dawn_wire/client: Encapsulate all buffer-related logic in Buffer.cpp

This CL only moves code, renames client::Buffer members and does
additional casts where needed. No functional changes.

Bug: dawn:445

Change-Id: I2bf83ecc1c9b36d5965d0365360dd981fcd41aac
Reviewed-on: https://dawn-review.googlesource.com/c/dawn/+/23860
Reviewed-by: Kai Ninomiya <kainino@chromium.org>
Reviewed-by: Austin Eng <enga@chromium.org>
Commit-Queue: Corentin Wallez <cwallez@chromium.org>
This commit is contained in:
Corentin Wallez 2020-06-30 09:48:14 +00:00 committed by Commit Bot service account
parent b231c7fb71
commit bae16b4df9
4 changed files with 438 additions and 377 deletions

View File

@ -18,214 +18,49 @@
namespace dawn_wire { namespace client { namespace dawn_wire { namespace client {
namespace {
template <typename Handle>
void SerializeBufferMapAsync(const Buffer* buffer, uint32_t serial, Handle* handle) {
// TODO(enga): Remove the template when Read/Write handles are combined in a tagged
// pointer.
constexpr bool isWrite =
std::is_same<Handle, MemoryTransferService::WriteHandle>::value;
// Get the serialization size of the handle.
size_t handleCreateInfoLength = handle->SerializeCreateSize();
BufferMapAsyncCmd cmd;
cmd.bufferId = buffer->id;
cmd.requestSerial = serial;
cmd.isWrite = isWrite;
cmd.handleCreateInfoLength = handleCreateInfoLength;
cmd.handleCreateInfo = nullptr;
char* writeHandleSpace =
buffer->device->GetClient()->SerializeCommand(cmd, handleCreateInfoLength);
// Serialize the handle into the space after the command.
handle->SerializeCreate(writeHandleSpace);
}
} // namespace
void ClientHandwrittenBufferMapReadAsync(WGPUBuffer cBuffer, void ClientHandwrittenBufferMapReadAsync(WGPUBuffer cBuffer,
WGPUBufferMapReadCallback callback, WGPUBufferMapReadCallback callback,
void* userdata) { void* userdata) {
Buffer* buffer = reinterpret_cast<Buffer*>(cBuffer); Buffer* buffer = reinterpret_cast<Buffer*>(cBuffer);
buffer->MapReadAsync(callback, userdata);
uint32_t serial = buffer->requestSerial++;
ASSERT(buffer->requests.find(serial) == buffer->requests.end());
if (buffer->size > std::numeric_limits<size_t>::max()) {
// On buffer creation, we check that mappable buffers do not exceed this size.
// So this buffer must not have mappable usage. Inject a validation error.
ClientDeviceInjectError(reinterpret_cast<WGPUDevice>(buffer->device),
WGPUErrorType_Validation,
"Buffer needs the correct map usage bit");
callback(WGPUBufferMapAsyncStatus_Error, nullptr, 0, userdata);
return;
}
// Create a ReadHandle for the map request. This is the client's intent to read GPU
// memory.
MemoryTransferService::ReadHandle* readHandle =
buffer->device->GetClient()->GetMemoryTransferService()->CreateReadHandle(
static_cast<size_t>(buffer->size));
if (readHandle == nullptr) {
ClientDeviceInjectError(reinterpret_cast<WGPUDevice>(buffer->device),
WGPUErrorType_OutOfMemory, "Failed to create buffer mapping");
callback(WGPUBufferMapAsyncStatus_Error, nullptr, 0, userdata);
return;
}
Buffer::MapRequestData request = {};
request.readCallback = callback;
request.userdata = userdata;
// The handle is owned by the MapRequest until the callback returns.
request.readHandle = std::unique_ptr<MemoryTransferService::ReadHandle>(readHandle);
// Store a mapping from serial -> MapRequest. The client can map/unmap before the map
// operations are returned by the server so multiple requests may be in flight.
