Validate writable storage texture bindings don't alias

Followup of storage buffer bindings aliasing validation.

Bug: dawn:1642
Change-Id: I84bf33895320053630ed80d3503ff53d1eaa83b9
Reviewed-on: https://dawn-review.googlesource.com/c/dawn/+/121420
Kokoro: Kokoro <noreply+kokoro@google.com>
Reviewed-by: Austin Eng <enga@chromium.org>
Commit-Queue: Shrek Shao <shrekshao@google.com>
This commit is contained in:
shrekshao 2023-03-01 21:04:28 +00:00 committed by Dawn LUCI CQ
parent bda18d2b8d
commit 84532462f6
10 changed files with 793 additions and 73 deletions

View File

@ -61,7 +61,23 @@ bool IsDoubleValueRepresentable(double value) {
constexpr double kMax = static_cast<double>(std::numeric_limits<T>::max()); constexpr double kMax = static_cast<double>(std::numeric_limits<T>::max());
return kLowest <= value && value <= kMax; return kLowest <= value && value <= kMax;
} else { } else {
static_assert(sizeof(T) != sizeof(T), "Unsupported type"); static_assert(std::is_same_v<T, float> || std::is_integral_v<T>, "Unsupported type");
}
}
// Returns if two inclusive integral ranges [x0, x1] and [y0, y1] have overlap.
template <typename T>
bool RangesOverlap(T x0, T x1, T y0, T y1) {
ASSERT(x0 <= x1 && y0 <= y1);
if constexpr (std::is_integral_v<T>) {
// Two ranges DON'T have overlap if and only if:
// 1. [x0, x1] [y0, y1], or
// 2. [y0, y1] [x0, x1]
// which is (x1 < y0 || y1 < x0)
// The inverse of which ends in the following statement.
return x0 <= y1 && y0 <= x1;
} else {
static_assert(std::is_integral_v<T>, "Unsupported type");
} }
} }

