mirror of
https://github.com/encounter/dawn-cmake.git
synced 2025-05-13 10:51:35 +00:00
Change-Id: Ia80b1bed84aa7d16421d432d5da861e55175b335 Reviewed-on: https://dawn-review.googlesource.com/c/dawn/+/85841 Commit-Queue: Brandon Jones <bajones@chromium.org> Auto-Submit: Brandon Jones <bajones@chromium.org> Reviewed-by: Austin Eng <enga@chromium.org> Commit-Queue: Austin Eng <enga@chromium.org> Reviewed-by: James Price <jrprice@google.com>
1555 lines
66 KiB
C++
1555 lines
66 KiB
C++
// Copyright 2017 The Dawn Authors
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include "dawn/tests/unittests/validation/ValidationTest.h"
|
|
|
|
#include "dawn/common/Constants.h"
|
|
#include "dawn/utils/ComboRenderPipelineDescriptor.h"
|
|
#include "dawn/utils/WGPUHelpers.h"
|
|
|
|
#include <cmath>
|
|
#include <sstream>
|
|
|
|
class RenderPipelineValidationTest : public ValidationTest {
|
|
protected:
|
|
void SetUp() override {
|
|
ValidationTest::SetUp();
|
|
|
|
vsModule = utils::CreateShaderModule(device, R"(
|
|
@stage(vertex) fn main() -> @builtin(position) vec4<f32> {
|
|
return vec4<f32>(0.0, 0.0, 0.0, 1.0);
|
|
})");
|
|
|
|
fsModule = utils::CreateShaderModule(device, R"(
|
|
@stage(fragment) fn main() -> @location(0) vec4<f32> {
|
|
return vec4<f32>(0.0, 1.0, 0.0, 1.0);
|
|
})");
|
|
|
|
fsModuleUint = utils::CreateShaderModule(device, R"(
|
|
@stage(fragment) fn main() -> @location(0) vec4<u32> {
|
|
return vec4<u32>(0u, 255u, 0u, 255u);
|
|
})");
|
|
}
|
|
|
|
wgpu::ShaderModule vsModule;
|
|
wgpu::ShaderModule fsModule;
|
|
wgpu::ShaderModule fsModuleUint;
|
|
};
|
|
|
|
namespace {
|
|
bool BlendFactorContainsSrcAlpha(const wgpu::BlendFactor& blendFactor) {
|
|
return blendFactor == wgpu::BlendFactor::SrcAlpha ||
|
|
blendFactor == wgpu::BlendFactor::OneMinusSrcAlpha ||
|
|
blendFactor == wgpu::BlendFactor::SrcAlphaSaturated;
|
|
}
|
|
} // namespace
|
|
|
|
// Test cases where creation should succeed
|
|
TEST_F(RenderPipelineValidationTest, CreationSuccess) {
|
|
{
|
|
// New format
|
|
utils::ComboRenderPipelineDescriptor descriptor;
|
|
descriptor.vertex.module = vsModule;
|
|
descriptor.cFragment.module = fsModule;
|
|
|
|
device.CreateRenderPipeline(&descriptor);
|
|
}
|
|
}
|
|
|
|
// Tests that depth bias parameters must not be NaN.
|
|
TEST_F(RenderPipelineValidationTest, DepthBiasParameterNotBeNaN) {
|
|
// Control case, depth bias parameters in ComboRenderPipeline default to 0 which is finite
|
|
{
|
|
utils::ComboRenderPipelineDescriptor descriptor;
|
|
descriptor.vertex.module = vsModule;
|
|
descriptor.cFragment.module = fsModule;
|
|
descriptor.EnableDepthStencil();
|
|
device.CreateRenderPipeline(&descriptor);
|
|
}
|
|
|
|
// Infinite depth bias clamp is valid
|
|
{
|
|
utils::ComboRenderPipelineDescriptor descriptor;
|
|
descriptor.vertex.module = vsModule;
|
|
descriptor.cFragment.module = fsModule;
|
|
wgpu::DepthStencilState* depthStencil = descriptor.EnableDepthStencil();
|
|
depthStencil->depthBiasClamp = INFINITY;
|
|
device.CreateRenderPipeline(&descriptor);
|
|
}
|
|
// NAN depth bias clamp is invalid
|
|
{
|
|
utils::ComboRenderPipelineDescriptor descriptor;
|
|
descriptor.vertex.module = vsModule;
|
|
descriptor.cFragment.module = fsModule;
|
|
wgpu::DepthStencilState* depthStencil = descriptor.EnableDepthStencil();
|
|
depthStencil->depthBiasClamp = NAN;
|
|
ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor));
|
|
}
|
|
|
|
// Infinite depth bias slope is valid
|
|
{
|
|
utils::ComboRenderPipelineDescriptor descriptor;
|
|
descriptor.vertex.module = vsModule;
|
|
descriptor.cFragment.module = fsModule;
|
|
wgpu::DepthStencilState* depthStencil = descriptor.EnableDepthStencil();
|
|
depthStencil->depthBiasSlopeScale = INFINITY;
|
|
device.CreateRenderPipeline(&descriptor);
|
|
}
|
|
// NAN depth bias slope is invalid
|
|
{
|
|
utils::ComboRenderPipelineDescriptor descriptor;
|
|
descriptor.vertex.module = vsModule;
|
|
descriptor.cFragment.module = fsModule;
|
|
wgpu::DepthStencilState* depthStencil = descriptor.EnableDepthStencil();
|
|
depthStencil->depthBiasSlopeScale = NAN;
|
|
ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor));
|
|
}
|
|
}
|
|
|
|
// Tests that depth or stencil aspect is required if we enable depth or stencil test.
|
|
TEST_F(RenderPipelineValidationTest, DepthStencilAspectRequirement) {
|
|
// Control case, stencil aspect is required if stencil test or stencil write is enabled
|
|
{
|
|
utils::ComboRenderPipelineDescriptor descriptor;
|
|
descriptor.vertex.module = vsModule;
|
|
descriptor.cFragment.module = fsModule;
|
|
wgpu::DepthStencilState* depthStencil =
|
|
descriptor.EnableDepthStencil(wgpu::TextureFormat::Depth24PlusStencil8);
|
|
depthStencil->stencilFront.compare = wgpu::CompareFunction::LessEqual;
|
|
depthStencil->stencilBack.failOp = wgpu::StencilOperation::Replace;
|
|
device.CreateRenderPipeline(&descriptor);
|
|
}
|
|
|
|
// It is invalid if the texture format doesn't have stencil aspect while stencil test is
|
|
// enabled (depthStencilState.stencilFront are not default values).
|
|
{
|
|
utils::ComboRenderPipelineDescriptor descriptor;
|
|
descriptor.vertex.module = vsModule;
|
|
descriptor.cFragment.module = fsModule;
|
|
wgpu::DepthStencilState* depthStencil =
|
|
descriptor.EnableDepthStencil(wgpu::TextureFormat::Depth24Plus);
|
|
depthStencil->stencilFront.compare = wgpu::CompareFunction::LessEqual;
|
|
ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor));
|
|
}
|
|
|
|
// It is invalid if the texture format doesn't have stencil aspect while stencil write is
|
|
// enabled (depthStencilState.stencilBack are not default values).
|
|
{
|
|
utils::ComboRenderPipelineDescriptor descriptor;
|
|
descriptor.vertex.module = vsModule;
|
|
descriptor.cFragment.module = fsModule;
|
|
wgpu::DepthStencilState* depthStencil =
|
|
descriptor.EnableDepthStencil(wgpu::TextureFormat::Depth24Plus);
|
|
depthStencil->stencilBack.failOp = wgpu::StencilOperation::Replace;
|
|
ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor));
|
|
}
|
|
|
|
// Control case, depth aspect is required if depth test or depth write is enabled
|
|
{
|
|
utils::ComboRenderPipelineDescriptor descriptor;
|
|
descriptor.vertex.module = vsModule;
|
|
descriptor.cFragment.module = fsModule;
|
|
wgpu::DepthStencilState* depthStencil =
|
|
descriptor.EnableDepthStencil(wgpu::TextureFormat::Depth24PlusStencil8);
|
|
depthStencil->depthCompare = wgpu::CompareFunction::LessEqual;
|
|
depthStencil->depthWriteEnabled = true;
|
|
device.CreateRenderPipeline(&descriptor);
|
|
}
|
|
|
|
// TODO(dawn:666): Add tests for stencil-only format (Stencil8) with depth test or depth write
|
|
// enabled when Stencil8 format is implemented
|
|
}
|
|
|
|
// Tests that at least one color target state is required.
|
|
TEST_F(RenderPipelineValidationTest, ColorTargetStateRequired) {
|
|
{
|
|
// This one succeeds because attachment 0 is the color attachment
|
|
utils::ComboRenderPipelineDescriptor descriptor;
|
|
descriptor.vertex.module = vsModule;
|
|
descriptor.cFragment.module = fsModule;
|
|
descriptor.cFragment.targetCount = 1;
|
|
|
|
device.CreateRenderPipeline(&descriptor);
|
|
}
|
|
|
|
{ // Fail because lack of color target states (and depth/stencil state)
|
|
utils::ComboRenderPipelineDescriptor descriptor;
|
|
descriptor.vertex.module = vsModule;
|
|
descriptor.cFragment.module = fsModule;
|
|
descriptor.cFragment.targetCount = 0;
|
|
|
|
ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor));
|
|
}
|
|
}
|
|
|
|
// Tests that target blend and writeMasks must not be set if the format is undefined.
|
|
TEST_F(RenderPipelineValidationTest, UndefinedColorStateFormatWithBlendOrWriteMask) {
|
|
{
|
|
// Control case: Valid undefined format target.
