dawn-cmake/src/dawn_native/RenderPipeline.cpp

742 lines
32 KiB
C++

// Copyright 2017 The Dawn Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "dawn_native/RenderPipeline.h"
#include "common/BitSetIterator.h"
#include "common/HashUtils.h"
#include "dawn_native/Commands.h"
#include "dawn_native/Device.h"
#include "dawn_native/ValidationUtils_autogen.h"
namespace dawn_native {
// Helper functions
namespace {
MaybeError ValidateVertexAttributeDescriptor(
const VertexAttributeDescriptor* attribute,
uint64_t vertexBufferStride,
std::bitset<kMaxVertexAttributes>* attributesSetMask) {
DAWN_TRY(ValidateVertexFormat(attribute->format));
if (attribute->shaderLocation >= kMaxVertexAttributes) {
return DAWN_VALIDATION_ERROR("Setting attribute out of bounds");
}
// No underflow is possible because the max vertex format size is smaller than
// kMaxVertexAttributeEnd.
ASSERT(kMaxVertexAttributeEnd >= VertexFormatSize(attribute->format));
if (attribute->offset > kMaxVertexAttributeEnd - VertexFormatSize(attribute->format)) {
return DAWN_VALIDATION_ERROR("Setting attribute offset out of bounds");
}
// No overflow is possible because the offset is already validated to be less
// than kMaxVertexAttributeEnd.
ASSERT(attribute->offset < kMaxVertexAttributeEnd);
if (vertexBufferStride > 0 &&
attribute->offset + VertexFormatSize(attribute->format) > vertexBufferStride) {
return DAWN_VALIDATION_ERROR("Setting attribute offset out of bounds");
}
if (attribute->offset % 4 != 0) {
return DAWN_VALIDATION_ERROR("Attribute offset needs to be a multiple of 4 bytes");
}
if ((*attributesSetMask)[attribute->shaderLocation]) {
return DAWN_VALIDATION_ERROR("Setting already set attribute");
}
attributesSetMask->set(attribute->shaderLocation);
return {};
}
MaybeError ValidateVertexBufferLayoutDescriptor(
const VertexBufferLayoutDescriptor* buffer,
std::bitset<kMaxVertexAttributes>* attributesSetMask) {
DAWN_TRY(ValidateInputStepMode(buffer->stepMode));
if (buffer->arrayStride > kMaxVertexBufferStride) {
return DAWN_VALIDATION_ERROR("Setting arrayStride out of bounds");
}
if (buffer->arrayStride % 4 != 0) {
return DAWN_VALIDATION_ERROR(
"arrayStride of Vertex buffer needs to be a multiple of 4 bytes");
}
for (uint32_t i = 0; i < buffer->attributeCount; ++i) {
DAWN_TRY(ValidateVertexAttributeDescriptor(&buffer->attributes[i],
buffer->arrayStride, attributesSetMask));
}
return {};
}
MaybeError ValidateVertexStateDescriptor(
const VertexStateDescriptor* descriptor,
std::bitset<kMaxVertexAttributes>* attributesSetMask) {
if (descriptor->nextInChain != nullptr) {
return DAWN_VALIDATION_ERROR("nextInChain must be nullptr");
}
DAWN_TRY(ValidateIndexFormat(descriptor->indexFormat));
if (descriptor->vertexBufferCount > kMaxVertexBuffers) {
return DAWN_VALIDATION_ERROR("Vertex buffer count exceeds maximum");
}
uint32_t totalAttributesNum = 0;
for (uint32_t i = 0; i < descriptor->vertexBufferCount; ++i) {
DAWN_TRY(ValidateVertexBufferLayoutDescriptor(&descriptor->vertexBuffers[i],
attributesSetMask));
totalAttributesNum += descriptor->vertexBuffers[i].attributeCount;
}
// Every vertex attribute has a member called shaderLocation, and there are some
// requirements for shaderLocation: 1) >=0, 2) values are different across different
// attributes, 3) can't exceed kMaxVertexAttributes. So it can ensure that total
// attribute number never exceed kMaxVertexAttributes.