View File

@ -17,6 +17,7 @@
#include <optional> #include <optional>
#include <type_traits> #include <type_traits>
#include <utility> #include <utility>
#include <variant>
#include "dawn/common/Assert.h" #include "dawn/common/Assert.h"
#include "dawn/common/BitSetIterator.h" #include "dawn/common/BitSetIterator.h"
@ -53,7 +54,7 @@ std::optional<uint32_t> FindFirstUndersizedBuffer(
return std::nullopt; return std::nullopt;
} }
struct BufferBindingAliasingResult { struct BufferAliasing {
struct Entry { struct Entry {
BindGroupIndex bindGroupIndex; BindGroupIndex bindGroupIndex;
BindingIndex bindingIndex; BindingIndex bindingIndex;
@ -66,18 +67,42 @@ struct BufferBindingAliasingResult {
Entry e1; Entry e1;
}; };
// TODO(dawn:1642): Find storage texture binding aliasing as well. struct TextureAliasing {
struct Entry {
BindGroupIndex bindGroupIndex;
BindingIndex bindingIndex;
uint32_t baseMipLevel;
uint32_t mipLevelCount;
uint32_t baseArrayLayer;
uint32_t arrayLayerCount;
};
Entry e0;
Entry e1;
};
using WritableBindingAliasingResult = std::variant<std::monostate, BufferAliasing, TextureAliasing>;
template <typename Return> template <typename Return>
Return FindStorageBufferBindingAliasing( Return FindStorageBufferBindingAliasing(
const PipelineLayoutBase* pipelineLayout, const PipelineLayoutBase* pipelineLayout,
const ityp::array<BindGroupIndex, BindGroupBase*, kMaxBindGroups>& bindGroups, const ityp::array<BindGroupIndex, BindGroupBase*, kMaxBindGroups>& bindGroups,
const ityp::array<BindGroupIndex, std::vector<uint32_t>, kMaxBindGroups> dynamicOffsets) { const ityp::array<BindGroupIndex, std::vector<uint32_t>, kMaxBindGroups>& dynamicOffsets) {
// If true, returns detailed validation error info. Otherwise simply returns if any binding
// aliasing is found.
constexpr bool kProduceDetails = std::is_same_v<Return, WritableBindingAliasingResult>;
// Reduce the bindings array first to only preserve storage buffer bindings that could // Reduce the bindings array first to only preserve storage buffer bindings that could
// potentially have ranges overlap. // potentially have ranges overlap.
// There can at most be 8 storage buffer bindings per shader stage. // There can at most be 8 storage buffer bindings (in default limits) per shader stage.
StackVector<BufferBinding, 8> bindingsToCheck; StackVector<BufferBinding, 8> storageBufferBindingsToCheck;
StackVector<std::pair<BindGroupIndex, BindingIndex>, 8> bufferBindingIndices;
StackVector<std::pair<BindGroupIndex, BindingIndex>, 8> bindingIndices; // Reduce the bindings array first to only preserve writable storage texture bindings that could
// potentially have ranges overlap.
// There can at most be 8 storage texture bindings (in default limits) per shader stage.
StackVector<const TextureViewBase*, 8> storageTextureViewsToCheck;
StackVector<std::pair<BindGroupIndex, BindingIndex>, 8> textureBindingIndices;
for (BindGroupIndex groupIndex : IterateBitSet(pipelineLayout->GetBindGroupLayoutsMask())) { for (BindGroupIndex groupIndex : IterateBitSet(pipelineLayout->GetBindGroupLayoutsMask())) {
BindGroupLayoutBase* bgl = bindGroups[groupIndex]->GetLayout(); BindGroupLayoutBase* bgl = bindGroups[groupIndex]->GetLayout();
@ -107,55 +132,127 @@ Return FindStorageBufferBindingAliasing(
adjustedOffset += dynamicOffsets[groupIndex][static_cast<uint32_t>(bindingIndex)]; adjustedOffset += dynamicOffsets[groupIndex][static_cast<uint32_t>(bindingIndex)];
} }
bindingsToCheck->push_back(BufferBinding{ storageBufferBindingsToCheck->push_back(BufferBinding{
bufferBinding.buffer, bufferBinding.buffer,
adjustedOffset, adjustedOffset,
bufferBinding.size, bufferBinding.size,
}); });
if constexpr (std::is_same_v<Return, std::optional<BufferBindingAliasingResult>>) { if constexpr (kProduceDetails) {
bindingIndices->emplace_back(groupIndex, bindingIndex); bufferBindingIndices->emplace_back(groupIndex, bindingIndex);
}
}
// TODO(dawn:1642): optimize: precompute start/end range of storage textures bindings.
for (BindingIndex bindingIndex{bgl->GetBufferCount()};
bindingIndex < bgl->GetBindingCount(); ++bindingIndex) {
const BindingInfo& bindingInfo = bgl->GetBindingInfo(bindingIndex);
if (bindingInfo.bindingType != BindingInfoType::StorageTexture) {
continue;
}
switch (bindingInfo.storageTexture.access) {
case wgpu::StorageTextureAccess::WriteOnly:
break;
// Continue for other StorageTextureAccess type when we have any.
default:
UNREACHABLE();
}
const TextureViewBase* textureView =
bindGroups[groupIndex]->GetBindingAsTextureView(bindingIndex);
storageTextureViewsToCheck->push_back(textureView);
if constexpr (kProduceDetails) {
textureBindingIndices->emplace_back(groupIndex, bindingIndex);
} }
} }
} }
// Iterate through each bindings to find if any writable storage bindings aliasing exists. // Iterate through each buffer bindings to find if any writable storage bindings aliasing
// Given that maxStorageBuffersPerShaderStage is 8, // exists. Given that maxStorageBuffersPerShaderStage is 8, it doesn't seem too bad to do a
// it doesn't seem too bad to do a nested loop check. // nested loop check.
// TODO(dawn:1642): Maybe do algorithm optimization from O(N^2) to O(N*logN). // TODO(dawn:1642): Maybe do algorithm optimization from O(N^2) to O(N*logN).
for (size_t i = 0; i < bindingsToCheck->size(); i++) { for (size_t i = 0; i < storageBufferBindingsToCheck->size(); i++) {
const auto& bufferBinding0 = bindingsToCheck[i]; const auto& bufferBinding0 = storageBufferBindingsToCheck[i];
for (size_t j = i + 1; j < bindingsToCheck->size(); j++) { for (size_t j = i + 1; j < storageBufferBindingsToCheck->size(); j++) {
const auto& bufferBinding1 = bindingsToCheck[j]; const auto& bufferBinding1 = storageBufferBindingsToCheck[j];
if (bufferBinding0.buffer != bufferBinding1.buffer) { if (bufferBinding0.buffer != bufferBinding1.buffer) {
continue; continue;
} }
if (bufferBinding0.offset <= bufferBinding1.offset + bufferBinding1.size - 1 && if (RangesOverlap(
bufferBinding1.offset <= bufferBinding0.offset + bufferBinding0.size - 1) { bufferBinding0.offset, bufferBinding0.offset + bufferBinding0.size - 1,
if constexpr (std::is_same_v<Return, bool>) { bufferBinding1.offset, bufferBinding1.offset + bufferBinding1.size - 1)) {
if constexpr (kProduceDetails) {
return WritableBindingAliasingResult{BufferAliasing{
{bufferBindingIndices[i].first, bufferBindingIndices[i].second,
bufferBinding0.offset, bufferBinding0.size},
{bufferBindingIndices[j].first, bufferBindingIndices[j].second,
bufferBinding1.offset, bufferBinding1.size},
}};
} else {
return true; return true;
} else if constexpr (std::is_same_v<Return,
std::optional<BufferBindingAliasingResult>>) {
return BufferBindingAliasingResult{
{bindingIndices[i].first, bindingIndices[i].second, bufferBinding0.offset,
bufferBinding0.size},
{bindingIndices[j].first, bindingIndices[j].second, bufferBinding1.offset,
bufferBinding1.size},
};
} }
} }
} }
} }
if constexpr (std::is_same_v<Return, bool>) { // Iterate through each texture views to find if any writable storage bindings aliasing exists.
return false; // Given that maxStorageTexturesPerShaderStage is 8,
} else if constexpr (std::is_same_v<Return, std::optional<BufferBindingAliasingResult>>) { // it doesn't seem too bad to do a nested loop check.
return std::nullopt; // TODO(dawn:1642): Maybe do algorithm optimization from O(N^2) to O(N*logN).
for (size_t i = 0; i < storageTextureViewsToCheck->size(); i++) {
const TextureViewBase* textureView0 = storageTextureViewsToCheck[i];
ASSERT(textureView0->GetAspects() == Aspect::Color);
uint32_t baseMipLevel0 = textureView0->GetBaseMipLevel();
uint32_t mipLevelCount0 = textureView0->GetLevelCount();
uint32_t baseArrayLayer0 = textureView0->GetBaseArrayLayer();
uint32_t arrayLayerCount0 = textureView0->GetLayerCount();
for (size_t j = i + 1; j < storageTextureViewsToCheck->size(); j++) {
const TextureViewBase* textureView1 = storageTextureViewsToCheck[j];
if (textureView0->GetTexture() != textureView1->GetTexture()) {
continue;
}
ASSERT(textureView1->GetAspects() == Aspect::Color);
uint32_t baseMipLevel1 = textureView1->GetBaseMipLevel();
uint32_t mipLevelCount1 = textureView1->GetLevelCount();
uint32_t baseArrayLayer1 = textureView1->GetBaseArrayLayer();
uint32_t arrayLayerCount1 = textureView1->GetLayerCount();
if (RangesOverlap(baseMipLevel0, baseMipLevel0 + mipLevelCount0 - 1, baseMipLevel1,
baseMipLevel1 + mipLevelCount1 - 1) &&
RangesOverlap(baseArrayLayer0, baseArrayLayer0 + arrayLayerCount0 - 1,
baseArrayLayer1, baseArrayLayer1 + arrayLayerCount1 - 1)) {
if constexpr (kProduceDetails) {
return WritableBindingAliasingResult{TextureAliasing{
{textureBindingIndices[i].first, textureBindingIndices[i].second,
baseMipLevel0, mipLevelCount0, baseArrayLayer0, arrayLayerCount0},
{textureBindingIndices[j].first, textureBindingIndices[j].second,
baseMipLevel1, mipLevelCount1, baseArrayLayer1, arrayLayerCount1},
}};
} else {
return true;
}
}
}
}
if constexpr (kProduceDetails) {
return WritableBindingAliasingResult();
} else {
return false;
} }
UNREACHABLE();
} }
} // namespace } // namespace
@ -396,7 +493,7 @@ MaybeError CommandBufferStateTracker::CheckMissingAspects(ValidationAspects aspe
DAWN_INVALID_IF(aspects[VALIDATION_ASPECT_PIPELINE], "No pipeline set."); DAWN_INVALID_IF(aspects[VALIDATION_ASPECT_PIPELINE], "No pipeline set.");
if (DAWN_UNLIKELY(aspects[VALIDATION_ASPECT_INDEX_BUFFER])) { if (aspects[VALIDATION_ASPECT_INDEX_BUFFER]) {
DAWN_INVALID_IF(!mIndexBufferSet, "Index buffer was not set."); DAWN_INVALID_IF(!mIndexBufferSet, "Index buffer was not set.");
RenderPipelineBase* lastRenderPipeline = GetRenderPipeline(); RenderPipelineBase* lastRenderPipeline = GetRenderPipeline();
@ -436,7 +533,7 @@ MaybeError CommandBufferStateTracker::CheckMissingAspects(ValidationAspects aspe
uint8_t(firstMissing), GetRenderPipeline()); uint8_t(firstMissing), GetRenderPipeline());
} }
if (DAWN_UNLIKELY(aspects[VALIDATION_ASPECT_BIND_GROUPS])) { if (aspects[VALIDATION_ASPECT_BIND_GROUPS]) {
for (BindGroupIndex i : IterateBitSet(mLastPipelineLayout->GetBindGroupLayoutsMask())) { for (BindGroupIndex i : IterateBitSet(mLastPipelineLayout->GetBindGroupLayoutsMask())) {
ASSERT(HasPipeline()); ASSERT(HasPipeline());
@ -495,19 +592,39 @@ MaybeError CommandBufferStateTracker::CheckMissingAspects(ValidationAspects aspe
} }
} }
auto result = FindStorageBufferBindingAliasing<std::optional<BufferBindingAliasingResult>>( auto result = FindStorageBufferBindingAliasing<WritableBindingAliasingResult>(
mLastPipelineLayout, mBindgroups, mDynamicOffsets); mLastPipelineLayout, mBindgroups, mDynamicOffsets);
if (result) { if (std::holds_alternative<BufferAliasing>(result)) {
const auto& a = std::get<BufferAliasing>(result);
return DAWN_VALIDATION_ERROR( return DAWN_VALIDATION_ERROR(
"Writable storage buffer binding found between bind group index %u, binding index " "Writable storage buffer binding aliasing found between bind group index %u, "
"%u, and bind group index %u, binding index %u, with overlapping ranges (offset: " "binding index "
"%u, and bind group index %u, binding index %u, with overlapping ranges "
"(offset: "
"%u, size: %u) and (offset: %u, size: %u).", "%u, size: %u) and (offset: %u, size: %u).",
static_cast<uint32_t>(result->e0.bindGroupIndex), static_cast<uint32_t>(a.e0.bindGroupIndex),
static_cast<uint32_t>(result->e0.bindingIndex), static_cast<uint32_t>(a.e0.bindingIndex),
static_cast<uint32_t>(result->e1.bindGroupIndex), static_cast<uint32_t>(a.e1.bindGroupIndex),
static_cast<uint32_t>(result->e1.bindingIndex), result->e0.offset, result->e0.size, static_cast<uint32_t>(a.e1.bindingIndex), a.e0.offset, a.e0.size, a.e1.offset,
result->e1.offset, result->e1.size); a.e1.size);
} else {
ASSERT(std::holds_alternative<TextureAliasing>(result));
const auto& a = std::get<TextureAliasing>(result);
return DAWN_VALIDATION_ERROR(
"Writable storage texture binding aliasing found between bind group "
"index %u, binding index "
"%u, and bind group index %u, binding index %u, with subresources "
"(base mipmap level: "
"%u, mip level count: %u, base array layer: %u, array layer count: %u) and "
"(base mipmap level: %u, mip level count: "
"%u, base array layer: %u, array layer count: %u).",
static_cast<uint32_t>(a.e0.bindGroupIndex),
static_cast<uint32_t>(a.e0.bindingIndex),
static_cast<uint32_t>(a.e1.bindGroupIndex),
static_cast<uint32_t>(a.e1.bindingIndex), a.e0.baseMipLevel, a.e0.mipLevelCount,
a.e0.baseArrayLayer, a.e0.arrayLayerCount, a.e1.baseMipLevel, a.e1.mipLevelCount,
a.e1.baseArrayLayer, a.e1.arrayLayerCount);
} }
// The chunk of code above should be similar to the one in |RecomputeLazyAspects|. // The chunk of code above should be similar to the one in |RecomputeLazyAspects|.