buffer->requests[serial] = std::move(request);
SerializeBufferMapAsync(buffer, serial, readHandle);
} }
void ClientHandwrittenBufferMapWriteAsync(WGPUBuffer cBuffer, void ClientHandwrittenBufferMapWriteAsync(WGPUBuffer cBuffer,
WGPUBufferMapWriteCallback callback, WGPUBufferMapWriteCallback callback,
void* userdata) { void* userdata) {
Buffer* buffer = reinterpret_cast<Buffer*>(cBuffer); Buffer* buffer = reinterpret_cast<Buffer*>(cBuffer);
buffer->MapWriteAsync(callback, userdata);
}
uint32_t serial = buffer->requestSerial++; void ClientHandwrittenBufferSetSubData(WGPUBuffer cBuffer,
ASSERT(buffer->requests.find(serial) == buffer->requests.end()); uint64_t start,
uint64_t count,
const void* data) {
Buffer* buffer = reinterpret_cast<Buffer*>(cBuffer);
buffer->SetSubData(start, count, data);
}
if (buffer->size > std::numeric_limits<size_t>::max()) { void ClientHandwrittenBufferUnmap(WGPUBuffer cBuffer) {
// On buffer creation, we check that mappable buffers do not exceed this size. Buffer* buffer = reinterpret_cast<Buffer*>(cBuffer);
// So this buffer must not have mappable usage. Inject a validation error. buffer->Unmap();
ClientDeviceInjectError(reinterpret_cast<WGPUDevice>(buffer->device), }
WGPUErrorType_Validation,
"Buffer needs the correct map usage bit");
callback(WGPUBufferMapAsyncStatus_Error, nullptr, 0, userdata);
return;
}
// Create a WriteHandle for the map request. This is the client's intent to write GPU void ClientHandwrittenBufferDestroy(WGPUBuffer cBuffer) {
// memory. Buffer* buffer = reinterpret_cast<Buffer*>(cBuffer);
MemoryTransferService::WriteHandle* writeHandle = buffer->Destroy();
buffer->device->GetClient()->GetMemoryTransferService()->CreateWriteHandle(
static_cast<size_t>(buffer->size));
if (writeHandle == nullptr) {
ClientDeviceInjectError(reinterpret_cast<WGPUDevice>(buffer->device),
WGPUErrorType_OutOfMemory, "Failed to create buffer mapping");
callback(WGPUBufferMapAsyncStatus_Error, nullptr, 0, userdata);
return;
}
Buffer::MapRequestData request = {};
request.writeCallback = callback;
request.userdata = userdata;
// The handle is owned by the MapRequest until the callback returns.
request.writeHandle = std::unique_ptr<MemoryTransferService::WriteHandle>(writeHandle);
// Store a mapping from serial -> MapRequest. The client can map/unmap before the map
// operations are returned by the server so multiple requests may be in flight.
buffer->requests[serial] = std::move(request);
SerializeBufferMapAsync(buffer, serial, writeHandle);
} }
WGPUBuffer ClientHandwrittenDeviceCreateBuffer(WGPUDevice cDevice, WGPUBuffer ClientHandwrittenDeviceCreateBuffer(WGPUDevice cDevice,
const WGPUBufferDescriptor* descriptor) { const WGPUBufferDescriptor* descriptor) {
Device* device = reinterpret_cast<Device*>(cDevice); Device* device = reinterpret_cast<Device*>(cDevice);
Client* wireClient = device->GetClient(); return Buffer::Create(device, descriptor);
if ((descriptor->usage & (WGPUBufferUsage_MapRead | WGPUBufferUsage_MapWrite)) != 0 &&
descriptor->size > std::numeric_limits<size_t>::max()) {
ClientDeviceInjectError(cDevice, WGPUErrorType_OutOfMemory,
"Buffer is too large for map usage");
return ClientDeviceCreateErrorBuffer(cDevice);
}
auto* bufferObjectAndSerial = wireClient->BufferAllocator().New(device);
Buffer* buffer = bufferObjectAndSerial->object.get();
// Store the size of the buffer so that mapping operations can allocate a
// MemoryTransfer handle of the proper size.
buffer->size = descriptor->size;
DeviceCreateBufferCmd cmd;
cmd.self = cDevice;
cmd.descriptor = descriptor;
cmd.result = ObjectHandle{buffer->id, bufferObjectAndSerial->generation};
wireClient->SerializeCommand(cmd);
return reinterpret_cast<WGPUBuffer>(buffer);
} }
WGPUCreateBufferMappedResult ClientHandwrittenDeviceCreateBufferMapped( WGPUCreateBufferMappedResult ClientHandwrittenDeviceCreateBufferMapped(
WGPUDevice cDevice, WGPUDevice cDevice,
const WGPUBufferDescriptor* descriptor) { const WGPUBufferDescriptor* descriptor) {
Device* device = reinterpret_cast<Device*>(cDevice); Device* device = reinterpret_cast<Device*>(cDevice);
Client* wireClient = device->GetClient(); return Buffer::CreateMapped(device, descriptor);
WGPUCreateBufferMappedResult result;
result.data = nullptr;
result.dataLength = 0;
// This buffer is too large to be mapped and to make a WriteHandle for.
if (descriptor->size > std::numeric_limits<size_t>::max()) {
ClientDeviceInjectError(cDevice, WGPUErrorType_OutOfMemory,
"Buffer is too large for mapping");
result.buffer = ClientDeviceCreateErrorBuffer(cDevice);
return result;
}
// Create a WriteHandle for the map request. This is the client's intent to write GPU
// memory.
std::unique_ptr<MemoryTransferService::WriteHandle> writeHandle =
std::unique_ptr<MemoryTransferService::WriteHandle>(
wireClient->GetMemoryTransferService()->CreateWriteHandle(descriptor->size));
if (writeHandle == nullptr) {
ClientDeviceInjectError(cDevice, WGPUErrorType_OutOfMemory,
"Buffer mapping allocation failed");
result.buffer = ClientDeviceCreateErrorBuffer(cDevice);
return result;
}
// CreateBufferMapped is synchronous and the staging buffer for upload should be immediately
// available.