ASSERT(totalAttributesNum <= kMaxVertexAttributes);
return {};
}
MaybeError ValidateRasterizationStateDescriptor(
const RasterizationStateDescriptor* descriptor) {
if (descriptor->nextInChain != nullptr) {
return DAWN_VALIDATION_ERROR("nextInChain must be nullptr");
}
DAWN_TRY(ValidateFrontFace(descriptor->frontFace));
DAWN_TRY(ValidateCullMode(descriptor->cullMode));
if (std::isnan(descriptor->depthBiasSlopeScale) ||
std::isnan(descriptor->depthBiasClamp)) {
return DAWN_VALIDATION_ERROR("Depth bias parameters must not be NaN.");
}
return {};
}
MaybeError ValidateColorStateDescriptor(const DeviceBase* device,
const ColorStateDescriptor& descriptor,
Format::Type fragmentOutputBaseType) {
if (descriptor.nextInChain != nullptr) {
return DAWN_VALIDATION_ERROR("nextInChain must be nullptr");
}
DAWN_TRY(ValidateBlendOperation(descriptor.alphaBlend.operation));
DAWN_TRY(ValidateBlendFactor(descriptor.alphaBlend.srcFactor));
DAWN_TRY(ValidateBlendFactor(descriptor.alphaBlend.dstFactor));
DAWN_TRY(ValidateBlendOperation(descriptor.colorBlend.operation));
DAWN_TRY(ValidateBlendFactor(descriptor.colorBlend.srcFactor));
DAWN_TRY(ValidateBlendFactor(descriptor.colorBlend.dstFactor));
DAWN_TRY(ValidateColorWriteMask(descriptor.writeMask));
const Format* format;
DAWN_TRY_ASSIGN(format, device->GetInternalFormat(descriptor.format));
if (!format->IsColor() || !format->isRenderable) {
return DAWN_VALIDATION_ERROR("Color format must be color renderable");
}
if (fragmentOutputBaseType != Format::Type::Other &&
fragmentOutputBaseType != format->type) {
return DAWN_VALIDATION_ERROR(
"Color format must match the fragment stage output type");
}
return {};
}
MaybeError ValidateDepthStencilStateDescriptor(
const DeviceBase* device,
const DepthStencilStateDescriptor* descriptor) {
if (descriptor->nextInChain != nullptr) {
return DAWN_VALIDATION_ERROR("nextInChain must be nullptr");
}
DAWN_TRY(ValidateCompareFunction(descriptor->depthCompare));
DAWN_TRY(ValidateCompareFunction(descriptor->stencilFront.compare));
DAWN_TRY(ValidateStencilOperation(descriptor->stencilFront.failOp));
DAWN_TRY(ValidateStencilOperation(descriptor->stencilFront.depthFailOp));
DAWN_TRY(ValidateStencilOperation(descriptor->stencilFront.passOp));
DAWN_TRY(ValidateCompareFunction(descriptor->stencilBack.compare));
DAWN_TRY(ValidateStencilOperation(descriptor->stencilBack.failOp));
DAWN_TRY(ValidateStencilOperation(descriptor->stencilBack.depthFailOp));
DAWN_TRY(ValidateStencilOperation(descriptor->stencilBack.passOp));
const Format* format;
DAWN_TRY_ASSIGN(format, device->GetInternalFormat(descriptor->format));
if (!format->HasDepthOrStencil() || !format->isRenderable) {
return DAWN_VALIDATION_ERROR(
"Depth stencil format must be depth-stencil renderable");
}
return {};
}
} // anonymous namespace
// Helper functions
size_t IndexFormatSize(wgpu::IndexFormat format) {
switch (format) {
case wgpu::IndexFormat::Uint16:
return sizeof(uint16_t);