View File

@ -21,6 +21,7 @@
#include <utility> #include <utility>
#include "dawn/common/BitSetIterator.h" #include "dawn/common/BitSetIterator.h"
#include "dawn/common/Numeric.h"
#include "dawn/native/Adapter.h" #include "dawn/native/Adapter.h"
#include "dawn/native/BindGroup.h" #include "dawn/native/BindGroup.h"
#include "dawn/native/Buffer.h" #include "dawn/native/Buffer.h"
@ -115,10 +116,14 @@ MaybeError ValidateWriteBuffer(const DeviceBase* device,
} }
bool IsRangeOverlapped(uint32_t startA, uint32_t startB, uint32_t length) { bool IsRangeOverlapped(uint32_t startA, uint32_t startB, uint32_t length) {
uint32_t maxStart = std::max(startA, startB); if (length < 1) {
uint32_t minStart = std::min(startA, startB); return false;
return static_cast<uint64_t>(minStart) + static_cast<uint64_t>(length) > }
static_cast<uint64_t>(maxStart); return RangesOverlap<uint64_t>(
static_cast<uint64_t>(startA),
static_cast<uint64_t>(startA) + static_cast<uint64_t>(length) - 1,
static_cast<uint64_t>(startB),
static_cast<uint64_t>(startB) + static_cast<uint64_t>(length) - 1);
} }
ResultOrError<uint64_t> ComputeRequiredBytesInCopy(const TexelBlockInfo& blockInfo, ResultOrError<uint64_t> ComputeRequiredBytesInCopy(const TexelBlockInfo& blockInfo,

View File

@ -21,7 +21,7 @@
namespace dawn::native { namespace dawn::native {
// Note: Subresource indices are computed by iterating the aspects in increasing order. // Note: Subresource indices are computed by iterating the aspects in increasing order.
// D3D12 uses these directly, so the order much match D3D12's indices. // D3D12 uses these directly, so the order must match D3D12's indices.
// - Depth/Stencil textures have Depth as Plane 0, and Stencil as Plane 1. // - Depth/Stencil textures have Depth as Plane 0, and Stencil as Plane 1.
enum class Aspect : uint8_t { enum class Aspect : uint8_t {
None = 0x0, None = 0x0,