// Open the WriteHandle. This returns a pointer and size of mapped memory.
// |result.data| may be null on error.
std::tie(result.data, result.dataLength) = writeHandle->Open();
if (result.data == nullptr) {
ClientDeviceInjectError(cDevice, WGPUErrorType_OutOfMemory,
"Buffer mapping allocation failed");
result.buffer = ClientDeviceCreateErrorBuffer(cDevice);
return result;
}
auto* bufferObjectAndSerial = wireClient->BufferAllocator().New(device);
Buffer* buffer = bufferObjectAndSerial->object.get();
buffer->size = descriptor->size;
// Successfully created staging memory. The buffer now owns the WriteHandle.
buffer->writeHandle = std::move(writeHandle);
result.buffer = reinterpret_cast<WGPUBuffer>(buffer);
// Get the serialization size of the WriteHandle.
size_t handleCreateInfoLength = buffer->writeHandle->SerializeCreateSize();
DeviceCreateBufferMappedCmd cmd;
cmd.device = cDevice;
cmd.descriptor = descriptor;
cmd.result = ObjectHandle{buffer->id, bufferObjectAndSerial->generation};
cmd.handleCreateInfoLength = handleCreateInfoLength;
cmd.handleCreateInfo = nullptr;
char* writeHandleSpace =
buffer->device->GetClient()->SerializeCommand(cmd, handleCreateInfoLength);
// Serialize the WriteHandle into the space after the command.
buffer->writeHandle->SerializeCreate(writeHandleSpace);
return result;
} }
void ClientHandwrittenDevicePushErrorScope(WGPUDevice cDevice, WGPUErrorFilter filter) { void ClientHandwrittenDevicePushErrorScope(WGPUDevice cDevice, WGPUErrorFilter filter) {
@ -269,76 +104,6 @@ namespace dawn_wire { namespace client {
fence->requests.Enqueue(std::move(request), value); fence->requests.Enqueue(std::move(request), value);
} }
void ClientHandwrittenBufferSetSubData(WGPUBuffer cBuffer,
uint64_t start,
uint64_t count,
const void* data) {
Buffer* buffer = reinterpret_cast<Buffer*>(cBuffer);
BufferSetSubDataInternalCmd cmd;
cmd.bufferId = buffer->id;
cmd.start = start;
cmd.count = count;
cmd.data = static_cast<const uint8_t*>(data);
buffer->device->GetClient()->SerializeCommand(cmd);
}
void ClientHandwrittenBufferUnmap(WGPUBuffer cBuffer) {
Buffer* buffer = reinterpret_cast<Buffer*>(cBuffer);
// Invalidate the local pointer, and cancel all other in-flight requests that would
// turn into errors anyway (you can't double map). This prevents race when the following
// happens, where the application code would have unmapped a buffer but still receive a
// callback:
// - Client -> Server: MapRequest1, Unmap, MapRequest2
// - Server -> Client: Result of MapRequest1
// - Unmap locally on the client
// - Server -> Client: Result of MapRequest2
if (buffer->writeHandle) {
// Writes need to be flushed before Unmap is sent. Unmap calls all associated
// in-flight callbacks which may read the updated data.
ASSERT(buffer->readHandle == nullptr);
// Get the serialization size of metadata to flush writes.
size_t writeFlushInfoLength = buffer->writeHandle->SerializeFlushSize();
BufferUpdateMappedDataCmd cmd;
cmd.bufferId = buffer->id;
cmd.writeFlushInfoLength = writeFlushInfoLength;
cmd.writeFlushInfo = nullptr;
char* writeHandleSpace =
buffer->device->GetClient()->SerializeCommand(cmd, writeFlushInfoLength);
// Serialize flush metadata into the space after the command.
// This closes the handle for writing.