case wgpu::IndexFormat::Uint32:
return sizeof(uint32_t);
default:
UNREACHABLE();
}
}
uint32_t VertexFormatNumComponents(wgpu::VertexFormat format) {
switch (format) {
case wgpu::VertexFormat::UChar4:
case wgpu::VertexFormat::Char4:
case wgpu::VertexFormat::UChar4Norm:
case wgpu::VertexFormat::Char4Norm:
case wgpu::VertexFormat::UShort4:
case wgpu::VertexFormat::Short4:
case wgpu::VertexFormat::UShort4Norm:
case wgpu::VertexFormat::Short4Norm:
case wgpu::VertexFormat::Half4:
case wgpu::VertexFormat::Float4:
case wgpu::VertexFormat::UInt4:
case wgpu::VertexFormat::Int4:
return 4;
case wgpu::VertexFormat::Float3:
case wgpu::VertexFormat::UInt3:
case wgpu::VertexFormat::Int3:
return 3;
case wgpu::VertexFormat::UChar2:
case wgpu::VertexFormat::Char2:
case wgpu::VertexFormat::UChar2Norm:
case wgpu::VertexFormat::Char2Norm:
case wgpu::VertexFormat::UShort2:
case wgpu::VertexFormat::Short2:
case wgpu::VertexFormat::UShort2Norm:
case wgpu::VertexFormat::Short2Norm:
case wgpu::VertexFormat::Half2:
case wgpu::VertexFormat::Float2:
case wgpu::VertexFormat::UInt2:
case wgpu::VertexFormat::Int2:
return 2;
case wgpu::VertexFormat::Float:
case wgpu::VertexFormat::UInt:
case wgpu::VertexFormat::Int:
return 1;
default:
UNREACHABLE();
}
}
size_t VertexFormatComponentSize(wgpu::VertexFormat format) {
switch (format) {
case wgpu::VertexFormat::UChar2:
case wgpu::VertexFormat::UChar4:
case wgpu::VertexFormat::Char2:
case wgpu::VertexFormat::Char4:
case wgpu::VertexFormat::UChar2Norm:
case wgpu::VertexFormat::UChar4Norm:
case wgpu::VertexFormat::Char2Norm:
case wgpu::VertexFormat::Char4Norm:
return sizeof(char);
case wgpu::VertexFormat::UShort2:
case wgpu::VertexFormat::UShort4:
case wgpu::VertexFormat::UShort2Norm:
case wgpu::VertexFormat::UShort4Norm:
case wgpu::VertexFormat::Short2:
case wgpu::VertexFormat::Short4:
case wgpu::VertexFormat::Short2Norm:
case wgpu::VertexFormat::Short4Norm:
case wgpu::VertexFormat::Half2:
case wgpu::VertexFormat::Half4:
return sizeof(uint16_t);
case wgpu::VertexFormat::Float:
case wgpu::VertexFormat::Float2:
case wgpu::VertexFormat::Float3:
case wgpu::VertexFormat::Float4:
return sizeof(float);
case wgpu::VertexFormat::UInt:
case wgpu::VertexFormat::UInt2:
case wgpu::VertexFormat::UInt3:
case wgpu::VertexFormat::UInt4:
case wgpu::VertexFormat::Int:
case wgpu::VertexFormat::Int2:
case wgpu::VertexFormat::Int3:
case wgpu::VertexFormat::Int4:
return sizeof(int32_t);
default:
UNREACHABLE();
}
}
size_t VertexFormatSize(wgpu::VertexFormat format) {
return VertexFormatNumComponents(format) * VertexFormatComponentSize(format);
}
MaybeError ValidateRenderPipelineDescriptor(const DeviceBase* device,
const RenderPipelineDescriptor* descriptor) {
if (descriptor->nextInChain != nullptr) {
return DAWN_VALIDATION_ERROR("nextInChain must be nullptr");
}
if (descriptor->layout != nullptr) {
DAWN_TRY(device->ValidateObject(descriptor->layout));
}
// TODO(crbug.com/dawn/136): Support vertex-only pipelines.