View File

@ -292,6 +292,7 @@ dawn_test("dawn_unittests") {
"unittests/LimitsTests.cpp", "unittests/LimitsTests.cpp",
"unittests/LinkedListTests.cpp", "unittests/LinkedListTests.cpp",
"unittests/MathTests.cpp", "unittests/MathTests.cpp",
"unittests/NumericTests.cpp",
"unittests/ObjectBaseTests.cpp", "unittests/ObjectBaseTests.cpp",
"unittests/PerStageTests.cpp", "unittests/PerStageTests.cpp",
"unittests/PerThreadProcTests.cpp", "unittests/PerThreadProcTests.cpp",
@ -365,6 +366,7 @@ dawn_test("dawn_unittests") {
"unittests/validation/VertexStateValidationTests.cpp", "unittests/validation/VertexStateValidationTests.cpp",
"unittests/validation/VideoViewsValidationTests.cpp", "unittests/validation/VideoViewsValidationTests.cpp",
"unittests/validation/WritableBufferBindingAliasingValidationTests.cpp", "unittests/validation/WritableBufferBindingAliasingValidationTests.cpp",
"unittests/validation/WritableTextureBindingAliasingValidationTests.cpp",
"unittests/validation/WriteBufferTests.cpp", "unittests/validation/WriteBufferTests.cpp",
"unittests/wire/WireAdapterTests.cpp", "unittests/wire/WireAdapterTests.cpp",
"unittests/wire/WireArgumentTests.cpp", "unittests/wire/WireArgumentTests.cpp",

View File

@ -0,0 +1,59 @@
// Copyright 2023 The Dawn Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "dawn/common/Numeric.h"
#include "gtest/gtest.h"
// Tests for RangesOverlap
TEST(Numeric, RangesOverlap) {
// Range contains only one number
ASSERT_EQ(true, RangesOverlap(0, 0, 0, 0));
ASSERT_EQ(false, RangesOverlap(0, 0, 1, 1));
// [ ]
// [ ]
ASSERT_EQ(false, RangesOverlap(0, 8, 9, 16));
// [ ]
// [ ]
ASSERT_EQ(false, RangesOverlap(9, 16, 0, 8));
// [ ]
// [ ]
ASSERT_EQ(true, RangesOverlap(2, 3, 0, 8));
// [ ]
// [ ]
ASSERT_EQ(true, RangesOverlap(0, 8, 2, 3));
// [ ]
// [ ]
ASSERT_EQ(true, RangesOverlap(0, 8, 4, 12));
// [ ]
// [ ]
ASSERT_EQ(true, RangesOverlap(4, 12, 0, 8));
// [ ]
// [ ]
ASSERT_EQ(true, RangesOverlap(0, 8, 8, 12));
// [ ]
// [ ]
ASSERT_EQ(true, RangesOverlap(8, 12, 0, 8));
// Negative numbers
ASSERT_EQ(true, RangesOverlap(-9, 12, 4, 16));
ASSERT_EQ(false, RangesOverlap(-9, -3, -2, 0));
}

View File

@ -973,9 +973,11 @@ TEST_F(ResourceUsageTrackingTest, TextureWithMultipleWriteUsage) {
// Create a bind group to use the texture as sampled and writeonly bindings // Create a bind group to use the texture as sampled and writeonly bindings
wgpu::BindGroupLayout bgl = utils::MakeBindGroupLayout( wgpu::BindGroupLayout bgl = utils::MakeBindGroupLayout(
device, device,
{{0, wgpu::ShaderStage::Compute, wgpu::StorageTextureAccess::WriteOnly, kFormat}, {{0, wgpu::ShaderStage::Compute, wgpu::StorageTextureAccess::WriteOnly, kFormat}});
{1, wgpu::ShaderStage::Compute, wgpu::StorageTextureAccess::WriteOnly, kFormat}}); // Create 2 bind groups with same texture subresources and dispatch twice to avoid
wgpu::BindGroup bg = utils::MakeBindGroup(device, bgl, {{0, view}, {1, view}}); // storage texture binding aliasing
wgpu::BindGroup bg0 = utils::MakeBindGroup(device, bgl, {{0, view}});
wgpu::BindGroup bg1 = utils::MakeBindGroup(device, bgl, {{0, view}});
// Create a no-op compute pipeline // Create a no-op compute pipeline
wgpu::ComputePipeline cp = CreateNoOpComputePipeline({bgl}); wgpu::ComputePipeline cp = CreateNoOpComputePipeline({bgl});
@ -985,7 +987,9 @@ TEST_F(ResourceUsageTrackingTest, TextureWithMultipleWriteUsage) {
wgpu::CommandEncoder encoder = device.CreateCommandEncoder(); wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
wgpu::ComputePassEncoder pass = encoder.BeginComputePass(); wgpu::ComputePassEncoder pass = encoder.BeginComputePass();
pass.SetPipeline(cp); pass.SetPipeline(cp);
pass.SetBindGroup(0, bg); pass.SetBindGroup(0, bg0);
pass.DispatchWorkgroups(1);
pass.SetBindGroup(0, bg1);
pass.DispatchWorkgroups(1); pass.DispatchWorkgroups(1);
pass.End(); pass.End();
encoder.Finish(); encoder.Finish();