buffer->writeHandle->SerializeFlush(writeHandleSpace);
buffer->writeHandle = nullptr;
} else if (buffer->readHandle) {
buffer->readHandle = nullptr;
}
buffer->ClearMapRequests(WGPUBufferMapAsyncStatus_Unknown);
BufferUnmapCmd cmd;
cmd.self = cBuffer;
buffer->device->GetClient()->SerializeCommand(cmd);
}
void ClientHandwrittenBufferDestroy(WGPUBuffer cBuffer) {
Buffer* buffer = reinterpret_cast<Buffer*>(cBuffer);
// Cancel or remove all mappings
buffer->writeHandle = nullptr;
buffer->readHandle = nullptr;
buffer->ClearMapRequests(WGPUBufferMapAsyncStatus_Unknown);
BufferDestroyCmd cmd;
cmd.self = cBuffer;
buffer->device->GetClient()->SerializeCommand(cmd);
}
WGPUFence ClientHandwrittenQueueCreateFence(WGPUQueue cSelf, WGPUFence ClientHandwrittenQueueCreateFence(WGPUQueue cSelf,
WGPUFenceDescriptor const* descriptor) { WGPUFenceDescriptor const* descriptor) {
Queue* queue = reinterpret_cast<Queue*>(cSelf); Queue* queue = reinterpret_cast<Queue*>(cSelf);

View File

@ -14,8 +14,136 @@
#include "dawn_wire/client/Buffer.h" #include "dawn_wire/client/Buffer.h"
#include "dawn_wire/client/ApiProcs_autogen.h"
#include "dawn_wire/client/Client.h"
#include "dawn_wire/client/Device.h"
namespace dawn_wire { namespace client { namespace dawn_wire { namespace client {
namespace {
template <typename Handle>
void SerializeBufferMapAsync(const Buffer* buffer, uint32_t serial, Handle* handle) {
// TODO(enga): Remove the template when Read/Write handles are combined in a tagged
// pointer.
constexpr bool isWrite =
std::is_same<Handle, MemoryTransferService::WriteHandle>::value;
// Get the serialization size of the handle.
size_t handleCreateInfoLength = handle->SerializeCreateSize();
BufferMapAsyncCmd cmd;
cmd.bufferId = buffer->id;
cmd.requestSerial = serial;
cmd.isWrite = isWrite;
cmd.handleCreateInfoLength = handleCreateInfoLength;
cmd.handleCreateInfo = nullptr;
char* writeHandleSpace =
buffer->device->GetClient()->SerializeCommand(cmd, handleCreateInfoLength);
// Serialize the handle into the space after the command.
handle->SerializeCreate(writeHandleSpace);
}
} // namespace
// static
WGPUBuffer Buffer::Create(Device* device_, const WGPUBufferDescriptor* descriptor) {
WGPUDevice cDevice = reinterpret_cast<WGPUDevice>(device_);
Client* wireClient = device_->GetClient();
if ((descriptor->usage & (WGPUBufferUsage_MapRead | WGPUBufferUsage_MapWrite)) != 0 &&
descriptor->size > std::numeric_limits<size_t>::max()) {
ClientDeviceInjectError(cDevice, WGPUErrorType_OutOfMemory,
"Buffer is too large for map usage");
return ClientDeviceCreateErrorBuffer(cDevice);
}
auto* bufferObjectAndSerial = wireClient->BufferAllocator().New(device_);
Buffer* buffer = bufferObjectAndSerial->object.get();
// Store the size of the buffer so that mapping operations can allocate a
// MemoryTransfer handle of the proper size.
buffer->mSize = descriptor->size;
DeviceCreateBufferCmd cmd;
cmd.self = cDevice;
cmd.descriptor = descriptor;
cmd.result = ObjectHandle{buffer->id, bufferObjectAndSerial->generation};
wireClient->SerializeCommand(cmd);
return reinterpret_cast<WGPUBuffer>(buffer);
}
// static
WGPUCreateBufferMappedResult Buffer::CreateMapped(Device* device_,
const WGPUBufferDescriptor* descriptor) {
WGPUDevice cDevice = reinterpret_cast<WGPUDevice>(device_);
Client* wireClient = device_->GetClient();
WGPUCreateBufferMappedResult result;
result.data = nullptr;
result.dataLength = 0;
// This buffer is too large to be mapped and to make a WriteHandle for.
if (descriptor->size > std::numeric_limits<size_t>::max()) {
ClientDeviceInjectError(cDevice, WGPUErrorType_OutOfMemory,
"Buffer is too large for mapping");
result.buffer = ClientDeviceCreateErrorBuffer(cDevice);
return result;
}
// Create a WriteHandle for the map request. This is the client's intent to write GPU
// memory.
std::unique_ptr<MemoryTransferService::WriteHandle> writeHandle =
std::unique_ptr<MemoryTransferService::WriteHandle>(
wireClient->GetMemoryTransferService()->CreateWriteHandle(descriptor->size));
if (writeHandle == nullptr) {
ClientDeviceInjectError(cDevice, WGPUErrorType_OutOfMemory,
"Buffer mapping allocation failed");
result.buffer = ClientDeviceCreateErrorBuffer(cDevice);
return result;
}
// CreateBufferMapped is synchronous and the staging buffer for upload should be immediately
// available.
// Open the WriteHandle. This returns a pointer and size of mapped memory.