if (descriptor->fragmentStage == nullptr) {
return DAWN_VALIDATION_ERROR("Null fragment stage is not supported (yet)");
}
std::bitset<kMaxVertexAttributes> attributesSetMask;
if (descriptor->vertexState) {
DAWN_TRY(ValidateVertexStateDescriptor(descriptor->vertexState, &attributesSetMask));
}
DAWN_TRY(ValidatePrimitiveTopology(descriptor->primitiveTopology));
DAWN_TRY(ValidateProgrammableStageDescriptor(
device, &descriptor->vertexStage, descriptor->layout, SingleShaderStage::Vertex));
DAWN_TRY(ValidateProgrammableStageDescriptor(
device, descriptor->fragmentStage, descriptor->layout, SingleShaderStage::Fragment));
if (descriptor->rasterizationState) {
DAWN_TRY(ValidateRasterizationStateDescriptor(descriptor->rasterizationState));
}
if ((descriptor->vertexStage.module->GetUsedVertexAttributes() & ~attributesSetMask)
.any()) {
return DAWN_VALIDATION_ERROR(
"Pipeline vertex stage uses vertex buffers not in the vertex state");
}
if (!IsValidSampleCount(descriptor->sampleCount)) {
return DAWN_VALIDATION_ERROR("Sample count is not supported");
}
if (descriptor->colorStateCount > kMaxColorAttachments) {
return DAWN_VALIDATION_ERROR("Color States number exceeds maximum");
}
if (descriptor->colorStateCount == 0 && !descriptor->depthStencilState) {
return DAWN_VALIDATION_ERROR("Should have at least one attachment");
}
ASSERT(descriptor->fragmentStage != nullptr);
const ShaderModuleBase::FragmentOutputBaseTypes& fragmentOutputBaseTypes =
descriptor->fragmentStage->module->GetFragmentOutputBaseTypes();
for (uint32_t i = 0; i < descriptor->colorStateCount; ++i) {
DAWN_TRY(ValidateColorStateDescriptor(device, descriptor->colorStates[i],
fragmentOutputBaseTypes[i]));
}
if (descriptor->depthStencilState) {
DAWN_TRY(ValidateDepthStencilStateDescriptor(device, descriptor->depthStencilState));
}
if (descriptor->sampleMask != 0xFFFFFFFF) {
return DAWN_VALIDATION_ERROR("sampleMask must be 0xFFFFFFFF (for now)");
}
if (descriptor->alphaToCoverageEnabled) {
return DAWN_VALIDATION_ERROR("alphaToCoverageEnabled isn't supported (yet)");
}
return {};
}
bool StencilTestEnabled(const DepthStencilStateDescriptor* mDepthStencilState) {
return mDepthStencilState->stencilBack.compare != wgpu::CompareFunction::Always ||
mDepthStencilState->stencilBack.failOp != wgpu::StencilOperation::Keep ||
mDepthStencilState->stencilBack.depthFailOp != wgpu::StencilOperation::Keep ||
mDepthStencilState->stencilBack.passOp != wgpu::StencilOperation::Keep ||
mDepthStencilState->stencilFront.compare != wgpu::CompareFunction::Always ||
mDepthStencilState->stencilFront.failOp != wgpu::StencilOperation::Keep ||
mDepthStencilState->stencilFront.depthFailOp != wgpu::StencilOperation::Keep ||
mDepthStencilState->stencilFront.passOp != wgpu::StencilOperation::Keep;
}
bool BlendEnabled(const ColorStateDescriptor* mColorState) {
return mColorState->alphaBlend.operation != wgpu::BlendOperation::Add ||
mColorState->alphaBlend.srcFactor != wgpu::BlendFactor::One ||
mColorState->alphaBlend.dstFactor != wgpu::BlendFactor::Zero ||
mColorState->colorBlend.operation != wgpu::BlendOperation::Add ||
mColorState->colorBlend.srcFactor != wgpu::BlendFactor::One ||
mColorState->colorBlend.dstFactor != wgpu::BlendFactor::Zero;