|
|
utils::ComboRenderPipelineDescriptor descriptor;
|
|
descriptor.vertex.module = vsModule;
|
|
descriptor.cFragment.module = fsModule;
|
|
descriptor.cFragment.targetCount = 1;
|
|
descriptor.cTargets[0].format = wgpu::TextureFormat::Undefined;
|
|
descriptor.cTargets[0].writeMask = wgpu::ColorWriteMask::None;
|
|
|
|
device.CreateRenderPipeline(&descriptor);
|
|
}
|
|
{
|
|
// Error case: undefined format target with blend state set.
|
|
utils::ComboRenderPipelineDescriptor descriptor;
|
|
descriptor.vertex.module = vsModule;
|
|
descriptor.cFragment.module = fsModule;
|
|
descriptor.cFragment.targetCount = 1;
|
|
descriptor.cTargets[0].format = wgpu::TextureFormat::Undefined;
|
|
descriptor.cTargets[0].blend = &descriptor.cBlends[0];
|
|
descriptor.cTargets[0].writeMask = wgpu::ColorWriteMask::None;
|
|
|
|
ASSERT_DEVICE_ERROR(
|
|
device.CreateRenderPipeline(&descriptor),
|
|
testing::HasSubstr("Color target[0] blend state is set when the format is undefined."));
|
|
}
|
|
{
|
|
// Error case: undefined format target with write masking not being none.
|
|
utils::ComboRenderPipelineDescriptor descriptor;
|
|
descriptor.vertex.module = vsModule;
|
|
descriptor.cFragment.module = fsModule;
|
|
descriptor.cFragment.targetCount = 1;
|
|
descriptor.cTargets[0].format = wgpu::TextureFormat::Undefined;
|
|
descriptor.cTargets[0].blend = nullptr;
|
|
descriptor.cTargets[0].writeMask = wgpu::ColorWriteMask::All;
|
|
|
|
ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor),
|
|
testing::HasSubstr("Color target[0] write mask is set to"));
|
|
}
|
|
}
|
|
|
|
// Tests that the color formats must be renderable.
|
|
TEST_F(RenderPipelineValidationTest, NonRenderableFormat) {
|
|
{
|
|
// Succeeds because RGBA8Unorm is renderable
|
|
utils::ComboRenderPipelineDescriptor descriptor;
|
|
descriptor.vertex.module = vsModule;
|
|
descriptor.cFragment.module = fsModule;
|
|
descriptor.cTargets[0].format = wgpu::TextureFormat::RGBA8Unorm;
|
|
|
|
device.CreateRenderPipeline(&descriptor);
|
|
}
|
|
|
|
{
|
|
// Fails because RG11B10Ufloat is non-renderable
|
|
utils::ComboRenderPipelineDescriptor descriptor;
|
|
descriptor.vertex.module = vsModule;
|
|
descriptor.cFragment.module = fsModule;
|
|
descriptor.cTargets[0].format = wgpu::TextureFormat::RG11B10Ufloat;
|
|
|
|
ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor));
|
|
}
|
|
}
|
|
|
|
// Tests that the color formats must be blendable when blending is enabled.
|
|
// Those are renderable color formats with "float" capabilities in
|
|
// https://gpuweb.github.io/gpuweb/#plain-color-formats
|
|
TEST_F(RenderPipelineValidationTest, NonBlendableFormat) {
|
|
{
|
|
// Succeeds because RGBA8Unorm is blendable
|
|
utils::ComboRenderPipelineDescriptor descriptor;
|
|
descriptor.vertex.module = vsModule;
|
|
descriptor.cFragment.module = fsModule;
|
|
descriptor.cTargets[0].blend = &descriptor.cBlends[0];
|
|
descriptor.cTargets[0].format = wgpu::TextureFormat::RGBA8Unorm;
|
|
|
|
device.CreateRenderPipeline(&descriptor);
|
|
}
|
|
|
|
{
|
|
// Fails because RGBA32Float is not blendable
|
|
utils::ComboRenderPipelineDescriptor descriptor;
|
|
descriptor.vertex.module = vsModule;
|
|
descriptor.cFragment.module = fsModule;
|
|
descriptor.cTargets[0].blend = &descriptor.cBlends[0];
|
|
descriptor.cTargets[0].format = wgpu::TextureFormat::RGBA32Float;
|
|
|
|
ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor));
|
|
}
|
|
|
|
{
|
|
// Succeeds because RGBA32Float is not blendable but blending is disabled
|
|
utils::ComboRenderPipelineDescriptor descriptor;
|
|
descriptor.vertex.module = vsModule;
|
|
descriptor.cFragment.module = fsModule;
|
|
descriptor.cTargets[0].blend = nullptr;
|
|
descriptor.cTargets[0].format = wgpu::TextureFormat::RGBA32Float;
|
|
|
|
device.CreateRenderPipeline(&descriptor);
|
|
}
|
|
|
|
{
|
|
// Fails because RGBA8Uint is not blendable
|
|
utils::ComboRenderPipelineDescriptor descriptor;
|
|
descriptor.vertex.module = vsModule;
|
|
descriptor.cFragment.module = fsModuleUint;
|
|
descriptor.cTargets[0].blend = &descriptor.cBlends[0];
|
|
descriptor.cTargets[0].format = wgpu::TextureFormat::RGBA8Uint;
|
|
|
|
ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor));
|
|
}
|
|
|
|
{
|
|
// Succeeds because RGBA8Uint is not blendable but blending is disabled
|
|
utils::ComboRenderPipelineDescriptor descriptor;
|
|
descriptor.vertex.module = vsModule;
|
|
descriptor.cFragment.module = fsModuleUint;
|
|
descriptor.cTargets[0].blend = nullptr;
|
|
descriptor.cTargets[0].format = wgpu::TextureFormat::RGBA8Uint;
|
|
|
|
device.CreateRenderPipeline(&descriptor);
|
|
}
|
|
}
|
|
|
|
// Tests that the format of the color state descriptor must match the output of the fragment shader.
|
|
TEST_F(RenderPipelineValidationTest, FragmentOutputFormatCompatibility) {
|
|
std::array<const char*, 3> kScalarTypes = {{"f32", "i32", "u32"}};
|
|
std::array<wgpu::TextureFormat, 3> kColorFormats = {{wgpu::TextureFormat::RGBA8Unorm,
|
|
wgpu::TextureFormat::RGBA8Sint,
|
|
wgpu::TextureFormat::RGBA8Uint}};
|
|
|
|
for (size_t i = 0; i < kScalarTypes.size(); ++i) {
|
|
utils::ComboRenderPipelineDescriptor descriptor;
|
|
descriptor.vertex.module = vsModule;
|
|
std::ostringstream stream;
|
|
stream << R"(
|
|
@stage(fragment) fn main() -> @location(0) vec4<)"
|
|
<< kScalarTypes[i] << R"(> {
|
|
var result : vec4<)"
|
|
<< kScalarTypes[i] << R"(>;
|
|
return result;
|
|
})";
|
|
descriptor.cFragment.module = utils::CreateShaderModule(device, stream.str().c_str());
|
|
|
|
for (size_t j = 0; j < kColorFormats.size(); ++j) {
|
|
descriptor.cTargets[0].format = kColorFormats[j];
|
|
if (i == j) {
|
|
device.CreateRenderPipeline(&descriptor);
|
|
} else {
|
|
ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Tests that the component count of the color state target format must be fewer than that of the
|
|
// fragment shader output.
|
|
TEST_F(RenderPipelineValidationTest, FragmentOutputComponentCountCompatibility) {
|
|
std::array<wgpu::TextureFormat, 3> kColorFormats = {wgpu::TextureFormat::R8Unorm,
|
|
wgpu::TextureFormat::RG8Unorm,
|
|
wgpu::TextureFormat::RGBA8Unorm};
|
|
|
|
std::array<wgpu::BlendFactor, 8> kBlendFactors = {wgpu::BlendFactor::Zero,
|
|
wgpu::BlendFactor::One,
|
|
wgpu::BlendFactor::SrcAlpha,
|
|
wgpu::BlendFactor::OneMinusSrcAlpha,
|
|
wgpu::BlendFactor::Src,
|
|
wgpu::BlendFactor::DstAlpha,
|
|
wgpu::BlendFactor::OneMinusDstAlpha,
|
|
wgpu::BlendFactor::Dst};
|
|
|
|
for (size_t componentCount = 1; componentCount <= 4; ++componentCount) {
|
|
utils::ComboRenderPipelineDescriptor descriptor;
|
|
descriptor.vertex.module = vsModule;
|
|
|
|
std::ostringstream stream;
|
|
stream << R"(
|
|
@stage(fragment) fn main() -> @location(0) )";
|
|
switch (componentCount) {
|
|
case 1:
|
|
stream << R"(f32 {
|
|
return 1.0;
|
|
})";
|
|
break;
|
|
case 2:
|
|
stream << R"(vec2<f32> {
|
|
return vec2<f32>(1.0, 1.0);
|
|
})";
|
|
break;
|
|
case 3:
|
|
stream << R"(vec3<f32> {
|
|
return vec3<f32>(1.0, 1.0, 1.0);
|
|
})";
|
|
break;
|
|
case 4:
|
|
stream << R"(vec4<f32> {
|
|
return vec4<f32>(1.0, 1.0, 1.0, 1.0);
|
|
})";
|
|
break;
|
|
default:
|
|
UNREACHABLE();
|
|
}
|
|
descriptor.cFragment.module = utils::CreateShaderModule(device, stream.str().c_str());
|
|
|
|
for (auto colorFormat : kColorFormats) {
|
|
descriptor.cTargets[0].format = colorFormat;
|
|
|
|
descriptor.cTargets[0].blend = nullptr;
|
|
if (componentCount >= utils::GetWGSLRenderableColorTextureComponentCount(colorFormat)) {
|
|
device.CreateRenderPipeline(&descriptor);
|
|
} else {
|
|
ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor));
|
|
}
|
|
|
|
descriptor.cTargets[0].blend = &descriptor.cBlends[0];
|
|
|
|
for (auto colorSrcFactor : kBlendFactors) {
|
|
descriptor.cBlends[0].color.srcFactor = colorSrcFactor;
|
|
for (auto colorDstFactor : kBlendFactors) {
|
|
descriptor.cBlends[0].color.dstFactor = colorDstFactor;
|
|
for (auto alphaSrcFactor : kBlendFactors) {
|
|
descriptor.cBlends[0].alpha.srcFactor = alphaSrcFactor;
|
|
for (auto alphaDstFactor : kBlendFactors) {
|
|
descriptor.cBlends[0].alpha.dstFactor = alphaDstFactor;
|
|
|
|
bool valid = true;
|
|
if (componentCount >=
|
|
utils::GetWGSLRenderableColorTextureComponentCount(colorFormat)) {
|
|
if (BlendFactorContainsSrcAlpha(
|
|
descriptor.cTargets[0].blend->color.srcFactor) ||
|
|
BlendFactorContainsSrcAlpha(
|
|
descriptor.cTargets[0].blend->color.dstFactor)) {
|
|
valid = componentCount == 4;
|
|
}
|
|
} else {
|
|
valid = false;
|
|
}
|
|
|
|
if (valid) {
|
|
device.CreateRenderPipeline(&descriptor);
|
|
} else {
|
|
ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Tests that when blendOperationMinOrMax is "min" or "max", both srcBlendFactor and dstBlendFactor
|
|
// must be "one".