// |result.data| may be null on error.
std::tie(result.data, result.dataLength) = writeHandle->Open();
if (result.data == nullptr) {
ClientDeviceInjectError(cDevice, WGPUErrorType_OutOfMemory,
"Buffer mapping allocation failed");
result.buffer = ClientDeviceCreateErrorBuffer(cDevice);
return result;
}
auto* bufferObjectAndSerial = wireClient->BufferAllocator().New(device_);
Buffer* buffer = bufferObjectAndSerial->object.get();
buffer->mSize = descriptor->size;
// Successfully created staging memory. The buffer now owns the WriteHandle.
buffer->mWriteHandle = std::move(writeHandle);
result.buffer = reinterpret_cast<WGPUBuffer>(buffer);
// Get the serialization size of the WriteHandle.
size_t handleCreateInfoLength = buffer->mWriteHandle->SerializeCreateSize();
DeviceCreateBufferMappedCmd cmd;
cmd.device = cDevice;
cmd.descriptor = descriptor;
cmd.result = ObjectHandle{buffer->id, bufferObjectAndSerial->generation};
cmd.handleCreateInfoLength = handleCreateInfoLength;
cmd.handleCreateInfo = nullptr;
char* writeHandleSpace =
buffer->device->GetClient()->SerializeCommand(cmd, handleCreateInfoLength);
// Serialize the WriteHandle into the space after the command.
buffer->mWriteHandle->SerializeCreate(writeHandleSpace);
return result;
}
Buffer::~Buffer() { Buffer::~Buffer() {
// Callbacks need to be fired in all cases, as they can handle freeing resources // Callbacks need to be fired in all cases, as they can handle freeing resources
// so we call them with "Unknown" status. // so we call them with "Unknown" status.
@ -23,14 +151,275 @@ namespace dawn_wire { namespace client {
} }
void Buffer::ClearMapRequests(WGPUBufferMapAsyncStatus status) { void Buffer::ClearMapRequests(WGPUBufferMapAsyncStatus status) {
for (auto& it : requests) { for (auto& it : mRequests) {
if (it.second.writeHandle) { if (it.second.writeHandle) {
it.second.writeCallback(status, nullptr, 0, it.second.userdata); it.second.writeCallback(status, nullptr, 0, it.second.userdata);
} else { } else {
it.second.readCallback(status, nullptr, 0, it.second.userdata); it.second.readCallback(status, nullptr, 0, it.second.userdata);
} }
} }
requests.clear(); mRequests.clear();
}
void Buffer::MapReadAsync(WGPUBufferMapReadCallback callback, void* userdata) {
uint32_t serial = mRequestSerial++;
ASSERT(mRequests.find(serial) == mRequests.end());
if (mSize > std::numeric_limits<size_t>::max()) {
// On buffer creation, we check that mappable buffers do not exceed this size.
// So this buffer must not have mappable usage. Inject a validation error.
ClientDeviceInjectError(reinterpret_cast<WGPUDevice>(device), WGPUErrorType_Validation,
"Buffer needs the correct map usage bit");
callback(WGPUBufferMapAsyncStatus_Error, nullptr, 0, userdata);
return;
}
// Create a ReadHandle for the map request. This is the client's intent to read GPU
// memory.
MemoryTransferService::ReadHandle* readHandle =
device->GetClient()->GetMemoryTransferService()->CreateReadHandle(
static_cast<size_t>(mSize));
if (readHandle == nullptr) {
ClientDeviceInjectError(reinterpret_cast<WGPUDevice>(device), WGPUErrorType_OutOfMemory,
"Failed to create buffer mapping");
callback(WGPUBufferMapAsyncStatus_Error, nullptr, 0, userdata);
return;
}
Buffer::MapRequestData request = {};
request.readCallback = callback;
request.userdata = userdata;
// The handle is owned by the MapRequest until the callback returns.
request.readHandle = std::unique_ptr<MemoryTransferService::ReadHandle>(readHandle);
// Store a mapping from serial -> MapRequest. The client can map/unmap before the map
// operations are returned by the server so multiple requests may be in flight.
mRequests[serial] = std::move(request);
SerializeBufferMapAsync(this, serial, readHandle);
}
void Buffer::MapWriteAsync(WGPUBufferMapWriteCallback callback, void* userdata) {
uint32_t serial = mRequestSerial++;
ASSERT(mRequests.find(serial) == mRequests.end());
if (mSize > std::numeric_limits<size_t>::max()) {
// On buffer creation, we check that mappable buffers do not exceed this size.
// So this buffer must not have mappable usage. Inject a validation error.
ClientDeviceInjectError(reinterpret_cast<WGPUDevice>(device), WGPUErrorType_Validation,
"Buffer needs the correct map usage bit");
callback(WGPUBufferMapAsyncStatus_Error, nullptr, 0, userdata);
return;
}
// Create a WriteHandle for the map request. This is the client's intent to write GPU
// memory.
