCreateInfoLength = handleCreateInfoLength;
cmd.handleCreateInfo = nullptr;
cmd.offset = 0;
cmd.size = size;
char* writeHandleSpace =
buffer->device->GetClient()->SerializeCommand(cmd, handleCreateInfoLength);
// Serialize the handle into the space after the command.
handle->SerializeCreate(writeHandleSpace);
}
} // namespace
// static
WGPUBuffer Buffer::Create(Device* device_, const WGPUBufferDescriptor* descriptor) {
Client* wireClient = device_->GetClient();
@ -165,85 +134,83 @@ namespace dawn_wire { namespace client {
void Buffer::ClearMapRequests(WGPUBufferMapAsyncStatus status) {
for (auto& it : mRequests) {
if (it.second.writeHandle) {
it.second.writeCallback(status, nullptr, 0, it.second.userdata);
} else {
it.second.readCallback(status, nullptr, 0, it.second.userdata);
if (it.second.callback) {
it.second.callback(status, it.second.userdata);
}
}
mRequests.clear();
}
void Buffer::MapReadAsync(WGPUBufferMapReadCallback callback, void* userdata) {
uint32_t serial = mRequestSerial++;
ASSERT(mRequests.find(serial) == mRequests.end());
struct ProxyData {
WGPUBufferMapReadCallback callback;
void* userdata;
Buffer* self;
};
ProxyData* proxy = new ProxyData;
proxy->callback = callback;
proxy->userdata = userdata;
proxy->self = this;
if (mSize > std::numeric_limits<size_t>::max()) {
// On buffer creation, we check that mappable buffers do not exceed this size.
// So this buffer must not have mappable usage. Inject a validation error.
device->InjectError(WGPUErrorType_Validation, "Buffer needs the correct map usage bit");
callback(WGPUBufferMapAsyncStatus_Error, nullptr, 0, userdata);
return;
}
MapAsync(
WGPUMapMode_Read, 0, mSize,
[](WGPUBufferMapAsyncStatus status, void* userdata) {
ProxyData* proxy = static_cast<ProxyData*>(userdata);
Buffer* self = proxy->self;
// Create a ReadHandle for the map request. This is the client's intent to read GPU
// memory.
MemoryTransferService::ReadHandle* readHandle =
device->GetClient()->GetMemoryTransferService()->CreateReadHandle(
static_cast<size_t>(mSize));
if (readHandle == nullptr) {
device->InjectError(WGPUErrorType_OutOfMemory, "Failed to create buffer mapping");
callback(WGPUBufferMapAsyncStatus_Error, nullptr, 0, userdata);
return;
}
if (status == WGPUBufferMapAsyncStatus_Success) {
// On buffer creation we assert that a mappable buffer cannot be bigger than
// MAX_SIZE_T so we should never have a successful mapping in this case.
ASSERT(self->mSize <= std::numeric_limits<size_t>::max());
self->mMapOffset = 0;
self->mMapSize = self->mSize;
}
Buffer::MapRequestData request = {};
request.readCallback = callback;
request.userdata = userdata;
// The handle is owned by the MapRequest until the callback returns.
request.readHandle = std::unique_ptr<MemoryTransferService::ReadHandle>(readHandle);
if (proxy->callback) {
const void* data = self->GetConstMappedRange(0, self->mSize);
uint64_t dataLength = data == nullptr ? 0 : self->mSize;
proxy->callback(status, data, dataLength, proxy->userdata);
}
// Store a mapping from serial -> MapRequest. The client can map/unmap before the map
// operations are returned by the server so multiple requests may be in flight.
mRequests[serial] = std::move(request);
SerializeBufferMapAsync(this, serial, readHandle, mSize);
delete proxy;
},
proxy);
}
void Buffer::MapWriteAsync(WGPUBufferMapWriteCallback callback, void* userdata) {
uint32_t serial = mRequestSerial++;
ASSERT(mRequests.find(serial) == mRequests.end());
struct ProxyData {
WGPUBufferMapWriteCallback callback;
void* userdata;
Buffer* self;
};
ProxyData* proxy = new ProxyData;
proxy->callback = callback;
proxy->userdata = userdata;
proxy->self = this;
if (mSize > std::numeric_limits<size_t>::max()) {
// On buffer creation, we check that mappable buffers do not exceed this size.
// So this buffer must not have mappable usage. Inject a validation error.
device->InjectError(WGPUErrorType_Validation, "Buffer needs the correct map usage bit");
callback(WGPUBufferMapAsyncStatus_Error, nullptr, 0, userdata);
return;
}
MapAsync(
WGPUMapMode_Write, 0, mSize,
[](WGPUBufferMapAsyncStatus status, void* userdata) {
ProxyData* proxy = static_cast<ProxyData*>(userdata);
Buffer* self = proxy->self;
// Create a WriteHandle for the map request. This is the client's intent to write GPU
// memory.