}
// RenderPipelineBase
RenderPipelineBase::RenderPipelineBase(DeviceBase* device,
const RenderPipelineDescriptor* descriptor)
: PipelineBase(device,
descriptor->layout,
wgpu::ShaderStage::Vertex | wgpu::ShaderStage::Fragment),
mAttachmentState(device->GetOrCreateAttachmentState(descriptor)),
mPrimitiveTopology(descriptor->primitiveTopology),
mSampleMask(descriptor->sampleMask),
mAlphaToCoverageEnabled(descriptor->alphaToCoverageEnabled),
mVertexModule(descriptor->vertexStage.module),
mVertexEntryPoint(descriptor->vertexStage.entryPoint),
mFragmentModule(descriptor->fragmentStage->module),
mFragmentEntryPoint(descriptor->fragmentStage->entryPoint) {
if (descriptor->vertexState != nullptr) {
mVertexState = *descriptor->vertexState;
} else {
mVertexState = VertexStateDescriptor();
}
for (uint32_t slot = 0; slot < mVertexState.vertexBufferCount; ++slot) {
if (mVertexState.vertexBuffers[slot].attributeCount == 0) {
continue;
}
mVertexBufferSlotsUsed.set(slot);
mVertexBufferInfos[slot].arrayStride = mVertexState.vertexBuffers[slot].arrayStride;
mVertexBufferInfos[slot].stepMode = mVertexState.vertexBuffers[slot].stepMode;
uint32_t location = 0;
for (uint32_t i = 0; i < mVertexState.vertexBuffers[slot].attributeCount; ++i) {
location = mVertexState.vertexBuffers[slot].attributes[i].shaderLocation;
mAttributeLocationsUsed.set(location);
mAttributeInfos[location].shaderLocation = location;
mAttributeInfos[location].vertexBufferSlot = slot;
mAttributeInfos[location].offset =
mVertexState.vertexBuffers[slot].attributes[i].offset;
mAttributeInfos[location].format =
mVertexState.vertexBuffers[slot].attributes[i].format;
}
}
if (descriptor->rasterizationState != nullptr) {
mRasterizationState = *descriptor->rasterizationState;
} else {
mRasterizationState = RasterizationStateDescriptor();
}
if (mAttachmentState->HasDepthStencilAttachment()) {
mDepthStencilState = *descriptor->depthStencilState;
} else {
// These default values below are useful for backends to fill information.
// The values indicate that depth and stencil test are disabled when backends
// set their own depth stencil states/descriptors according to the values in
// mDepthStencilState.
mDepthStencilState.depthCompare = wgpu::CompareFunction::Always;
mDepthStencilState.depthWriteEnabled = false;
mDepthStencilState.stencilBack.compare = wgpu::CompareFunction::Always;
mDepthStencilState.stencilBack.failOp = wgpu::StencilOperation::Keep;
mDepthStencilState.stencilBack.depthFailOp = wgpu::StencilOperation::Keep;
mDepthStencilState.stencilBack.passOp = wgpu::StencilOperation::Keep;
mDepthStencilState.stencilFront.compare = wgpu::CompareFunction::Always;
mDepthStencilState.stencilFront.failOp = wgpu::StencilOperation::Keep;
mDepthStencilState.stencilFront.depthFailOp = wgpu::StencilOperation::Keep;
mDepthStencilState.stencilFront.passOp = wgpu::StencilOperation::Keep;
mDepthStencilState.stencilReadMask = 0xff;
mDepthStencilState.stencilWriteMask = 0xff;
}
for (uint32_t i : IterateBitSet(mAttachmentState->GetColorAttachmentsMask())) {
mColorStates[i] = descriptor->colorStates[i];
}
// TODO(cwallez@chromium.org): Check against the shader module that the correct color
// attachment are set?