MemoryTransferService::WriteHandle* writeHandle =
device->GetClient()->GetMemoryTransferService()->CreateWriteHandle(
static_cast<size_t>(mSize));
if (writeHandle == nullptr) {
ClientDeviceInjectError(reinterpret_cast<WGPUDevice>(device), WGPUErrorType_OutOfMemory,
"Failed to create buffer mapping");
callback(WGPUBufferMapAsyncStatus_Error, nullptr, 0, userdata);
return;
}
Buffer::MapRequestData request = {};
request.writeCallback = callback;
request.userdata = userdata;
// The handle is owned by the MapRequest until the callback returns.
request.writeHandle = std::unique_ptr<MemoryTransferService::WriteHandle>(writeHandle);
// Store a mapping from serial -> MapRequest. The client can map/unmap before the map
// operations are returned by the server so multiple requests may be in flight.
mRequests[serial] = std::move(request);
SerializeBufferMapAsync(this, serial, writeHandle);
}
bool Buffer::OnMapReadAsyncCallback(uint32_t requestSerial,
uint32_t status,
uint64_t initialDataInfoLength,
const uint8_t* initialDataInfo) {
// The requests can have been deleted via an Unmap so this isn't an error.
auto requestIt = mRequests.find(requestSerial);
if (requestIt == mRequests.end()) {
return true;
}
auto request = std::move(requestIt->second);
// Delete the request before calling the callback otherwise the callback could be fired a
// second time. If, for example, buffer.Unmap() is called inside the callback.
mRequests.erase(requestIt);
const void* mappedData = nullptr;
size_t mappedDataLength = 0;
auto GetMappedData = [&]() -> bool {
// It is an error for the server to call the read callback when we asked for a map write
if (request.writeHandle) {
return false;
}
if (status == WGPUBufferMapAsyncStatus_Success) {
if (mReadHandle || mWriteHandle) {
// Buffer is already mapped.
return false;
}
if (initialDataInfoLength > std::numeric_limits<size_t>::max()) {
// This is the size of data deserialized from the command stream, which must be
// CPU-addressable.
return false;
}
ASSERT(request.readHandle != nullptr);
// The server serializes metadata to initialize the contents of the ReadHandle.
// Deserialize the message and return a pointer and size of the mapped data for
// reading.
if (!request.readHandle->DeserializeInitialData(
initialDataInfo, static_cast<size_t>(initialDataInfoLength), &mappedData,
&mappedDataLength)) {
// Deserialization shouldn't fail. This is a fatal error.
return false;
}
ASSERT(mappedData != nullptr);
// The MapRead request was successful. The buffer now owns the ReadHandle until
// Unmap().
mReadHandle = std::move(request.readHandle);
}
return true;
};
if (!GetMappedData()) {
// Dawn promises that all callbacks are called in finite time. Even if a fatal error
// occurs, the callback is called.
request.readCallback(WGPUBufferMapAsyncStatus_DeviceLost, nullptr, 0, request.userdata);
return false;
} else {
request.readCallback(static_cast<WGPUBufferMapAsyncStatus>(status), mappedData,
static_cast<uint64_t>(mappedDataLength), request.userdata);
return true;
}
}
bool Buffer::OnMapWriteAsyncCallback(uint32_t requestSerial, uint32_t status) {
// The requests can have been deleted via an Unmap so this isn't an error.
auto requestIt = mRequests.find(requestSerial);
if (requestIt == mRequests.end()) {
return true;
}
auto request = std::move(requestIt->second);
// Delete the request before calling the callback otherwise the callback could be fired a
// second time. If, for example, buffer.Unmap() is called inside the callback.
mRequests.erase(requestIt);
void* mappedData = nullptr;
size_t mappedDataLength = 0;
auto GetMappedData = [&]() -> bool {
// It is an error for the server to call the write callback when we asked for a map read
if (request.readHandle) {
return false;
}
if (status == WGPUBufferMapAsyncStatus_Success) {
if (mReadHandle || mWriteHandle) {
// Buffer is already mapped.
return false;
}
ASSERT(request.writeHandle != nullptr);
// Open the WriteHandle. This returns a pointer and size of mapped memory.
// On failure, |mappedData| may be null.
std::tie(mappedData, mappedDataLength) = request.writeHandle->Open();
if (mappedData == nullptr) {
return false;
}
// The MapWrite request was successful. The buffer now owns the WriteHandle until
// Unmap().
mWriteHandle = std::move(request.writeHandle);
}
return true;
};
if (!GetMappedData()) {
// Dawn promises that all callbacks are called in finite time. Even if a fatal error
// occurs, the callback is called.
request.writeCallback(WGPUBufferMapAsyncStatus_DeviceLost, nullptr, 0,
request.userdata);
return false;
} else {
request.writeCallback(static_cast<WGPUBufferMapAsyncStatus>(status), mappedData,
static_cast<uint64_t>(mappedDataLength), request.userdata);
return true;
}
}
void Buffer::Unmap() {
// Invalidate the local pointer, and cancel all other in-flight requests that would
// turn into errors anyway (you can't double map). This prevents race when the following
// happens, where the application code would have unmapped a buffer but still receive a
// callback:
// - Client -> Server: MapRequest1, Unmap, MapRequest2
// - Server -> Client: Result of MapRequest1
// - Unmap locally on the client
// - Server -> Client: Result of MapRequest2
if (mWriteHandle) {
// Writes need to be flushed before Unmap is sent. Unmap calls all associated
// in-flight callbacks which may read the updated data.