MemoryTransferService::WriteHandle* writeHandle =
device->GetClient()->GetMemoryTransferService()->CreateWriteHandle(
static_cast<size_t>(mSize));
if (writeHandle == nullptr) {
device->InjectError(WGPUErrorType_OutOfMemory, "Failed to create buffer mapping");
callback(WGPUBufferMapAsyncStatus_Error, nullptr, 0, userdata);
return;
}
if (status == WGPUBufferMapAsyncStatus_Success) {
// On buffer creation we assert that a mappable buffer cannot be bigger than
// MAX_SIZE_T so we should never have a successful mapping in this case.
ASSERT(self->mSize <= std::numeric_limits<size_t>::max());
self->mMapOffset = 0;
self->mMapSize = self->mSize;
}
Buffer::MapRequestData request = {};
request.writeCallback = callback;
request.userdata = userdata;
// The handle is owned by the MapRequest until the callback returns.
request.writeHandle = std::unique_ptr<MemoryTransferService::WriteHandle>(writeHandle);
if (proxy->callback) {
void* data = self->GetMappedRange(0, self->mSize);
uint64_t dataLength = data == nullptr ? 0 : self->mSize;
proxy->callback(status, data, dataLength, proxy->userdata);
}
// Store a mapping from serial -> MapRequest. The client can map/unmap before the map
// operations are returned by the server so multiple requests may be in flight.
mRequests[serial] = std::move(request);
SerializeBufferMapAsync(this, serial, writeHandle, mSize);
delete proxy;
},
proxy);
}
void Buffer::MapAsync(WGPUMapModeFlags mode,
@ -251,17 +218,16 @@ namespace dawn_wire { namespace client {
size_t size,
WGPUBufferMapCallback callback,
void* userdata) {
// Do early validation for mode because it needs to be correct for the proxying to
// MapReadAsync or MapWriteAsync to work.
// Handle the defaulting of size required by WebGPU.
if (size == 0 && offset < mSize) {
size = mSize - offset;
}
bool isReadMode = mode & WGPUMapMode_Read;
bool isWriteMode = mode & WGPUMapMode_Write;
bool modeOk = isReadMode ^ isWriteMode;
// Do early validation of offset and size because it isn't checked by MapReadAsync /
// MapWriteAsync.
bool offsetOk = (uint64_t(offset) <= mSize) && offset % 4 == 0;
bool sizeOk = (uint64_t(size) <= mSize - uint64_t(offset)) && size % 4 == 0;
if (!(modeOk && offsetOk && sizeOk)) {
// Step 1. Do early validation of READ ^ WRITE because the server rejects mode = 0.
if (!(isReadMode ^ isWriteMode)) {
device->InjectError(WGPUErrorType_Validation, "MapAsync error (you figure out :P)");
if (callback != nullptr) {
callback(WGPUBufferMapAsyncStatus_Error, userdata);
@ -269,51 +235,63 @@ namespace dawn_wire { namespace client {
return;
}
// The structure to keep arguments so we can forward the MapReadAsync and MapWriteAsync to
// `callback`
struct ProxyData {
WGPUBufferMapCallback callback;
void* userdata;
size_t mapOffset;
size_t mapSize;
Buffer* self;
};
ProxyData* proxy = new ProxyData;
proxy->callback = callback;
proxy->userdata = userdata;
proxy->mapOffset = offset;
proxy->mapSize = size;
proxy->self = this;
// Note technically we should keep the buffer alive until the callback is fired but the
// client doesn't have good facilities to do that yet.
// Step 2. Create the request structure that will hold information while this mapping is
// in flight.
uint32_t serial = mRequestSerial++;
ASSERT(mRequests.find(serial) == mRequests.end());
// Call MapReadAsync or MapWriteAsync and forward the callback.
Buffer::MapRequestData request = {};
request.callback = callback;
request.userdata = userdata;
request.size = size;
request.offset = offset;
// Step 2a: Create the read / write handles for this request.
if (isReadMode) {
MapReadAsync(
[](WGPUBufferMapAsyncStatus status, const void*, uint64_t, void* userdata) {
ProxyData* proxy = static_cast<ProxyData*>(userdata);
proxy->self->mMapOffset = proxy->mapOffset;
proxy->self->mMapSize = proxy->mapSize;
if (proxy->callback) {
proxy->callback(status, proxy->userdata);
}
delete proxy;
},
proxy);
request.readHandle.reset(
device->GetClient()->GetMemoryTransferService()->CreateReadHandle(size));
if (request.readHandle == nullptr) {
device->InjectError(WGPUErrorType_OutOfMemory, "Failed to create buffer mapping");
callback(WGPUBufferMapAsyncStatus_Error, userdata);
return;
}
} else {
ASSERT(isWriteMode);
MapWriteAsync(
[](WGPUBufferMapAsyncStatus status, void*, uint64_t, void* userdata) {
ProxyData* proxy = static_cast<ProxyData*>(userdata);
proxy->self->mMapOffset = proxy->mapOffset;
proxy->self->mMapSize = proxy->mapSize;
if (proxy->callback) {
proxy->callback(status, proxy->userdata);
}
delete proxy;
},
proxy);
request.writeHandle.reset(
device->GetClient()->GetMemoryTransferService()->CreateWriteHandle(size));
if (request.writeHandle == nullptr) {
device->InjectError(WGPUErrorType_OutOfMemory, "Failed to create buffer mapping");
callback(WGPUBufferMapAsyncStatus_Error, userdata);
return;
}
}
// Step 3. Serialize the command to send to the server.