View File

@ -89,7 +89,6 @@ std::string GenerateReferenceString(const BindingDescriptorGroups& bindingsGroup
} }
// Creates a compute shader with given bindings // Creates a compute shader with given bindings
// std::string CreateComputeShaderWithBindings(const std::vector<BindingDescriptor>& bindings) {
std::string CreateComputeShaderWithBindings(const BindingDescriptorGroups& bindingsGroups) { std::string CreateComputeShaderWithBindings(const BindingDescriptorGroups& bindingsGroups) {
return GenerateBindingString(bindingsGroups) + "@compute @workgroup_size(1,1,1) fn main() {\n" + return GenerateBindingString(bindingsGroups) + "@compute @workgroup_size(1,1,1) fn main() {\n" +
GenerateReferenceString(bindingsGroups, wgpu::ShaderStage::Compute) + "}"; GenerateReferenceString(bindingsGroups, wgpu::ShaderStage::Compute) + "}";
@ -137,11 +136,6 @@ class WritableBufferBindingAliasingValidationTests : public ValidationTest {
return device.CreateComputePipeline(&csDesc); return device.CreateComputePipeline(&csDesc);
} }
// Creates compute pipeline with default layout
wgpu::ComputePipeline CreateComputePipelineWithDefaultLayout(const std::string& shader) {
return CreateComputePipeline({}, shader);
}
// Creates render pipeline given layouts and shaders // Creates render pipeline given layouts and shaders
wgpu::RenderPipeline CreateRenderPipeline(const std::vector<wgpu::BindGroupLayout>& layouts, wgpu::RenderPipeline CreateRenderPipeline(const std::vector<wgpu::BindGroupLayout>& layouts,
const std::string& vertexShader, const std::string& vertexShader,
@ -165,12 +159,6 @@ class WritableBufferBindingAliasingValidationTests : public ValidationTest {
return device.CreateRenderPipeline(&pipelineDescriptor); return device.CreateRenderPipeline(&pipelineDescriptor);
} }
// Creates render pipeline with default layout
wgpu::RenderPipeline CreateRenderPipelineWithDefaultLayout(const std::string& vertexShader,
const std::string& fragShader) {
return CreateRenderPipeline({}, vertexShader, fragShader);
}
// Creates bind group layout with given minimum sizes for each binding // Creates bind group layout with given minimum sizes for each binding
wgpu::BindGroupLayout CreateBindGroupLayout(const std::vector<BindingDescriptor>& bindings) { wgpu::BindGroupLayout CreateBindGroupLayout(const std::vector<BindingDescriptor>& bindings) {
std::vector<wgpu::BindGroupLayoutEntry> entries; std::vector<wgpu::BindGroupLayoutEntry> entries;
@ -413,18 +401,10 @@ TEST_F(WritableBufferBindingAliasingValidationTests, SetBindGroupLazyAspect) {
{{0, bufferStorage, 0, 16}, wgpu::BufferBindingType::Storage}, {{0, bufferStorage, 0, 16}, wgpu::BufferBindingType::Storage},
{{1, bufferStorage, 0, 8}, wgpu::BufferBindingType::Storage}, {{1, bufferStorage, 0, 8}, wgpu::BufferBindingType::Storage},
}; };
// no overlap, but has dynamic offset
std::vector<BindingDescriptor> bindingDescriptorDynamicOffset = {
{{0, bufferStorage, 256, 16}, wgpu::BufferBindingType::Storage, true},
{{1, bufferStorage, 0, 8}, wgpu::BufferBindingType::Storage, true},
};
// bindingDescriptor0 and 1 share the same bind group layout, shader and pipeline // bindingDescriptor0 and 1 share the same bind group layout, shader and pipeline
wgpu::BindGroupLayout layout = CreateBindGroupLayout(bindingDescriptor0); wgpu::BindGroupLayout layout = CreateBindGroupLayout(bindingDescriptor0);
wgpu::BindGroupLayout layoutHasDynamicOffset =
CreateBindGroupLayout(bindingDescriptorDynamicOffset);
std::string computeShader = CreateComputeShaderWithBindings({bindingDescriptor0}); std::string computeShader = CreateComputeShaderWithBindings({bindingDescriptor0});
wgpu::ComputePipeline computePipeline = CreateComputePipeline({layout}, computeShader); wgpu::ComputePipeline computePipeline = CreateComputePipeline({layout}, computeShader);
std::string vertexShader = CreateVertexShaderWithBindings({bindingDescriptor0}); std::string vertexShader = CreateVertexShaderWithBindings({bindingDescriptor0});