|
|
TEST_F(RenderPipelineValidationTest, BlendOperationAndBlendFactors) {
|
|
constexpr std::array<wgpu::BlendFactor, 8> kBlendFactors = {wgpu::BlendFactor::Zero,
|
|
wgpu::BlendFactor::One,
|
|
wgpu::BlendFactor::SrcAlpha,
|
|
wgpu::BlendFactor::OneMinusSrcAlpha,
|
|
wgpu::BlendFactor::Src,
|
|
wgpu::BlendFactor::DstAlpha,
|
|
wgpu::BlendFactor::OneMinusDstAlpha,
|
|
wgpu::BlendFactor::Dst};
|
|
|
|
constexpr std::array<wgpu::BlendOperation, 2> kBlendOperationsForTest = {
|
|
wgpu::BlendOperation::Max, wgpu::BlendOperation::Min};
|
|
|
|
for (wgpu::BlendOperation blendOperationMinOrMax : kBlendOperationsForTest) {
|
|
for (wgpu::BlendFactor srcFactor : kBlendFactors) {
|
|
for (wgpu::BlendFactor dstFactor : kBlendFactors) {
|
|
utils::ComboRenderPipelineDescriptor descriptor;
|
|
descriptor.vertex.module = vsModule;
|
|
descriptor.cFragment.module = fsModule;
|
|
descriptor.cTargets[0].format = wgpu::TextureFormat::RGBA8Unorm;
|
|
descriptor.cTargets[0].blend = &descriptor.cBlends[0];
|
|
descriptor.cBlends[0].color.srcFactor = srcFactor;
|
|
descriptor.cBlends[0].color.dstFactor = dstFactor;
|
|
descriptor.cBlends[0].alpha.srcFactor = srcFactor;
|
|
descriptor.cBlends[0].alpha.dstFactor = dstFactor;
|
|
|
|
descriptor.cBlends[0].color.operation = blendOperationMinOrMax;
|
|
descriptor.cBlends[0].alpha.operation = wgpu::BlendOperation::Add;
|
|
if (srcFactor == wgpu::BlendFactor::One && dstFactor == wgpu::BlendFactor::One) {
|
|
device.CreateRenderPipeline(&descriptor);
|
|
} else {
|
|
ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor));
|
|
}
|
|
|
|
descriptor.cBlends[0].color.operation = wgpu::BlendOperation::Add;
|
|
descriptor.cBlends[0].alpha.operation = blendOperationMinOrMax;
|
|
if (srcFactor == wgpu::BlendFactor::One && dstFactor == wgpu::BlendFactor::One) {
|
|
device.CreateRenderPipeline(&descriptor);
|
|
} else {
|
|
ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Tests that the sample count of the render pipeline must be valid.
|
|
TEST_F(RenderPipelineValidationTest, SampleCount) {
|
|
{
|
|
utils::ComboRenderPipelineDescriptor descriptor;
|
|
descriptor.vertex.module = vsModule;
|
|
descriptor.cFragment.module = fsModule;
|
|
descriptor.multisample.count = 4;
|
|
|
|
device.CreateRenderPipeline(&descriptor);
|
|
}
|
|
|
|
{
|
|
utils::ComboRenderPipelineDescriptor descriptor;
|
|
descriptor.vertex.module = vsModule;
|
|
descriptor.cFragment.module = fsModule;
|
|
descriptor.multisample.count = 3;
|
|
|
|
ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor));
|
|
}
|
|
}
|
|
|
|
// Tests that the sample count of the render pipeline must be equal to the one of every attachments
|
|
// in the render pass.
|
|
TEST_F(RenderPipelineValidationTest, SampleCountCompatibilityWithRenderPass) {
|
|
constexpr uint32_t kMultisampledCount = 4;
|
|
constexpr wgpu::TextureFormat kColorFormat = wgpu::TextureFormat::RGBA8Unorm;
|
|
constexpr wgpu::TextureFormat kDepthStencilFormat = wgpu::TextureFormat::Depth24PlusStencil8;
|
|
|
|
wgpu::TextureDescriptor baseTextureDescriptor;
|
|
baseTextureDescriptor.size.width = 4;
|
|
baseTextureDescriptor.size.height = 4;
|
|
baseTextureDescriptor.size.depthOrArrayLayers = 1;
|
|
baseTextureDescriptor.mipLevelCount = 1;
|
|
baseTextureDescriptor.dimension = wgpu::TextureDimension::e2D;
|
|
baseTextureDescriptor.usage = wgpu::TextureUsage::RenderAttachment;
|
|
|
|
utils::ComboRenderPipelineDescriptor nonMultisampledPipelineDescriptor;
|
|
nonMultisampledPipelineDescriptor.multisample.count = 1;
|
|
nonMultisampledPipelineDescriptor.vertex.module = vsModule;
|
|
nonMultisampledPipelineDescriptor.cFragment.module = fsModule;
|
|
wgpu::RenderPipeline nonMultisampledPipeline =
|
|
device.CreateRenderPipeline(&nonMultisampledPipelineDescriptor);
|
|
|
|
nonMultisampledPipelineDescriptor.cFragment.targetCount = 0;
|
|
nonMultisampledPipelineDescriptor.EnableDepthStencil();
|
|
wgpu::RenderPipeline nonMultisampledPipelineWithDepthStencilOnly =
|
|
device.CreateRenderPipeline(&nonMultisampledPipelineDescriptor);
|
|
|
|
utils::ComboRenderPipelineDescriptor multisampledPipelineDescriptor;
|
|
multisampledPipelineDescriptor.multisample.count = kMultisampledCount;
|
|
multisampledPipelineDescriptor.vertex.module = vsModule;
|
|
multisampledPipelineDescriptor.cFragment.module = fsModule;
|
|
wgpu::RenderPipeline multisampledPipeline =
|
|
device.CreateRenderPipeline(&multisampledPipelineDescriptor);
|
|
|
|
multisampledPipelineDescriptor.cFragment.targetCount = 0;
|
|
multisampledPipelineDescriptor.EnableDepthStencil();
|
|
wgpu::RenderPipeline multisampledPipelineWithDepthStencilOnly =
|
|
device.CreateRenderPipeline(&multisampledPipelineDescriptor);
|
|
|
|
// It is not allowed to use multisampled render pass and non-multisampled render pipeline.
|
|
{
|
|
wgpu::TextureDescriptor textureDescriptor = baseTextureDescriptor;
|
|
textureDescriptor.format = kColorFormat;
|
|
textureDescriptor.sampleCount = kMultisampledCount;
|
|
wgpu::Texture multisampledColorTexture = device.CreateTexture(&textureDescriptor);
|
|
utils::ComboRenderPassDescriptor renderPassDescriptor(
|
|
{multisampledColorTexture.CreateView()});
|
|
|
|
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
|
|
wgpu::RenderPassEncoder renderPass = encoder.BeginRenderPass(&renderPassDescriptor);
|
|
renderPass.SetPipeline(nonMultisampledPipeline);
|
|
renderPass.End();
|
|
|
|
ASSERT_DEVICE_ERROR(encoder.Finish());
|
|
}
|
|
|
|
{
|
|
wgpu::TextureDescriptor textureDescriptor = baseTextureDescriptor;
|
|
textureDescriptor.sampleCount = kMultisampledCount;
|
|
textureDescriptor.format = kDepthStencilFormat;
|
|
wgpu::Texture multisampledDepthStencilTexture = device.CreateTexture(&textureDescriptor);
|
|
utils::ComboRenderPassDescriptor renderPassDescriptor(
|
|
{}, multisampledDepthStencilTexture.CreateView());
|
|
|
|
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
|
|
wgpu::RenderPassEncoder renderPass = encoder.BeginRenderPass(&renderPassDescriptor);
|
|
renderPass.SetPipeline(nonMultisampledPipelineWithDepthStencilOnly);
|
|
renderPass.End();
|
|
|
|
ASSERT_DEVICE_ERROR(encoder.Finish());
|
|
}
|
|
|
|
// It is allowed to use multisampled render pass and multisampled render pipeline.