}
RenderPipelineBase::RenderPipelineBase(DeviceBase* device, ObjectBase::ErrorTag tag)
: PipelineBase(device, tag) {
}
// static
RenderPipelineBase* RenderPipelineBase::MakeError(DeviceBase* device) {
return new RenderPipelineBase(device, ObjectBase::kError);
}
RenderPipelineBase::~RenderPipelineBase() {
if (IsCachedReference()) {
GetDevice()->UncacheRenderPipeline(this);
}
}
const VertexStateDescriptor* RenderPipelineBase::GetVertexStateDescriptor() const {
ASSERT(!IsError());
return &mVertexState;
}
const std::bitset<kMaxVertexAttributes>& RenderPipelineBase::GetAttributeLocationsUsed() const {
ASSERT(!IsError());
return mAttributeLocationsUsed;
}
const VertexAttributeInfo& RenderPipelineBase::GetAttribute(uint32_t location) const {
ASSERT(!IsError());
ASSERT(mAttributeLocationsUsed[location]);
return mAttributeInfos[location];
}
const std::bitset<kMaxVertexBuffers>& RenderPipelineBase::GetVertexBufferSlotsUsed() const {
ASSERT(!IsError());
return mVertexBufferSlotsUsed;
}
const VertexBufferInfo& RenderPipelineBase::GetVertexBuffer(uint32_t slot) const {
ASSERT(!IsError());
ASSERT(mVertexBufferSlotsUsed[slot]);
return mVertexBufferInfos[slot];
}
const ColorStateDescriptor* RenderPipelineBase::GetColorStateDescriptor(
uint32_t attachmentSlot) const {
ASSERT(!IsError());
ASSERT(attachmentSlot < mColorStates.size());
return &mColorStates[attachmentSlot];
}
const DepthStencilStateDescriptor* RenderPipelineBase::GetDepthStencilStateDescriptor() const {
ASSERT(!IsError());
return &mDepthStencilState;
}
wgpu::PrimitiveTopology RenderPipelineBase::GetPrimitiveTopology() const {
ASSERT(!IsError());
return mPrimitiveTopology;
}
wgpu::CullMode RenderPipelineBase::GetCullMode() const {
ASSERT(!IsError());
return mRasterizationState.cullMode;
}
wgpu::FrontFace RenderPipelineBase::GetFrontFace() const {
ASSERT(!IsError());
return mRasterizationState.frontFace;
}
std::bitset<kMaxColorAttachments> RenderPipelineBase::GetColorAttachmentsMask() const {
ASSERT(!IsError());
return mAttachmentState->GetColorAttachmentsMask();
}
bool RenderPipelineBase::HasDepthStencilAttachment() const {
ASSERT(!IsError());
return mAttachmentState->HasDepthStencilAttachment();
}
wgpu::TextureFormat RenderPipelineBase::GetColorAttachmentFormat(uint32_t attachment) const {
ASSERT(!IsError());
return mColorStates[attachment].format;
}
wgpu::TextureFormat RenderPipelineBase::GetDepthStencilFormat() const {
ASSERT(!IsError());
ASSERT(mAttachmentState->HasDepthStencilAttachment());
return mDepthStencilState.format;
}
uint32_t RenderPipelineBase::GetSampleCount() const {
ASSERT(!IsError());
return mAttachmentState->GetSampleCount();
}
const AttachmentState* RenderPipelineBase::GetAttachmentState() const {
ASSERT(!IsError());
return mAttachmentState.Get();
}
std::bitset<kMaxVertexAttributes> RenderPipelineBase::GetAttributesUsingVertexBuffer(
uint32_t slot) const {
ASSERT(!IsError());
return attributesUsingVertexBuffer[slot];
}
size_t RenderPipelineBase::HashFunc::operator()(const RenderPipelineBase* pipeline) const {
size_t hash = 0;
// Hash modules and layout
HashCombine(&hash, pipeline->GetLayout());
HashCombine(&hash, pipeline->mVertexModule.Get(), pipeline->mFragmentEntryPoint);
HashCombine(&hash, pipeline->mFragmentModule.Get(), pipeline->mFragmentEntryPoint);
// Hierarchically hash the attachment state.
// It contains the attachments set, texture formats, and sample count.