View File

@ -0,0 +1,532 @@
// Copyright 2023 The Dawn Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <string>
#include <vector>
#include "dawn/common/Assert.h"
#include "dawn/common/Constants.h"
#include "dawn/common/Numeric.h"
#include "dawn/tests/unittests/validation/ValidationTest.h"
#include "dawn/utils/ComboRenderPipelineDescriptor.h"
#include "dawn/utils/WGPUHelpers.h"
namespace {
using BindingDescriptorGroups = std::vector<std::vector<utils::BindingInitializationHelper>>;
struct TestSet {
bool valid;
BindingDescriptorGroups bindingEntries;
};
constexpr wgpu::TextureFormat kTextureFormat = wgpu::TextureFormat::RGBA8Unorm;
wgpu::TextureViewDescriptor GetTextureViewDescriptor(
uint32_t baseMipLevel,
uint32_t mipLevelcount,
uint32_t baseArrayLayer,
uint32_t arrayLayerCount,
wgpu::TextureAspect aspect = wgpu::TextureAspect::All) {
wgpu::TextureViewDescriptor descriptor;
descriptor.dimension = wgpu::TextureViewDimension::e2DArray;
descriptor.baseMipLevel = baseMipLevel;
descriptor.mipLevelCount = mipLevelcount;
descriptor.baseArrayLayer = baseArrayLayer;
descriptor.arrayLayerCount = arrayLayerCount;
descriptor.aspect = aspect;
return descriptor;
}
// Creates a bind group with given bindings for shader text.
std::string GenerateBindingString(const BindingDescriptorGroups& descriptors) {
std::ostringstream ostream;
size_t index = 0;
uint32_t groupIndex = 0;
for (const auto& entries : descriptors) {
for (uint32_t bindingIndex = 0; bindingIndex < entries.size(); bindingIndex++) {
// All texture view binding format uses RGBA8Unorm in this test.
ostream << "@group(" << groupIndex << ") @binding(" << bindingIndex << ") "
<< "var b" << index << " : texture_storage_2d_array<rgba8unorm, write>;\n";
index++;
}
groupIndex++;
}
return ostream.str();
}
// Creates reference shader text to make sure variables don't get optimized out.
std::string GenerateReferenceString(const BindingDescriptorGroups& descriptors) {
std::ostringstream ostream;
size_t index = 0;
for (const auto& entries : descriptors) {
for (uint32_t bindingIndex = 0; bindingIndex < entries.size(); bindingIndex++) {
ostream << "_ = b" << index << ";\n";
index++;
}
}
return ostream.str();
}
// Creates a compute shader with given bindings
std::string CreateComputeShaderWithBindings(const BindingDescriptorGroups& bindingsGroups) {
return GenerateBindingString(bindingsGroups) + "@compute @workgroup_size(1,1,1) fn main() {\n" +
GenerateReferenceString(bindingsGroups) + "}";
}
// Creates a fragment shader with given bindings
std::string CreateFragmentShaderWithBindings(const BindingDescriptorGroups& bindingsGroups) {
return GenerateBindingString(bindingsGroups) + "@fragment fn main() {\n" +
GenerateReferenceString(bindingsGroups) + "}";
}
const char* kVertexShader = R"(
@vertex fn main() -> @builtin(position) vec4<f32> {
return vec4<f32>();
}
)";
} // namespace
class WritableTextureBindingAliasingValidationTests : public ValidationTest {
public:
wgpu::Texture CreateTexture(wgpu::TextureUsage usage,
wgpu::TextureFormat format,
uint32_t mipLevelCount,
uint32_t arrayLayerCount,
wgpu::TextureDimension dimension = wgpu::TextureDimension::e2D) {
wgpu::TextureDescriptor descriptor;
descriptor.dimension = dimension;
descriptor.size = {16, 16, arrayLayerCount};
descriptor.sampleCount = 1;
descriptor.format = format;
descriptor.mipLevelCount = mipLevelCount;
descriptor.usage = usage;
return device.CreateTexture(&descriptor);
}
// Creates compute pipeline given a layout and shader
wgpu::ComputePipeline CreateComputePipeline(const std::vector<wgpu::BindGroupLayout>& layouts,
const std::string& shader) {
wgpu::ShaderModule csModule = utils::CreateShaderModule(device, shader.c_str());
wgpu::ComputePipelineDescriptor csDesc;
wgpu::PipelineLayoutDescriptor descriptor;
descriptor.bindGroupLayoutCount = layouts.size();
descriptor.bindGroupLayouts = layouts.data();
csDesc.layout = device.CreatePipelineLayout(&descriptor);
csDesc.compute.module = csModule;
csDesc.compute.entryPoint = "main";
return device.CreateComputePipeline(&csDesc);
}
// Creates render pipeline given layouts and shaders
wgpu::RenderPipeline CreateRenderPipeline(const std::vector<wgpu::BindGroupLayout>& layouts,
const std::string& vertexShader,
const std::string& fragShader) {
wgpu::ShaderModule vsModule = utils::CreateShaderModule(device, vertexShader.c_str());
wgpu::ShaderModule fsModule = utils::CreateShaderModule(device, fragShader.c_str());
utils::ComboRenderPipelineDescriptor pipelineDescriptor;
pipelineDescriptor.vertex.module = vsModule;
pipelineDescriptor.cFragment.module = fsModule;
pipelineDescriptor.cTargets[0].writeMask = wgpu::ColorWriteMask::None;
pipelineDescriptor.layout = nullptr;
ASSERT(!layouts.empty());
wgpu::PipelineLayoutDescriptor descriptor;
descriptor.bindGroupLayoutCount = layouts.size();
descriptor.bindGroupLayouts = layouts.data();
pipelineDescriptor.layout = device.CreatePipelineLayout(&descriptor);
return device.CreateRenderPipeline(&pipelineDescriptor);
}
// Creates bind group layout with given minimum sizes for each binding
wgpu::BindGroupLayout CreateBindGroupLayout(
const std::vector<utils::BindingInitializationHelper>& bindings) {
std::vector<wgpu::BindGroupLayoutEntry> entries;
for (size_t i = 0; i < bindings.size(); ++i) {
const utils::BindingInitializationHelper& b = bindings[i];
wgpu::BindGroupLayoutEntry e = {};
e.binding = b.binding;
e.visibility = wgpu::ShaderStage::Compute | wgpu::ShaderStage::Fragment;
e.storageTexture.access = wgpu::StorageTextureAccess::WriteOnly; // only enum supported
e.storageTexture.format = kTextureFormat;
e.storageTexture.viewDimension = wgpu::TextureViewDimension::e2DArray;
entries.push_back(e);
}
wgpu::BindGroupLayoutDescriptor descriptor;
descriptor.entryCount = static_cast<uint32_t>(entries.size());
descriptor.entries = entries.data();
return device.CreateBindGroupLayout(&descriptor);
}
std::vector<wgpu::BindGroup> CreateBindGroups(const std::vector<wgpu::BindGroupLayout>& layouts,
const BindingDescriptorGroups& bindingsGroups) {
std::vector<wgpu::BindGroup> bindGroups;
ASSERT(layouts.size() == bindingsGroups.size());
for (size_t groupIdx = 0; groupIdx < layouts.size(); groupIdx++) {
const auto& bindings = bindingsGroups[groupIdx];
std::vector<wgpu::BindGroupEntry> entries;
entries.reserve(bindings.size());