|
|
{
|
|
wgpu::TextureDescriptor textureDescriptor = baseTextureDescriptor;
|
|
textureDescriptor.format = kColorFormat;
|
|
textureDescriptor.sampleCount = kMultisampledCount;
|
|
wgpu::Texture multisampledColorTexture = device.CreateTexture(&textureDescriptor);
|
|
utils::ComboRenderPassDescriptor renderPassDescriptor(
|
|
{multisampledColorTexture.CreateView()});
|
|
|
|
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
|
|
wgpu::RenderPassEncoder renderPass = encoder.BeginRenderPass(&renderPassDescriptor);
|
|
renderPass.SetPipeline(multisampledPipeline);
|
|
renderPass.End();
|
|
|
|
encoder.Finish();
|
|
}
|
|
|
|
{
|
|
wgpu::TextureDescriptor textureDescriptor = baseTextureDescriptor;
|
|
textureDescriptor.sampleCount = kMultisampledCount;
|
|
textureDescriptor.format = kDepthStencilFormat;
|
|
wgpu::Texture multisampledDepthStencilTexture = device.CreateTexture(&textureDescriptor);
|
|
utils::ComboRenderPassDescriptor renderPassDescriptor(
|
|
{}, multisampledDepthStencilTexture.CreateView());
|
|
|
|
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
|
|
wgpu::RenderPassEncoder renderPass = encoder.BeginRenderPass(&renderPassDescriptor);
|
|
renderPass.SetPipeline(multisampledPipelineWithDepthStencilOnly);
|
|
renderPass.End();
|
|
|
|
encoder.Finish();
|
|
}
|
|
|
|
// It is not allowed to use non-multisampled render pass and multisampled render pipeline.
|
|
{
|
|
wgpu::TextureDescriptor textureDescriptor = baseTextureDescriptor;
|
|
textureDescriptor.format = kColorFormat;
|
|
textureDescriptor.sampleCount = 1;
|
|
wgpu::Texture nonMultisampledColorTexture = device.CreateTexture(&textureDescriptor);
|
|
utils::ComboRenderPassDescriptor nonMultisampledRenderPassDescriptor(
|
|
{nonMultisampledColorTexture.CreateView()});
|
|
|
|
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
|
|
wgpu::RenderPassEncoder renderPass =
|
|
encoder.BeginRenderPass(&nonMultisampledRenderPassDescriptor);
|
|
renderPass.SetPipeline(multisampledPipeline);
|
|
renderPass.End();
|
|
|
|
ASSERT_DEVICE_ERROR(encoder.Finish());
|
|
}
|
|
|
|
{
|
|
wgpu::TextureDescriptor textureDescriptor = baseTextureDescriptor;
|
|
textureDescriptor.sampleCount = 1;
|
|
textureDescriptor.format = kDepthStencilFormat;
|
|
wgpu::Texture nonMultisampledDepthStencilTexture = device.CreateTexture(&textureDescriptor);
|
|
utils::ComboRenderPassDescriptor renderPassDescriptor(
|
|
{}, nonMultisampledDepthStencilTexture.CreateView());
|
|
|
|
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
|
|
wgpu::RenderPassEncoder renderPass = encoder.BeginRenderPass(&renderPassDescriptor);
|
|
renderPass.SetPipeline(multisampledPipelineWithDepthStencilOnly);
|
|
renderPass.End();
|
|
|
|
ASSERT_DEVICE_ERROR(encoder.Finish());
|
|
}
|
|
}
|
|
|
|
// Tests that the vertex only pipeline must be used with a depth-stencil attachment only render pass
|
|
TEST_F(RenderPipelineValidationTest, VertexOnlyPipelineRequireDepthStencilAttachment) {
|
|
constexpr wgpu::TextureFormat kColorFormat = wgpu::TextureFormat::RGBA8Unorm;
|
|
constexpr wgpu::TextureFormat kDepthStencilFormat = wgpu::TextureFormat::Depth24PlusStencil8;
|
|
|
|
wgpu::TextureDescriptor baseTextureDescriptor;
|
|
baseTextureDescriptor.size = {4, 4};
|
|
baseTextureDescriptor.mipLevelCount = 1;
|
|
baseTextureDescriptor.dimension = wgpu::TextureDimension::e2D;
|
|
baseTextureDescriptor.usage = wgpu::TextureUsage::RenderAttachment;
|
|
|
|
wgpu::TextureDescriptor colorTextureDescriptor = baseTextureDescriptor;
|
|
colorTextureDescriptor.format = kColorFormat;
|
|
colorTextureDescriptor.sampleCount = 1;
|
|
wgpu::Texture colorTexture = device.CreateTexture(&colorTextureDescriptor);
|
|
|
|
wgpu::TextureDescriptor depthStencilTextureDescriptor = baseTextureDescriptor;
|
|
depthStencilTextureDescriptor.sampleCount = 1;
|
|
depthStencilTextureDescriptor.format = kDepthStencilFormat;
|
|
wgpu::Texture depthStencilTexture = device.CreateTexture(&depthStencilTextureDescriptor);
|
|
utils::ComboRenderPassDescriptor renderPassDescriptor({}, depthStencilTexture.CreateView());
|
|
|
|
utils::ComboRenderPipelineDescriptor renderPipelineDescriptor;
|
|
renderPipelineDescriptor.multisample.count = 1;
|
|
renderPipelineDescriptor.vertex.module = vsModule;
|
|
|
|
renderPipelineDescriptor.fragment = nullptr;
|
|
|
|
renderPipelineDescriptor.EnableDepthStencil(kDepthStencilFormat);
|
|
|
|
wgpu::RenderPipeline vertexOnlyPipeline =
|
|
device.CreateRenderPipeline(&renderPipelineDescriptor);
|
|
|
|
// Vertex-only render pipeline can work with depth stencil attachment and no color target
|
|
{
|
|
utils::ComboRenderPassDescriptor renderPassDescriptor({}, depthStencilTexture.CreateView());
|
|
|
|
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
|
|
wgpu::RenderPassEncoder renderPass = encoder.BeginRenderPass(&renderPassDescriptor);
|
|
renderPass.SetPipeline(vertexOnlyPipeline);
|
|
renderPass.End();
|
|
|
|
encoder.Finish();
|
|
}
|
|
|
|
// Vertex-only render pipeline must have a depth stencil attachment
|
|
{
|
|
utils::ComboRenderPassDescriptor renderPassDescriptor({});
|
|
|
|
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
|
|
wgpu::RenderPassEncoder renderPass = encoder.BeginRenderPass(&renderPassDescriptor);
|
|
renderPass.SetPipeline(vertexOnlyPipeline);
|
|
renderPass.End();
|
|
|
|
ASSERT_DEVICE_ERROR(encoder.Finish());
|
|
}
|
|
|
|
// Vertex-only render pipeline can not work with color target
|
|
{
|
|
utils::ComboRenderPassDescriptor renderPassDescriptor({colorTexture.CreateView()},
|
|
depthStencilTexture.CreateView());
|
|
|
|
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
|
|
wgpu::RenderPassEncoder renderPass = encoder.BeginRenderPass(&renderPassDescriptor);
|
|
renderPass.SetPipeline(vertexOnlyPipeline);
|
|
renderPass.End();
|
|
|
|
ASSERT_DEVICE_ERROR(encoder.Finish());
|
|
}
|
|
|
|
// Vertex-only render pipeline can not work with color target, and must have a depth stencil
|
|
// attachment
|
|
{
|
|
utils::ComboRenderPassDescriptor renderPassDescriptor({colorTexture.CreateView()});
|
|
|
|
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
|
|
wgpu::RenderPassEncoder renderPass = encoder.BeginRenderPass(&renderPassDescriptor);
|
|
renderPass.SetPipeline(vertexOnlyPipeline);
|
|
renderPass.End();
|
|
|
|
ASSERT_DEVICE_ERROR(encoder.Finish());
|
|
}
|
|
}
|
|
|
|
// Tests that the sample count of the render pipeline must be valid
|
|
// when the alphaToCoverage mode is enabled.
|
|
TEST_F(RenderPipelineValidationTest, AlphaToCoverageAndSampleCount) {
|
|
{
|
|
utils::ComboRenderPipelineDescriptor descriptor;
|
|
descriptor.vertex.module = vsModule;
|
|
descriptor.cFragment.module = fsModule;
|
|
descriptor.multisample.count = 4;
|
|
descriptor.multisample.alphaToCoverageEnabled = true;
|
|
|
|
device.CreateRenderPipeline(&descriptor);
|
|
}
|
|
|
|
{
|
|
utils::ComboRenderPipelineDescriptor descriptor;
|
|
descriptor.vertex.module = vsModule;
|
|
descriptor.cFragment.module = fsModule;
|
|
descriptor.multisample.count = 1;
|
|
descriptor.multisample.alphaToCoverageEnabled = true;
|
|
|
|
ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor));
|
|
}
|
|
}
|
|
|
|
// Tests that the texture component type in shader must match the bind group layout.