ASSERT(mReadHandle == nullptr);
// Get the serialization size of metadata to flush writes.
size_t writeFlushInfoLength = mWriteHandle->SerializeFlushSize();
BufferUpdateMappedDataCmd cmd;
cmd.bufferId = id;
cmd.writeFlushInfoLength = writeFlushInfoLength;
cmd.writeFlushInfo = nullptr;
char* writeHandleSpace =
device->GetClient()->SerializeCommand(cmd, writeFlushInfoLength);
// Serialize flush metadata into the space after the command.
// This closes the handle for writing.
mWriteHandle->SerializeFlush(writeHandleSpace);
mWriteHandle = nullptr;
} else if (mReadHandle) {
mReadHandle = nullptr;
}
ClearMapRequests(WGPUBufferMapAsyncStatus_Unknown);
BufferUnmapCmd cmd;
cmd.self = reinterpret_cast<WGPUBuffer>(this);
device->GetClient()->SerializeCommand(cmd);
}
void Buffer::Destroy() {
// Cancel or remove all mappings
mWriteHandle = nullptr;
mReadHandle = nullptr;
ClearMapRequests(WGPUBufferMapAsyncStatus_Unknown);
BufferDestroyCmd cmd;
cmd.self = reinterpret_cast<WGPUBuffer>(this);
device->GetClient()->SerializeCommand(cmd);
}
void Buffer::SetSubData(uint64_t start, uint64_t count, const void* data) {
BufferSetSubDataInternalCmd cmd;
cmd.bufferId = id;
cmd.start = start;
cmd.count = count;
cmd.data = static_cast<const uint8_t*>(data);
device->GetClient()->SerializeCommand(cmd);
} }
}} // namespace dawn_wire::client }} // namespace dawn_wire::client

View File

@ -24,12 +24,31 @@
namespace dawn_wire { namespace client { namespace dawn_wire { namespace client {
struct Buffer : ObjectBase { class Buffer : public ObjectBase {
public:
using ObjectBase::ObjectBase; using ObjectBase::ObjectBase;
static WGPUBuffer Create(Device* device, const WGPUBufferDescriptor* descriptor);
static WGPUCreateBufferMappedResult CreateMapped(Device* device,
const WGPUBufferDescriptor* descriptor);
~Buffer(); ~Buffer();
void ClearMapRequests(WGPUBufferMapAsyncStatus status); void ClearMapRequests(WGPUBufferMapAsyncStatus status);
void MapReadAsync(WGPUBufferMapReadCallback callback, void* userdata);
void MapWriteAsync(WGPUBufferMapWriteCallback callback, void* userdata);
bool OnMapReadAsyncCallback(uint32_t requestSerial,
uint32_t status,
uint64_t initialDataInfoLength,
const uint8_t* initialDataInfo);
bool OnMapWriteAsyncCallback(uint32_t requestSerial, uint32_t status);
void Unmap();
void Destroy();
void SetSubData(uint64_t start, uint64_t count, const void* data);
private:
// We want to defer all the validation to the server, which means we could have multiple // We want to defer all the validation to the server, which means we could have multiple
// map request in flight at a single time and need to track them separately. // map request in flight at a single time and need to track them separately.
// On well-behaved applications, only one request should exist at a single time. // On well-behaved applications, only one request should exist at a single time.
@ -42,15 +61,15 @@ namespace dawn_wire { namespace client {
std::unique_ptr<MemoryTransferService::ReadHandle> readHandle = nullptr; std::unique_ptr<MemoryTransferService::ReadHandle> readHandle = nullptr;
std::unique_ptr<MemoryTransferService::WriteHandle> writeHandle = nullptr; std::unique_ptr<MemoryTransferService::WriteHandle> writeHandle = nullptr;
}; };
std::map<uint32_t, MapRequestData> requests; std::map<uint32_t, MapRequestData> mRequests;
uint32_t requestSerial = 0; uint32_t mRequestSerial = 0;
uint64_t size = 0; uint64_t mSize = 0;
// Only one mapped pointer can be active at a time because Unmap clears all the in-flight // Only one mapped pointer can be active at a time because Unmap clears all the in-flight
// requests. // requests.