BufferMapAsyncCmd cmd;
cmd.bufferId = this->id;
cmd.requestSerial = serial;
cmd.mode = mode;
cmd.offset = offset;
cmd.size = size;
cmd.handleCreateInfo = nullptr;
// Step 3a. Fill the handle create info in the command.
if (isReadMode) {
cmd.handleCreateInfoLength = request.readHandle->SerializeCreateSize();
char* handleCreateInfoSpace =
device->GetClient()->SerializeCommand(cmd, cmd.handleCreateInfoLength);
request.readHandle->SerializeCreate(handleCreateInfoSpace);
} else {
ASSERT(isWriteMode);
cmd.handleCreateInfoLength = request.writeHandle->SerializeCreateSize();
char* handleCreateInfoSpace =
device->GetClient()->SerializeCommand(cmd, cmd.handleCreateInfoLength);
request.writeHandle->SerializeCreate(handleCreateInfoSpace);
}
// Step 4. Register this request so that we can retrieve it from its serial when the server
// sends the callback.
mRequests[serial] = std::move(request);
}
bool Buffer::OnMapAsyncCallback(uint32_t requestSerial,
@ -332,13 +310,8 @@ namespace dawn_wire { namespace client {
mRequests.erase(requestIt);
auto FailRequest = [&request]() -> bool {
if (request.readCallback != nullptr) {
request.readCallback(WGPUBufferMapAsyncStatus_DeviceLost, nullptr, 0,
request.userdata);
}
if (request.writeCallback != nullptr) {
request.writeCallback(WGPUBufferMapAsyncStatus_DeviceLost, nullptr, 0,
request.userdata);
if (request.callback != nullptr) {
request.callback(WGPUBufferMapAsyncStatus_DeviceLost, request.userdata);
}
return false;
};
@ -389,14 +362,11 @@ namespace dawn_wire { namespace client {
mWriteHandle = std::move(request.writeHandle);
}
mMapOffset = request.offset;
mMapSize = request.size;
mMappedData = const_cast<void*>(mappedData);
if (isRead) {
request.readCallback(static_cast<WGPUBufferMapAsyncStatus>(status), mMappedData,
static_cast<uint64_t>(mappedDataLength), request.userdata);
} else {
request.writeCallback(static_cast<WGPUBufferMapAsyncStatus>(status), mMappedData,
static_cast<uint64_t>(mappedDataLength), request.userdata);
if (request.callback) {
request.callback(static_cast<WGPUBufferMapAsyncStatus>(status), request.userdata);
}
return true;
@ -406,7 +376,7 @@ namespace dawn_wire { namespace client {
if (!IsMappedForWriting() || !CheckGetMappedRangeOffsetSize(offset, size)) {
return nullptr;
}
return static_cast<uint8_t*>(mMappedData) + offset;
return static_cast<uint8_t*>(mMappedData) + (offset - mMapOffset);
}
const void* Buffer::GetConstMappedRange(size_t offset, size_t size) {
@ -414,7 +384,7 @@ namespace dawn_wire { namespace client {
!CheckGetMappedRangeOffsetSize(offset, size)) {
return nullptr;
}
return static_cast<uint8_t*>(mMappedData) + offset;
return static_cast<uint8_t*>(mMappedData) + (offset - mMapOffset);
}
void Buffer::Unmap() {

View File

@ -64,10 +64,10 @@ namespace dawn_wire { namespace client {
// map request in flight at a single time and need to track them separately.
// On well-behaved applications, only one request should exist at a single time.
struct MapRequestData {
// TODO(enga): Use a tagged pointer to save space.
WGPUBufferMapReadCallback readCallback = nullptr;
WGPUBufferMapWriteCallback writeCallback = nullptr;
WGPUBufferMapCallback callback = nullptr;
void* userdata = nullptr;
size_t offset = 0;
size_t size = 0;
// TODO(enga): Use a tagged pointer to save space.
std::unique_ptr<MemoryTransferService::ReadHandle> readHandle = nullptr;
std::unique_ptr<MemoryTransferService::WriteHandle> writeHandle = nullptr;