|
|
TEST_F(RenderPipelineValidationTest, TextureComponentTypeCompatibility) {
|
|
constexpr uint32_t kNumTextureComponentType = 3u;
|
|
std::array<const char*, kNumTextureComponentType> kScalarTypes = {{"f32", "i32", "u32"}};
|
|
std::array<wgpu::TextureSampleType, kNumTextureComponentType> kTextureComponentTypes = {{
|
|
wgpu::TextureSampleType::Float,
|
|
wgpu::TextureSampleType::Sint,
|
|
wgpu::TextureSampleType::Uint,
|
|
}};
|
|
|
|
for (size_t i = 0; i < kNumTextureComponentType; ++i) {
|
|
for (size_t j = 0; j < kNumTextureComponentType; ++j) {
|
|
utils::ComboRenderPipelineDescriptor descriptor;
|
|
descriptor.vertex.module = vsModule;
|
|
|
|
std::ostringstream stream;
|
|
stream << R"(
|
|
@group(0) @binding(0) var myTexture : texture_2d<)"
|
|
<< kScalarTypes[i] << R"(>;
|
|
|
|
@stage(fragment) fn main() {
|
|
textureDimensions(myTexture);
|
|
})";
|
|
descriptor.cFragment.module = utils::CreateShaderModule(device, stream.str().c_str());
|
|
descriptor.cTargets[0].writeMask = wgpu::ColorWriteMask::None;
|
|
|
|
wgpu::BindGroupLayout bgl = utils::MakeBindGroupLayout(
|
|
device, {{0, wgpu::ShaderStage::Fragment, kTextureComponentTypes[j]}});
|
|
descriptor.layout = utils::MakeBasicPipelineLayout(device, &bgl);
|
|
|
|
if (i == j) {
|
|
device.CreateRenderPipeline(&descriptor);
|
|
} else {
|
|
ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Tests that the texture view dimension in shader must match the bind group layout.
|
|
TEST_F(RenderPipelineValidationTest, TextureViewDimensionCompatibility) {
|
|
constexpr uint32_t kNumTextureViewDimensions = 6u;
|
|
std::array<const char*, kNumTextureViewDimensions> kTextureKeywords = {{
|
|
"texture_1d",
|
|
"texture_2d",
|
|
"texture_2d_array",
|
|
"texture_cube",
|
|
"texture_cube_array",
|
|
"texture_3d",
|
|
}};
|
|
|
|
std::array<wgpu::TextureViewDimension, kNumTextureViewDimensions> kTextureViewDimensions = {{
|
|
wgpu::TextureViewDimension::e1D,
|
|
wgpu::TextureViewDimension::e2D,
|
|
wgpu::TextureViewDimension::e2DArray,
|
|
wgpu::TextureViewDimension::Cube,
|
|
wgpu::TextureViewDimension::CubeArray,
|
|
wgpu::TextureViewDimension::e3D,
|
|
}};
|
|
|
|
for (size_t i = 0; i < kNumTextureViewDimensions; ++i) {
|
|
for (size_t j = 0; j < kNumTextureViewDimensions; ++j) {
|
|
utils::ComboRenderPipelineDescriptor descriptor;
|
|
descriptor.vertex.module = vsModule;
|
|
|
|
std::ostringstream stream;
|
|
stream << R"(
|
|
@group(0) @binding(0) var myTexture : )"
|
|
<< kTextureKeywords[i] << R"(<f32>;
|
|
@stage(fragment) fn main() {
|
|
textureDimensions(myTexture);
|
|
})";
|
|
descriptor.cFragment.module = utils::CreateShaderModule(device, stream.str().c_str());
|
|
descriptor.cTargets[0].writeMask = wgpu::ColorWriteMask::None;
|
|
|
|
wgpu::BindGroupLayout bgl = utils::MakeBindGroupLayout(
|
|
device, {{0, wgpu::ShaderStage::Fragment, wgpu::TextureSampleType::Float,
|
|
kTextureViewDimensions[j]}});
|
|
descriptor.layout = utils::MakeBasicPipelineLayout(device, &bgl);
|
|
|
|
if (i == j) {
|
|
device.CreateRenderPipeline(&descriptor);
|
|
} else {
|
|
ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Test that declaring a storage buffer in the vertex shader without setting pipeline layout won't
|
|
// cause crash.
|
|
TEST_F(RenderPipelineValidationTest, StorageBufferInVertexShaderNoLayout) {
|
|
wgpu::ShaderModule vsModuleWithStorageBuffer = utils::CreateShaderModule(device, R"(
|
|
struct Dst {
|
|
data : array<u32, 100>
|
|
}
|
|
@group(0) @binding(0) var<storage, read_write> dst : Dst;
|
|
@stage(vertex) fn main(@builtin(vertex_index) VertexIndex : u32) -> @builtin(position) vec4<f32> {
|
|
dst.data[VertexIndex] = 0x1234u;
|
|
return vec4<f32>();
|
|
})");
|
|
|
|
utils::ComboRenderPipelineDescriptor descriptor;
|
|
descriptor.layout = nullptr;
|
|
descriptor.vertex.module = vsModuleWithStorageBuffer;
|
|
descriptor.cFragment.module = fsModule;
|
|
ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor));
|
|
}
|
|
|
|
// Tests that only strip primitive topologies allow an index format
|
|
TEST_F(RenderPipelineValidationTest, StripIndexFormatAllowed) {
|
|
constexpr uint32_t kNumStripType = 2u;
|
|
constexpr uint32_t kNumListType = 3u;
|
|
constexpr uint32_t kNumIndexFormat = 3u;
|
|
|
|
std::array<wgpu::PrimitiveTopology, kNumStripType> kStripTopologyTypes = {
|
|
{wgpu::PrimitiveTopology::LineStrip, wgpu::PrimitiveTopology::TriangleStrip}};
|
|
|
|
std::array<wgpu::PrimitiveTopology, kNumListType> kListTopologyTypes = {
|
|
{wgpu::PrimitiveTopology::PointList, wgpu::PrimitiveTopology::LineList,
|
|
wgpu::PrimitiveTopology::TriangleList}};
|
|
|
|
std::array<wgpu::IndexFormat, kNumIndexFormat> kIndexFormatTypes = {
|
|
{wgpu::IndexFormat::Undefined, wgpu::IndexFormat::Uint16, wgpu::IndexFormat::Uint32}};
|
|
|
|
for (wgpu::PrimitiveTopology primitiveTopology : kStripTopologyTypes) {
|
|
for (wgpu::IndexFormat indexFormat : kIndexFormatTypes) {
|
|
utils::ComboRenderPipelineDescriptor descriptor;
|
|
descriptor.vertex.module = vsModule;
|
|
descriptor.cFragment.module = fsModule;
|
|
descriptor.primitive.topology = primitiveTopology;
|
|
descriptor.primitive.stripIndexFormat = indexFormat;
|
|
|
|
// Always succeeds, regardless of if an index format is given.
|
|
device.CreateRenderPipeline(&descriptor);
|
|
}
|
|
}
|
|
|
|
for (wgpu::PrimitiveTopology primitiveTopology : kListTopologyTypes) {
|
|
for (wgpu::IndexFormat indexFormat : kIndexFormatTypes) {
|
|
utils::ComboRenderPipelineDescriptor descriptor;
|
|
descriptor.vertex.module = vsModule;
|
|
descriptor.cFragment.module = fsModule;
|
|
descriptor.primitive.topology = primitiveTopology;
|
|
descriptor.primitive.stripIndexFormat = indexFormat;
|
|
|
|
if (indexFormat == wgpu::IndexFormat::Undefined) {
|
|
// Succeeds even when the index format is undefined because the
|
|
// primitive topology isn't a strip type.
|
|
device.CreateRenderPipeline(&descriptor);
|
|
} else {
|
|
ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Test that specifying a clampDepth value results in an error if the feature is not enabled.
|
|
TEST_F(RenderPipelineValidationTest, ClampDepthWithoutFeature) {
|
|
{
|
|
utils::ComboRenderPipelineDescriptor descriptor;
|
|
descriptor.vertex.module = vsModule;
|
|
descriptor.cFragment.module = fsModule;
|
|
wgpu::PrimitiveDepthClampingState clampingState;
|
|
clampingState.clampDepth = true;
|
|
descriptor.primitive.nextInChain = &clampingState;
|
|
ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor));
|
|
}
|
|
{
|
|
utils::ComboRenderPipelineDescriptor descriptor;
|
|
descriptor.vertex.module = vsModule;
|
|
descriptor.cFragment.module = fsModule;
|
|
wgpu::PrimitiveDepthClampingState clampingState;
|
|
clampingState.clampDepth = false;
|
|
descriptor.primitive.nextInChain = &clampingState;
|
|
ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor));
|
|
}
|
|
}
|
|
|
|
// Test that depthStencil.depthCompare must not be undefiend.
|
|
TEST_F(RenderPipelineValidationTest, DepthCompareUndefinedIsError) {
|
|
utils::ComboRenderPipelineDescriptor descriptor;
|
|
descriptor.vertex.module = vsModule;
|
|
descriptor.cFragment.module = fsModule;
|
|
descriptor.EnableDepthStencil(wgpu::TextureFormat::Depth32Float);
|
|
|
|
// Control case: Always is valid.
|
|
descriptor.cDepthStencil.depthCompare = wgpu::CompareFunction::Always;
|
|
device.CreateRenderPipeline(&descriptor);
|
|
|
|
// Error case: Undefined is invalid.
|
|
descriptor.cDepthStencil.depthCompare = wgpu::CompareFunction::Undefined;
|
|
ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor));
|
|
}
|
|
|
|
// Test that the entryPoint names must be present for the correct stage in the shader module.
|
|
TEST_F(RenderPipelineValidationTest, EntryPointNameValidation) {
|
|
wgpu::ShaderModule module = utils::CreateShaderModule(device, R"(
|
|
@stage(vertex) fn vertex_main() -> @builtin(position) vec4<f32> {
|
|
return vec4<f32>(0.0, 0.0, 0.0, 1.0);
|
|
}
|
|
|
|
@stage(fragment) fn fragment_main() -> @location(0) vec4<f32> {
|
|
return vec4<f32>(1.0, 0.0, 0.0, 1.0);
|
|
}
|
|
)");
|
|
|
|
utils::ComboRenderPipelineDescriptor descriptor;
|
|
descriptor.vertex.module = module;
|
|
descriptor.vertex.entryPoint = "vertex_main";
|
|
descriptor.cFragment.module = module;
|
|
descriptor.cFragment.entryPoint = "fragment_main";
|
|
|
|
// Success case.