for (const auto& binding : bindings) {
entries.push_back(binding.GetAsBinding());
}
wgpu::BindGroupDescriptor descriptor;
descriptor.layout = layouts[groupIdx];
descriptor.entryCount = static_cast<uint32_t>(entries.size());
descriptor.entries = entries.data();
bindGroups.push_back(device.CreateBindGroup(&descriptor));
}
return bindGroups;
}
// Runs a single dispatch with given pipeline and bind group
void TestDispatch(const wgpu::ComputePipeline& computePipeline,
const std::vector<wgpu::BindGroup>& bindGroups,
const TestSet& test) {
wgpu::CommandEncoder commandEncoder = device.CreateCommandEncoder();
wgpu::ComputePassEncoder computePassEncoder = commandEncoder.BeginComputePass();
computePassEncoder.SetPipeline(computePipeline);
ASSERT(bindGroups.size() == test.bindingEntries.size());
ASSERT(bindGroups.size() > 0);
for (size_t i = 0; i < bindGroups.size(); ++i) {
computePassEncoder.SetBindGroup(i, bindGroups[i]);
}
computePassEncoder.DispatchWorkgroups(1);
computePassEncoder.End();
if (!test.valid) {
ASSERT_DEVICE_ERROR(commandEncoder.Finish());
} else {
commandEncoder.Finish();
}
}
// Runs a single draw with given pipeline and bind group
void TestDraw(const wgpu::RenderPipeline& renderPipeline,
const std::vector<wgpu::BindGroup>& bindGroups,
const TestSet& test) {
PlaceholderRenderPass renderPass(device);
wgpu::CommandEncoder commandEncoder = device.CreateCommandEncoder();
wgpu::RenderPassEncoder renderPassEncoder = commandEncoder.BeginRenderPass(&renderPass);
renderPassEncoder.SetPipeline(renderPipeline);
ASSERT(bindGroups.size() == test.bindingEntries.size());
ASSERT(bindGroups.size() > 0);
for (size_t i = 0; i < bindGroups.size(); ++i) {
renderPassEncoder.SetBindGroup(i, bindGroups[i]);
}
renderPassEncoder.Draw(3);
renderPassEncoder.End();
if (!test.valid) {
ASSERT_DEVICE_ERROR(commandEncoder.Finish());
} else {
commandEncoder.Finish();
}
}
void TestBindings(const wgpu::ComputePipeline& computePipeline,
const wgpu::RenderPipeline& renderPipeline,
const std::vector<wgpu::BindGroupLayout>& layouts,
const TestSet& test) {
std::vector<wgpu::BindGroup> bindGroups = CreateBindGroups(layouts, test.bindingEntries);
TestDispatch(computePipeline, bindGroups, test);
TestDraw(renderPipeline, bindGroups, test);
}
};
// Test various combinations of texture mip levels, array layers, aspects, bind groups, etc.
// validating aliasing
TEST_F(WritableTextureBindingAliasingValidationTests, BasicTest) {
wgpu::Texture textureStorage =
CreateTexture(wgpu::TextureUsage::StorageBinding, kTextureFormat, 4, 4);
wgpu::Texture textureStorage2 =
CreateTexture(wgpu::TextureUsage::StorageBinding, kTextureFormat, 4, 4);
// view0 and view1 don't intersect at all
wgpu::TextureViewDescriptor viewDescriptor0 = GetTextureViewDescriptor(0, 1, 0, 1);
wgpu::TextureView view0 = textureStorage.CreateView(&viewDescriptor0);
wgpu::TextureViewDescriptor viewDescriptor1 = GetTextureViewDescriptor(1, 1, 1, 1);
wgpu::TextureView view1 = textureStorage.CreateView(&viewDescriptor1);
// view2 and view3 intersects in mip levels only
wgpu::TextureViewDescriptor viewDescriptor2 = GetTextureViewDescriptor(0, 1, 0, 1);
wgpu::TextureView view2 = textureStorage.CreateView(&viewDescriptor2);
wgpu::TextureViewDescriptor viewDescriptor3 = GetTextureViewDescriptor(0, 1, 1, 1);
wgpu::TextureView view3 = textureStorage.CreateView(&viewDescriptor3);
// view4 and view5 intersects in array layers only
wgpu::TextureViewDescriptor viewDescriptor4 = GetTextureViewDescriptor(0, 1, 0, 3);
wgpu::TextureView view4 = textureStorage.CreateView(&viewDescriptor4);
wgpu::TextureViewDescriptor viewDescriptor5 = GetTextureViewDescriptor(1, 1, 1, 3);
wgpu::TextureView view5 = textureStorage.CreateView(&viewDescriptor5);
// view6 and view7 intersects in both mip levels and array layers
wgpu::TextureViewDescriptor viewDescriptor6 = GetTextureViewDescriptor(0, 1, 0, 3);
wgpu::TextureView view6 = textureStorage.CreateView(&viewDescriptor6);
wgpu::TextureViewDescriptor viewDescriptor7 = GetTextureViewDescriptor(0, 1, 1, 3);
wgpu::TextureView view7 = textureStorage.CreateView(&viewDescriptor7);
// view72 is created by another texture, so no aliasing at all.
wgpu::TextureView view72 = textureStorage2.CreateView(&viewDescriptor7);
std::vector<TestSet> testSet = {
// same texture, subresources don't intersect
{true,
{{
{0, view0},
{1, view1},
}}},
// same texture, subresources don't intersect
{true,
{{
{0, view2},
{1, view3},
}}},
// same texture, subresources don't intersect, in different bind groups
{true,
{{
{0, view0},
},
{
{0, view1},
}}},
// same texture, subresources intersect in array layers
{true,
{{
{0, view4},
{1, view5},
}}},
// same texture, subresources intersect in both mip levels and array layers
{false,
{{
{0, view6},
{1, view7},
}}},
// reverse order to test range overlap logic
{false,
{{
{0, view6},
{1, view7},
}}},
// subreources intersect in different bind groups
{false,
{{
{0, view6},
},
{
{0, view7},
}}},
// different texture, no aliasing at all
{true,
{{
{0, view6},
{1, view72},
}}},
// Altough spec says texture aspect could also affect whether two texture view intersects,
// It is not possible to create storage texture with depth stencil format, with different
// aspect values (all, depth only, stencil only)
// So we don't have tests for this case.
};
for (const auto& test : testSet) {
std::vector<wgpu::BindGroupLayout> layouts;
for (const std::vector<utils::BindingInitializationHelper>& bindings :
test.bindingEntries) {
layouts.push_back(CreateBindGroupLayout(bindings));
}
std::string computeShader = CreateComputeShaderWithBindings(test.bindingEntries);
wgpu::ComputePipeline computePipeline = CreateComputePipeline(layouts, computeShader);
std::string fragmentShader = CreateFragmentShaderWithBindings(test.bindingEntries);
wgpu::RenderPipeline renderPipeline =
CreateRenderPipeline(layouts, kVertexShader, fragmentShader);
TestBindings(computePipeline, renderPipeline, layouts, test);
}
}
// Test if validate bind group lazy aspect flag is set and checked properly
TEST_F(WritableTextureBindingAliasingValidationTests, SetBindGroupLazyAspect) {
wgpu::Texture textureStorage =
CreateTexture(wgpu::TextureUsage::StorageBinding, kTextureFormat, 4, 4);
// view0 and view1 don't intersect