// TODO(enga): Use a tagged pointer to save space. // TODO(enga): Use a tagged pointer to save space.
std::unique_ptr<MemoryTransferService::ReadHandle> readHandle = nullptr; std::unique_ptr<MemoryTransferService::ReadHandle> mReadHandle = nullptr;
std::unique_ptr<MemoryTransferService::WriteHandle> writeHandle = nullptr; std::unique_ptr<MemoryTransferService::WriteHandle> mWriteHandle = nullptr;
}; };
}} // namespace dawn_wire::client }} // namespace dawn_wire::client

View File

@ -56,67 +56,8 @@ namespace dawn_wire { namespace client {
return true; return true;
} }
// The requests can have been deleted via an Unmap so this isn't an error. return buffer->OnMapReadAsyncCallback(requestSerial, status, initialDataInfoLength,
auto requestIt = buffer->requests.find(requestSerial); initialDataInfo);
if (requestIt == buffer->requests.end()) {
return true;
}
auto request = std::move(requestIt->second);
// Delete the request before calling the callback otherwise the callback could be fired a
// second time. If, for example, buffer.Unmap() is called inside the callback.
buffer->requests.erase(requestIt);
const void* mappedData = nullptr;
size_t mappedDataLength = 0;
auto GetMappedData = [&]() -> bool {
// It is an error for the server to call the read callback when we asked for a map write
if (request.writeHandle) {
return false;
}
if (status == WGPUBufferMapAsyncStatus_Success) {
if (buffer->readHandle || buffer->writeHandle) {
// Buffer is already mapped.
return false;
}
if (initialDataInfoLength > std::numeric_limits<size_t>::max()) {
// This is the size of data deserialized from the command stream, which must be
// CPU-addressable.
return false;
}
ASSERT(request.readHandle != nullptr);
// The server serializes metadata to initialize the contents of the ReadHandle.
// Deserialize the message and return a pointer and size of the mapped data for
// reading.
if (!request.readHandle->DeserializeInitialData(
initialDataInfo, static_cast<size_t>(initialDataInfoLength), &mappedData,
&mappedDataLength)) {
// Deserialization shouldn't fail. This is a fatal error.
return false;
}
ASSERT(mappedData != nullptr);
// The MapRead request was successful. The buffer now owns the ReadHandle until
// Unmap().
buffer->readHandle = std::move(request.readHandle);
}
return true;
};
if (!GetMappedData()) {
// Dawn promises that all callbacks are called in finite time. Even if a fatal error
// occurs, the callback is called.
request.readCallback(WGPUBufferMapAsyncStatus_DeviceLost, nullptr, 0, request.userdata);
return false;
} else {
request.readCallback(static_cast<WGPUBufferMapAsyncStatus>(status), mappedData,
static_cast<uint64_t>(mappedDataLength), request.userdata);
return true;
}
} }
bool Client::DoBufferMapWriteAsyncCallback(Buffer* buffer, bool Client::DoBufferMapWriteAsyncCallback(Buffer* buffer,
@ -127,60 +68,7 @@ namespace dawn_wire { namespace client {
return true; return true;
} }
// The requests can have been deleted via an Unmap so this isn't an error. return buffer->OnMapWriteAsyncCallback(requestSerial, status);
auto requestIt = buffer->requests.find(requestSerial);
if (requestIt == buffer->requests.end()) {
return true;
}
auto request = std::move(requestIt->second);
// Delete the request before calling the callback otherwise the callback could be fired a
// second time. If, for example, buffer.Unmap() is called inside the callback.
buffer->requests.erase(requestIt);
void* mappedData = nullptr;
size_t mappedDataLength = 0;
auto GetMappedData = [&]() -> bool {
// It is an error for the server to call the write callback when we asked for a map read
if (request.readHandle) {
return false;
}
if (status == WGPUBufferMapAsyncStatus_Success) {
if (buffer->readHandle || buffer->writeHandle) {
// Buffer is already mapped.
return false;
}
ASSERT(request.writeHandle != nullptr);
// Open the WriteHandle. This returns a pointer and size of mapped memory.
// On failure, |mappedData| may be null.
std::tie(mappedData, mappedDataLength) = request.writeHandle->Open();
if (mappedData == nullptr) {
return false;
}
// The MapWrite request was successful. The buffer now owns the WriteHandle until
// Unmap().
buffer->writeHandle = std::move(request.writeHandle);
}
return true;
};
if (!GetMappedData()) {
// Dawn promises that all callbacks are called in finite time. Even if a fatal error
// occurs, the callback is called.
request.writeCallback(WGPUBufferMapAsyncStatus_DeviceLost, nullptr, 0,
request.userdata);
return false;
} else {
request.writeCallback(static_cast<WGPUBufferMapAsyncStatus>(status), mappedData,
static_cast<uint64_t>(mappedDataLength), request.userdata);
return true;
}
} }
bool Client::DoFenceUpdateCompletedValue(Fence* fence, uint64_t value) { bool Client::DoFenceUpdateCompletedValue(Fence* fence, uint64_t value) {