|
|
device.CreateRenderPipeline(&descriptor);
|
|
|
|
// Test for the vertex stage entryPoint name.
|
|
{
|
|
// The entryPoint name doesn't exist in the module.
|
|
descriptor.vertex.entryPoint = "main";
|
|
ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor));
|
|
|
|
// The entryPoint name exists, but not for the correct stage.
|
|
descriptor.vertex.entryPoint = "fragment_main";
|
|
ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor));
|
|
}
|
|
|
|
descriptor.vertex.entryPoint = "vertex_main";
|
|
|
|
// Test for the fragment stage entryPoint name.
|
|
{
|
|
// The entryPoint name doesn't exist in the module.
|
|
descriptor.cFragment.entryPoint = "main";
|
|
ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor));
|
|
|
|
// The entryPoint name exists, but not for the correct stage.
|
|
descriptor.cFragment.entryPoint = "vertex_main";
|
|
ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor));
|
|
}
|
|
}
|
|
|
|
// Test that vertex attrib validation is for the correct entryPoint
|
|
TEST_F(RenderPipelineValidationTest, VertexAttribCorrectEntryPoint) {
|
|
wgpu::ShaderModule module = utils::CreateShaderModule(device, R"(
|
|
@stage(vertex) fn vertex0(@location(0) attrib0 : vec4<f32>)
|
|
-> @builtin(position) vec4<f32> {
|
|
return attrib0;
|
|
}
|
|
@stage(vertex) fn vertex1(@location(1) attrib1 : vec4<f32>)
|
|
-> @builtin(position) vec4<f32> {
|
|
return attrib1;
|
|
}
|
|
)");
|
|
|
|
utils::ComboRenderPipelineDescriptor descriptor;
|
|
descriptor.vertex.module = module;
|
|
descriptor.cFragment.module = fsModule;
|
|
|
|
descriptor.vertex.bufferCount = 1;
|
|
descriptor.cBuffers[0].attributeCount = 1;
|
|
descriptor.cBuffers[0].arrayStride = 16;
|
|
descriptor.cAttributes[0].format = wgpu::VertexFormat::Float32x4;
|
|
descriptor.cAttributes[0].offset = 0;
|
|
|
|
// Success cases, the attribute used by the entryPoint is declared in the pipeline.
|
|
descriptor.vertex.entryPoint = "vertex0";
|
|
descriptor.cAttributes[0].shaderLocation = 0;
|
|
device.CreateRenderPipeline(&descriptor);
|
|
|
|
descriptor.vertex.entryPoint = "vertex1";
|
|
descriptor.cAttributes[0].shaderLocation = 1;
|
|
device.CreateRenderPipeline(&descriptor);
|
|
|
|
// Error cases, the attribute used by the entryPoint isn't declared in the pipeline.
|
|
descriptor.vertex.entryPoint = "vertex1";
|
|
descriptor.cAttributes[0].shaderLocation = 0;
|
|
ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor));
|
|
|
|
descriptor.vertex.entryPoint = "vertex0";
|
|
descriptor.cAttributes[0].shaderLocation = 1;
|
|
ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor));
|
|
}
|
|
|
|
// Test that fragment output validation is for the correct entryPoint
|
|
TEST_F(RenderPipelineValidationTest, FragmentOutputCorrectEntryPoint) {
|
|
wgpu::ShaderModule module = utils::CreateShaderModule(device, R"(
|
|
@stage(fragment) fn fragmentFloat() -> @location(0) vec4<f32> {
|
|
return vec4<f32>(0.0, 0.0, 0.0, 0.0);
|
|
}
|
|
@stage(fragment) fn fragmentUint() -> @location(0) vec4<u32> {
|
|
return vec4<u32>(0u, 0u, 0u, 0u);
|
|
}
|
|
)");
|
|
|
|
utils::ComboRenderPipelineDescriptor descriptor;
|
|
descriptor.vertex.module = vsModule;
|
|
descriptor.cFragment.module = module;
|
|
|
|
// Success case, the component type matches between the pipeline and the entryPoint
|
|
descriptor.cFragment.entryPoint = "fragmentFloat";
|
|
descriptor.cTargets[0].format = wgpu::TextureFormat::RGBA32Float;
|
|
device.CreateRenderPipeline(&descriptor);
|
|
|
|
descriptor.cFragment.entryPoint = "fragmentUint";
|
|
descriptor.cTargets[0].format = wgpu::TextureFormat::RGBA32Uint;
|
|
device.CreateRenderPipeline(&descriptor);
|
|
|
|
// Error case, the component type doesn't match between the pipeline and the entryPoint
|
|
descriptor.cFragment.entryPoint = "fragmentUint";
|
|
descriptor.cTargets[0].format = wgpu::TextureFormat::RGBA32Float;
|
|
ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor));
|
|
|
|
descriptor.cFragment.entryPoint = "fragmentFloat";
|
|
descriptor.cTargets[0].format = wgpu::TextureFormat::RGBA32Uint;
|
|
ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor));
|
|
}
|
|
|
|
// Test that unwritten fragment outputs must have a write mask of 0.
|
|
TEST_F(RenderPipelineValidationTest, UnwrittenFragmentOutputsMask0) {
|
|
wgpu::ShaderModule vsModule = utils::CreateShaderModule(device, R"(
|
|
@stage(vertex) fn main() -> @builtin(position) vec4<f32> {
|
|
return vec4<f32>();
|
|
}
|
|
)");
|
|
|
|
wgpu::ShaderModule fsModuleWriteNone = utils::CreateShaderModule(device, R"(
|
|
@stage(fragment) fn main() {}
|
|
)");
|
|
|
|
wgpu::ShaderModule fsModuleWrite0 = utils::CreateShaderModule(device, R"(
|
|
@stage(fragment) fn main() -> @location(0) vec4<f32> {
|
|
return vec4<f32>();
|
|
}
|
|
)");
|
|
|
|
wgpu::ShaderModule fsModuleWrite1 = utils::CreateShaderModule(device, R"(
|
|
@stage(fragment) fn main() -> @location(1) vec4<f32> {
|
|
return vec4<f32>();
|
|
}
|
|
)");
|
|
|
|
wgpu::ShaderModule fsModuleWriteBoth = utils::CreateShaderModule(device, R"(
|
|
struct FragmentOut {
|
|
@location(0) target0 : vec4<f32>,
|
|
@location(1) target1 : vec4<f32>,
|
|
}
|
|
@stage(fragment) fn main() -> FragmentOut {
|
|
var out : FragmentOut;
|
|
return out;
|
|
}
|
|
)");
|
|
|
|
// Control case: write to target 0
|
|
{
|
|
utils::ComboRenderPipelineDescriptor descriptor;
|
|
descriptor.vertex.module = vsModule;
|
|
|
|
descriptor.cFragment.targetCount = 1;
|
|
descriptor.cFragment.module = fsModuleWrite0;
|
|
device.CreateRenderPipeline(&descriptor);
|
|
}
|
|
|
|
// Control case: write to target 0 and target 1
|
|
{
|
|
utils::ComboRenderPipelineDescriptor descriptor;
|
|
descriptor.vertex.module = vsModule;
|
|
|
|
descriptor.cFragment.targetCount = 2;
|
|
descriptor.cFragment.module = fsModuleWriteBoth;
|
|
device.CreateRenderPipeline(&descriptor);
|
|
}
|
|
|
|
// Write only target 1 (not in pipeline fragment state).
|
|
// Errors because target 0 does not have a write mask of 0.
|
|
{
|
|
utils::ComboRenderPipelineDescriptor descriptor;
|
|
descriptor.vertex.module = vsModule;
|
|
|
|
descriptor.cFragment.targetCount = 1;
|
|
descriptor.cTargets[0].writeMask = wgpu::ColorWriteMask::All;
|
|
descriptor.cFragment.module = fsModuleWrite1;
|
|
ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor));
|
|
}
|
|
|
|
// Write only target 1 (not in pipeline fragment state).
|
|
// OK because target 0 has a write mask of 0.
|
|
{
|
|
utils::ComboRenderPipelineDescriptor descriptor;
|
|
descriptor.vertex.module = vsModule;
|
|
|
|
descriptor.cFragment.targetCount = 1;
|
|
descriptor.cTargets[0].writeMask = wgpu::ColorWriteMask::None;
|
|
descriptor.cFragment.module = fsModuleWrite1;
|
|
device.CreateRenderPipeline(&descriptor);
|
|
}
|
|
|
|
// Write only target 0 with two color targets.
|
|
// Errors because target 1 does not have a write mask of 0.
|
|
{
|
|
utils::ComboRenderPipelineDescriptor descriptor;
|
|
descriptor.vertex.module = vsModule;
|
|
|
|
descriptor.cFragment.targetCount = 2;
|
|
descriptor.cTargets[0].writeMask = wgpu::ColorWriteMask::Red;
|
|
descriptor.cTargets[1].writeMask = wgpu::ColorWriteMask::Alpha;
|
|
descriptor.cFragment.module = fsModuleWrite0;
|
|
ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor));
|
|
}
|
|
|
|
// Write only target 0 with two color targets.
|
|
// OK because target 1 has a write mask of 0.