wgpu::TextureViewDescriptor viewDescriptor0 = GetTextureViewDescriptor(0, 1, 0, 1);
wgpu::TextureView view0 = textureStorage.CreateView(&viewDescriptor0);
wgpu::TextureViewDescriptor viewDescriptor1 = GetTextureViewDescriptor(1, 1, 1, 1);
wgpu::TextureView view1 = textureStorage.CreateView(&viewDescriptor1);
// view2 and view3 intersects
wgpu::TextureViewDescriptor viewDescriptor2 = GetTextureViewDescriptor(0, 1, 0, 2);
wgpu::TextureView view2 = textureStorage.CreateView(&viewDescriptor2);
wgpu::TextureViewDescriptor viewDescriptor3 = GetTextureViewDescriptor(0, 1, 1, 2);
wgpu::TextureView view3 = textureStorage.CreateView(&viewDescriptor3);
// subresources don't intersect, create valid bindGroups
std::vector<utils::BindingInitializationHelper> bindingDescriptor0 = {{
{0, view0},
{1, view1},
}};
// subresources intersect, create invalid bindGroups
std::vector<utils::BindingInitializationHelper> bindingDescriptor1 = {{
{0, view2},
{1, view3},
}};
// bindingDescriptor0 and 1 share the same bind group layout, shader and pipeline
wgpu::BindGroupLayout layout = CreateBindGroupLayout(bindingDescriptor0);
std::string computeShader = CreateComputeShaderWithBindings({bindingDescriptor0});
wgpu::ComputePipeline computePipeline = CreateComputePipeline({layout}, computeShader);
std::string fragmentShader = CreateFragmentShaderWithBindings({bindingDescriptor0});
wgpu::RenderPipeline renderPipeline =
CreateRenderPipeline({layout}, kVertexShader, fragmentShader);
std::vector<wgpu::BindGroup> bindGroups =
CreateBindGroups({layout, layout}, {bindingDescriptor0, bindingDescriptor1});
// Test compute pass dispatch
// bindGroups[0] is valid
{
wgpu::CommandEncoder commandEncoder = device.CreateCommandEncoder();
wgpu::ComputePassEncoder computePassEncoder = commandEncoder.BeginComputePass();
computePassEncoder.SetPipeline(computePipeline);
computePassEncoder.SetBindGroup(0, bindGroups[0]);
computePassEncoder.DispatchWorkgroups(1);
computePassEncoder.End();
commandEncoder.Finish();
}
// bindGroups[1] is invalid
{
wgpu::CommandEncoder commandEncoder = device.CreateCommandEncoder();
wgpu::ComputePassEncoder computePassEncoder = commandEncoder.BeginComputePass();
computePassEncoder.SetPipeline(computePipeline);
computePassEncoder.SetBindGroup(0, bindGroups[1]);
computePassEncoder.DispatchWorkgroups(1);
computePassEncoder.End();
ASSERT_DEVICE_ERROR(commandEncoder.Finish());
}
// setting bindGroups[1] first and then resetting to bindGroups[0] is valid
{
wgpu::CommandEncoder commandEncoder = device.CreateCommandEncoder();
wgpu::ComputePassEncoder computePassEncoder = commandEncoder.BeginComputePass();
computePassEncoder.SetPipeline(computePipeline);
computePassEncoder.SetBindGroup(0, bindGroups[1]);
computePassEncoder.SetBindGroup(0, bindGroups[0]);
computePassEncoder.DispatchWorkgroups(1);
computePassEncoder.End();
commandEncoder.Finish();
}
// bindGroups[0] is valid, bindGroups[1] is invalid but set to an unused slot, should still be
// valid
{
wgpu::CommandEncoder commandEncoder = device.CreateCommandEncoder();
wgpu::ComputePassEncoder computePassEncoder = commandEncoder.BeginComputePass();
computePassEncoder.SetPipeline(computePipeline);
computePassEncoder.SetBindGroup(0, bindGroups[0]);
computePassEncoder.SetBindGroup(1, bindGroups[1]);
computePassEncoder.DispatchWorkgroups(1);
computePassEncoder.End();
commandEncoder.Finish();
}
// Test render pass draw
PlaceholderRenderPass renderPass(device);
// bindGroups[0] is valid
{
wgpu::CommandEncoder commandEncoder = device.CreateCommandEncoder();
wgpu::RenderPassEncoder renderPassEncoder = commandEncoder.BeginRenderPass(&renderPass);
renderPassEncoder.SetPipeline(renderPipeline);
renderPassEncoder.SetBindGroup(0, bindGroups[0]);
renderPassEncoder.Draw(3);
renderPassEncoder.End();
commandEncoder.Finish();
}
// bindGroups[1] is invalid
{
wgpu::CommandEncoder commandEncoder = device.CreateCommandEncoder();
wgpu::RenderPassEncoder renderPassEncoder = commandEncoder.BeginRenderPass(&renderPass);
renderPassEncoder.SetPipeline(renderPipeline);
renderPassEncoder.SetBindGroup(0, bindGroups[1]);
renderPassEncoder.Draw(3);
renderPassEncoder.End();
ASSERT_DEVICE_ERROR(commandEncoder.Finish());
}
// setting bindGroups[1] first and then resetting to bindGroups[0] is valid
{
wgpu::CommandEncoder commandEncoder = device.CreateCommandEncoder();
wgpu::RenderPassEncoder renderPassEncoder = commandEncoder.BeginRenderPass(&renderPass);
renderPassEncoder.SetPipeline(renderPipeline);
renderPassEncoder.SetBindGroup(0, bindGroups[1]);
renderPassEncoder.SetBindGroup(0, bindGroups[0]);
renderPassEncoder.Draw(3);
renderPassEncoder.End();
commandEncoder.Finish();
}
// bindGroups[0] is valid, bindGroups[1] is invalid but set to an unused slot, should still be
// valid
{
wgpu::CommandEncoder commandEncoder = device.CreateCommandEncoder();
wgpu::RenderPassEncoder renderPassEncoder = commandEncoder.BeginRenderPass(&renderPass);
renderPassEncoder.SetPipeline(renderPipeline);
renderPassEncoder.SetBindGroup(0, bindGroups[0]);
renderPassEncoder.SetBindGroup(1, bindGroups[1]);
renderPassEncoder.Draw(3);
renderPassEncoder.End();
commandEncoder.Finish();
}
}

View File

@ -258,6 +258,11 @@ crbug.com/dawn/0000 [ win ] webgpu:shader,execution,memory_model,* [ Failure ]
################################################################################ ################################################################################
crbug.com/tint/0000 webgpu:shader,validation,parse,blankspace:null_characters:contains_null=true;placement="comment" [ Failure ] crbug.com/tint/0000 webgpu:shader,validation,parse,blankspace:null_characters:contains_null=true;placement="comment" [ Failure ]
################################################################################
# Storage texture binding validation failures
################################################################################
crbug.com/dawn/1642 webgpu:api,validation,resource_usages,texture,in_pass_encoder:subresources_and_binding_types_combination_for_color:compute=true;type0="writeonly-storage-texture";type1="writeonly-storage-texture" [ Failure ]
################################################################################ ################################################################################
# Flaky on Intel Mac # Flaky on Intel Mac
# KEEP # KEEP