|
|
{
|
|
utils::ComboRenderPipelineDescriptor descriptor;
|
|
descriptor.vertex.module = vsModule;
|
|
|
|
descriptor.cFragment.targetCount = 2;
|
|
descriptor.cTargets[0].writeMask = wgpu::ColorWriteMask::All;
|
|
descriptor.cTargets[1].writeMask = wgpu::ColorWriteMask::None;
|
|
descriptor.cFragment.module = fsModuleWrite0;
|
|
device.CreateRenderPipeline(&descriptor);
|
|
}
|
|
|
|
// Write nothing with two color targets.
|
|
// Errors because both target 0 and 1 have nonzero write masks.
|
|
{
|
|
utils::ComboRenderPipelineDescriptor descriptor;
|
|
descriptor.vertex.module = vsModule;
|
|
|
|
descriptor.cFragment.targetCount = 2;
|
|
descriptor.cTargets[0].writeMask = wgpu::ColorWriteMask::Red;
|
|
descriptor.cTargets[1].writeMask = wgpu::ColorWriteMask::Green;
|
|
descriptor.cFragment.module = fsModuleWriteNone;
|
|
ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor));
|
|
}
|
|
|
|
// Write nothing with two color targets.
|
|
// OK because target 0 and 1 have write masks of 0.
|
|
{
|
|
utils::ComboRenderPipelineDescriptor descriptor;
|
|
descriptor.vertex.module = vsModule;
|
|
|
|
descriptor.cFragment.targetCount = 2;
|
|
descriptor.cTargets[0].writeMask = wgpu::ColorWriteMask::None;
|
|
descriptor.cTargets[1].writeMask = wgpu::ColorWriteMask::None;
|
|
descriptor.cFragment.module = fsModuleWriteNone;
|
|
device.CreateRenderPipeline(&descriptor);
|
|
}
|
|
}
|
|
|
|
// Test that fragment output validation is for the correct entryPoint
|
|
TEST_F(RenderPipelineValidationTest, BindingsFromCorrectEntryPoint) {
|
|
wgpu::ShaderModule module = utils::CreateShaderModule(device, R"(
|
|
struct Uniforms {
|
|
data : vec4<f32>
|
|
}
|
|
@group(0) @binding(0) var<uniform> var0 : Uniforms;
|
|
@group(0) @binding(1) var<uniform> var1 : Uniforms;
|
|
|
|
@stage(vertex) fn vertex0() -> @builtin(position) vec4<f32> {
|
|
return var0.data;
|
|
}
|
|
@stage(vertex) fn vertex1() -> @builtin(position) vec4<f32> {
|
|
return var1.data;
|
|
}
|
|
)");
|
|
|
|
wgpu::BindGroupLayout bgl0 = utils::MakeBindGroupLayout(
|
|
device, {{0, wgpu::ShaderStage::Vertex, wgpu::BufferBindingType::Uniform}});
|
|
wgpu::PipelineLayout layout0 = utils::MakeBasicPipelineLayout(device, &bgl0);
|
|
|
|
wgpu::BindGroupLayout bgl1 = utils::MakeBindGroupLayout(
|
|
device, {{1, wgpu::ShaderStage::Vertex, wgpu::BufferBindingType::Uniform}});
|
|
wgpu::PipelineLayout layout1 = utils::MakeBasicPipelineLayout(device, &bgl1);
|
|
|
|
utils::ComboRenderPipelineDescriptor descriptor;
|
|
descriptor.vertex.module = module;
|
|
descriptor.cFragment.module = fsModule;
|
|
|
|
// Success case, the BGL matches the bindings used by the entryPoint
|
|
descriptor.vertex.entryPoint = "vertex0";
|
|
descriptor.layout = layout0;
|
|
device.CreateRenderPipeline(&descriptor);
|
|
|
|
descriptor.vertex.entryPoint = "vertex1";
|
|
descriptor.layout = layout1;
|
|
device.CreateRenderPipeline(&descriptor);
|
|
|
|
// Error case, the BGL doesn't match the bindings used by the entryPoint
|
|
descriptor.vertex.entryPoint = "vertex1";
|
|
descriptor.layout = layout0;
|
|
ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor));
|
|
|
|
descriptor.vertex.entryPoint = "vertex0";
|
|
descriptor.layout = layout1;
|
|
ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor));
|
|
}
|
|
|
|
class DepthClampingValidationTest : public RenderPipelineValidationTest {
|
|
protected:
|
|
WGPUDevice CreateTestDevice() override {
|
|
wgpu::DeviceDescriptor descriptor;
|
|
wgpu::FeatureName requiredFeatures[1] = {wgpu::FeatureName::DepthClamping};
|
|
descriptor.requiredFeatures = requiredFeatures;
|
|
descriptor.requiredFeaturesCount = 1;
|
|
return adapter.CreateDevice(&descriptor);
|
|
}
|
|
};
|
|
|
|
// Tests that specifying a clampDepth value succeeds if the feature is enabled.
|
|
TEST_F(DepthClampingValidationTest, Success) {
|
|
{
|
|
utils::ComboRenderPipelineDescriptor descriptor;
|
|
descriptor.vertex.module = vsModule;
|
|
descriptor.cFragment.module = fsModule;
|
|
wgpu::PrimitiveDepthClampingState clampingState;
|
|
clampingState.clampDepth = true;
|
|
descriptor.primitive.nextInChain = &clampingState;
|
|
device.CreateRenderPipeline(&descriptor);
|
|
}
|
|
{
|
|
utils::ComboRenderPipelineDescriptor descriptor;
|
|
descriptor.vertex.module = vsModule;
|
|
descriptor.cFragment.module = fsModule;
|
|
wgpu::PrimitiveDepthClampingState clampingState;
|
|
clampingState.clampDepth = false;
|
|
descriptor.primitive.nextInChain = &clampingState;
|
|
device.CreateRenderPipeline(&descriptor);
|
|
}
|
|
}
|
|
|
|
class InterStageVariableMatchingValidationTest : public RenderPipelineValidationTest {
|
|
protected:
|
|
void CheckCreatingRenderPipeline(wgpu::ShaderModule vertexModule,
|
|
wgpu::ShaderModule fragmentModule,
|
|
bool shouldSucceed) {
|
|
utils::ComboRenderPipelineDescriptor descriptor;
|
|
descriptor.vertex.module = vertexModule;
|
|
descriptor.cFragment.module = fragmentModule;
|
|
if (shouldSucceed) {
|
|
device.CreateRenderPipeline(&descriptor);
|
|
} else {
|
|
ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor));
|
|
}
|
|
}
|
|
};
|
|
|
|
// Tests that creating render pipeline should fail when there is a vertex output that doesn't have
|
|
// its corresponding fragment input at the same location, and there is a fragment input that
|
|
// doesn't have its corresponding vertex output at the same location.
|
|
TEST_F(InterStageVariableMatchingValidationTest, MissingDeclarationAtSameLocation) {
|
|
wgpu::ShaderModule vertexModuleOutputAtLocation0 = utils::CreateShaderModule(device, R"(
|
|
struct A {
|
|
@location(0) vout: f32,
|
|
@builtin(position) pos: vec4<f32>,
|
|
}
|
|
@stage(vertex) fn main() -> A {
|
|
var vertexOut: A;
|
|
vertexOut.pos = vec4<f32>(0.0, 0.0, 0.0, 1.0);
|
|
return vertexOut;
|
|
})");
|
|
wgpu::ShaderModule fragmentModuleAtLocation0 = utils::CreateShaderModule(device, R"(
|
|
struct B {
|
|
@location(0) fin: f32
|
|
}
|
|
@stage(fragment) fn main(fragmentIn: B) -> @location(0) vec4<f32> {
|
|
return vec4<f32>(fragmentIn.fin, 0.0, 0.0, 1.0);
|
|
})");
|
|
wgpu::ShaderModule fragmentModuleInputAtLocation1 = utils::CreateShaderModule(device, R"(
|
|
struct A {
|
|
@location(1) vout: f32
|
|
}
|
|
@stage(fragment) fn main(vertexOut: A) -> @location(0) vec4<f32> {
|
|
return vec4<f32>(vertexOut.vout, 0.0, 0.0, 1.0);
|
|
})");
|
|
wgpu::ShaderModule vertexModuleOutputAtLocation1 = utils::CreateShaderModule(device, R"(
|
|
struct B {
|
|
@location(1) fin: f32,
|
|
@builtin(position) pos: vec4<f32>,
|
|
}
|
|
@stage(vertex) fn main() -> B {
|
|
var fragmentIn: B;
|
|
fragmentIn.pos = vec4<f32>(0.0, 0.0, 0.0, 1.0);
|
|
return fragmentIn;
|
|
})");
|
|
|
|
{
|
|
CheckCreatingRenderPipeline(vertexModuleOutputAtLocation0, fsModule, false);
|
|
CheckCreatingRenderPipeline(vsModule, fragmentModuleAtLocation0, false);
|
|
CheckCreatingRenderPipeline(vertexModuleOutputAtLocation0, fragmentModuleInputAtLocation1,
|
|
false);
|
|
CheckCreatingRenderPipeline(vertexModuleOutputAtLocation1, fragmentModuleAtLocation0,
|
|
false);
|
|
}
|
|
|
|
{
|
|
CheckCreatingRenderPipeline(vertexModuleOutputAtLocation0, fragmentModuleAtLocation0, true);
|
|
CheckCreatingRenderPipeline(vertexModuleOutputAtLocation1, fragmentModuleInputAtLocation1,
|
|
true);
|
|
}
|
|
}
|
|
|
|
// Tests that creating render pipeline should fail when the type of a vertex stage output variable
|
|
// doesn't match the type of the fragment stage input variable at the same location.
|
|
TEST_F(InterStageVariableMatchingValidationTest, DifferentTypeAtSameLocation) {
|
|
constexpr std::array<const char*, 12> kTypes = {{"f32", "vec2<f32>", "vec3<f32>", "vec4<f32>",
|
|
"i32", "vec2<i32>", "vec3<i32>", "vec4<i32>",
|
|
"u32", "vec2<u32>", "vec3<u32>", "vec4<u32>"}};
|
|
|
|
std::array<wgpu::ShaderModule, 12> vertexModules;
|
|
std::array<wgpu::ShaderModule, 12> fragmentModules;
|
|
for (uint32_t i = 0; i < kTypes.size(); ++i) {
|
|
std::string interfaceDeclaration;
|
|
{
|
|
std::ostringstream sstream;
|
|
sstream << "struct A { @location(0) @interpolate(flat) a: " << kTypes[i] << ","
|
|
<< std::endl;
|
|
interfaceDeclaration = sstream.str();
|
|
}
|
|
{
|
|
std::ostringstream vertexStream;
|
|
vertexStream << interfaceDeclaration << R"(
|
|
@builtin(position) pos: vec4<f32>,
|
|
}
|
|
@stage(vertex) fn main() -> A {
|
|
var vertexOut: A;
|
|
vertexOut.pos = vec4<f32>(0.0, 0.0, 0.0, 1.0);
|
|
return vertexOut;
|
|
})";
|
|
vertexModules[i] = utils::CreateShaderModule(device, vertexStream.str().c_str());
|
|
}
|
|
{
|
|
std::ostringstream fragmentStream;
|
|
fragmentStream << interfaceDeclaration << R"(
|
|
}
|
|
@stage(fragment) fn main(fragmentIn: A) -> @location(0) vec4<f32> {
|
|
return vec4<f32>(0.0, 0.0, 0.0, 1.0);
|
|
})";
|
|
fragmentModules[i] = utils::CreateShaderModule(device, fragmentStream.str().c_str());
|
|
}
|
|
}
|
|
|
|
for (uint32_t vertexModuleIndex = 0; vertexModuleIndex < kTypes.size(); ++vertexModuleIndex) {
|
|
wgpu::ShaderModule vertexModule = vertexModules[vertexModuleIndex];
|
|
for (uint32_t fragmentModuleIndex = 0; fragmentModuleIndex < kTypes.size();
|
|
++fragmentModuleIndex) {
|
|
wgpu::ShaderModule fragmentModule = fragmentModules[fragmentModuleIndex];
|
|
bool shouldSuccess = vertexModuleIndex == fragmentModuleIndex;
|
|
CheckCreatingRenderPipeline(vertexModule, fragmentModule, shouldSuccess);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Tests that creating render pipeline should fail when the interpolation attribute of a vertex
|
|
// stage output variable doesn't match the type of the fragment stage input variable at the same
|
|
// location.
|
|
TEST_F(InterStageVariableMatchingValidationTest, DifferentInterpolationAttributeAtSameLocation) {
|
|
enum class InterpolationType : uint8_t {
|
|
None = 0,
|
|
Perspective,
|
|
Linear,
|
|
Flat,
|
|
Count,
|
|
};
|
|
enum class InterpolationSampling : uint8_t {
|
|
None = 0,
|
|
Center,
|
|
Centroid,
|
|
Sample,
|
|
Count,
|
|
};
|
|
constexpr std::array<const char*, static_cast<size_t>(InterpolationType::Count)>
|
|
kInterpolationTypeString = {{"", "perspective", "linear", "flat"}};
|
|
constexpr std::array<const char*, static_cast<size_t>(InterpolationSampling::Count)>
|
|
kInterpolationSamplingString = {{"", "center", "centroid", "sample"}};
|
|
|
|
struct InterpolationAttribute {
|
|
InterpolationType interpolationType;
|
|
InterpolationSampling interpolationSampling;
|
|
};
|
|
|
|
// Interpolation sampling is not used with flat interpolation.
|
|
constexpr std::array<InterpolationAttribute, 10> validInterpolationAttributes = {{
|
|
{InterpolationType::None, InterpolationSampling::None},
|
|
{InterpolationType::Flat, InterpolationSampling::None},
|
|
{InterpolationType::Linear, InterpolationSampling::None},
|
|
{InterpolationType::Linear, InterpolationSampling::Center},
|
|
{InterpolationType::Linear, InterpolationSampling::Centroid},
|
|
{InterpolationType::Linear, InterpolationSampling::Sample},
|
|
{InterpolationType::Perspective, InterpolationSampling::None},
|
|
{InterpolationType::Perspective, InterpolationSampling::Center},
|
|
{InterpolationType::Perspective, InterpolationSampling::Centroid},
|
|
{InterpolationType::Perspective, InterpolationSampling::Sample},
|
|
}};
|
|
|
|
std::vector<wgpu::ShaderModule> vertexModules(validInterpolationAttributes.size());
|
|
std::vector<wgpu::ShaderModule> fragmentModules(validInterpolationAttributes.size());
|
|
for (uint32_t i = 0; i < validInterpolationAttributes.size(); ++i) {
|
|
std::string interfaceDeclaration;
|
|
{
|
|
const auto& interpolationAttribute = validInterpolationAttributes[i];
|
|
std::ostringstream sstream;
|
|
sstream << "struct A { @location(0)";
|
|
if (interpolationAttribute.interpolationType != InterpolationType::None) {
|
|
sstream << " @interpolate("
|
|
<< kInterpolationTypeString[static_cast<uint8_t>(
|
|
interpolationAttribute.interpolationType)];
|
|
if (interpolationAttribute.interpolationSampling != InterpolationSampling::None) {
|
|
sstream << ", "
|
|
<< kInterpolationSamplingString[static_cast<uint8_t>(
|
|
interpolationAttribute.interpolationSampling)];
|
|
}
|
|
sstream << ")";
|
|
}
|
|
sstream << " a : vec4<f32>," << std::endl;
|
|
interfaceDeclaration = sstream.str();
|
|
}
|
|
{
|
|
std::ostringstream vertexStream;
|
|
vertexStream << interfaceDeclaration << R"(
|
|
@builtin(position) pos: vec4<f32>,
|
|
}
|
|
@stage(vertex) fn main() -> A {
|
|
var vertexOut: A;
|
|
vertexOut.pos = vec4<f32>(0.0, 0.0, 0.0, 1.0);
|
|
return vertexOut;
|
|
})";
|
|
vertexModules[i] = utils::CreateShaderModule(device, vertexStream.str().c_str());
|
|
}
|
|
{
|
|
std::ostringstream fragmentStream;
|
|
fragmentStream << interfaceDeclaration << R"(
|
|
}
|
|
@stage(fragment) fn main(fragmentIn: A) -> @location(0) vec4<f32> {
|
|
return fragmentIn.a;
|
|
})";
|
|
fragmentModules[i] = utils::CreateShaderModule(device, fragmentStream.str().c_str());
|
|
}
|
|
}
|
|
|
|
auto GetAppliedInterpolationAttribute = [](const InterpolationAttribute& attribute) {
|
|
InterpolationAttribute appliedAttribute = {attribute.interpolationType,
|
|
attribute.interpolationSampling};
|
|
switch (attribute.interpolationType) {
|
|
// If the interpolation attribute is not specified, then
|
|
// @interpolate(perspective, center) or @interpolate(perspective) is assumed.
|
|
case InterpolationType::None:
|
|
appliedAttribute.interpolationType = InterpolationType::Perspective;
|
|
appliedAttribute.interpolationSampling = InterpolationSampling::Center;
|
|
break;
|
|
|
|
// If the interpolation type is perspective or linear, and the interpolation
|
|
// sampling is not specified, then 'center' is assumed.
|
|
case InterpolationType::Perspective:
|
|
case InterpolationType::Linear:
|
|
if (appliedAttribute.interpolationSampling == InterpolationSampling::None) {
|
|
appliedAttribute.interpolationSampling = InterpolationSampling::Center;
|
|
}
|
|
break;
|
|
|
|
case InterpolationType::Flat:
|
|
break;
|
|
default:
|
|
UNREACHABLE();
|
|
}
|
|
return appliedAttribute;
|
|
};
|
|
|
|
auto InterpolationAttributeMatch = [GetAppliedInterpolationAttribute](
|
|
const InterpolationAttribute& attribute1,
|
|
const InterpolationAttribute& attribute2) {
|
|
InterpolationAttribute appliedAttribute1 = GetAppliedInterpolationAttribute(attribute1);
|
|
InterpolationAttribute appliedAttribute2 = GetAppliedInterpolationAttribute(attribute2);
|
|
|
|
return appliedAttribute1.interpolationType == appliedAttribute2.interpolationType &&
|
|
appliedAttribute1.interpolationSampling == appliedAttribute2.interpolationSampling;
|
|
};
|
|
|
|
for (uint32_t vertexModuleIndex = 0; vertexModuleIndex < validInterpolationAttributes.size();
|
|
++vertexModuleIndex) {
|
|
wgpu::ShaderModule vertexModule = vertexModules[vertexModuleIndex];
|
|
for (uint32_t fragmentModuleIndex = 0;
|
|
fragmentModuleIndex < validInterpolationAttributes.size(); ++fragmentModuleIndex) {
|
|
wgpu::ShaderModule fragmentModule = fragmentModules[fragmentModuleIndex];
|
|
bool shouldSuccess =
|
|
InterpolationAttributeMatch(validInterpolationAttributes[vertexModuleIndex],
|
|
validInterpolationAttributes[fragmentModuleIndex]);
|
|
CheckCreatingRenderPipeline(vertexModule, fragmentModule, shouldSuccess);
|
|
}
|
|
}
|
|
}
|