HashCombine(&hash, pipeline->mAttachmentState.Get());
// Hash attachments
for (uint32_t i : IterateBitSet(pipeline->mAttachmentState->GetColorAttachmentsMask())) {
const ColorStateDescriptor& desc = *pipeline->GetColorStateDescriptor(i);
HashCombine(&hash, desc.writeMask);
HashCombine(&hash, desc.colorBlend.operation, desc.colorBlend.srcFactor,
desc.colorBlend.dstFactor);
HashCombine(&hash, desc.alphaBlend.operation, desc.alphaBlend.srcFactor,
desc.alphaBlend.dstFactor);
}
if (pipeline->mAttachmentState->HasDepthStencilAttachment()) {
const DepthStencilStateDescriptor& desc = pipeline->mDepthStencilState;
HashCombine(&hash, desc.depthWriteEnabled, desc.depthCompare);
HashCombine(&hash, desc.stencilReadMask, desc.stencilWriteMask);
HashCombine(&hash, desc.stencilFront.compare, desc.stencilFront.failOp,
desc.stencilFront.depthFailOp, desc.stencilFront.passOp);
HashCombine(&hash, desc.stencilBack.compare, desc.stencilBack.failOp,
desc.stencilBack.depthFailOp, desc.stencilBack.passOp);
}
// Hash vertex state
HashCombine(&hash, pipeline->mAttributeLocationsUsed);
for (uint32_t i : IterateBitSet(pipeline->mAttributeLocationsUsed)) {
const VertexAttributeInfo& desc = pipeline->GetAttribute(i);
HashCombine(&hash, desc.shaderLocation, desc.vertexBufferSlot, desc.offset,
desc.format);
}
HashCombine(&hash, pipeline->mVertexBufferSlotsUsed);
for (uint32_t i : IterateBitSet(pipeline->mVertexBufferSlotsUsed)) {
const VertexBufferInfo& desc = pipeline->GetVertexBuffer(i);
HashCombine(&hash, desc.arrayStride, desc.stepMode);
}
HashCombine(&hash, pipeline->mVertexState.indexFormat);
// Hash rasterization state
{
const RasterizationStateDescriptor& desc = pipeline->mRasterizationState;
HashCombine(&hash, desc.frontFace, desc.cullMode);
HashCombine(&hash, desc.depthBias, desc.depthBiasSlopeScale, desc.depthBiasClamp);
}
// Hash other state
HashCombine(&hash, pipeline->mPrimitiveTopology, pipeline->mSampleMask,
pipeline->mAlphaToCoverageEnabled);
return hash;
}
bool RenderPipelineBase::EqualityFunc::operator()(const RenderPipelineBase* a,
const RenderPipelineBase* b) const {
// Check modules and layout
if (a->GetLayout() != b->GetLayout() || a->mVertexModule.Get() != b->mVertexModule.Get() ||
a->mVertexEntryPoint != b->mVertexEntryPoint ||
a->mFragmentModule.Get() != b->mFragmentModule.Get() ||
a->mFragmentEntryPoint != b->mFragmentEntryPoint) {
return false;
}
// Check the attachment state.
// It contains the attachments set, texture formats, and sample count.
if (a->mAttachmentState.Get() != b->mAttachmentState.Get()) {
return false;
}
for (uint32_t i : IterateBitSet(a->mAttachmentState->GetColorAttachmentsMask())) {
const ColorStateDescriptor& descA = *a->GetColorStateDescriptor(i);
const ColorStateDescriptor& descB = *b->GetColorStateDescriptor(i);
if (descA.writeMask != descB.writeMask) {
return false;
}
if (descA.colorBlend.operation != descB.colorBlend.operation ||
descA.colorBlend.srcFactor != descB.colorBlend.srcFactor ||
descA.colorBlend.dstFactor != descB.colorBlend.dstFactor) {
return false;
}
if (descA.alphaBlend.operation != descB.alphaBlend.operation ||
descA.alphaBlend.srcFactor != descB.alphaBlend.srcFactor ||
descA.alphaBlend.dstFactor != descB.alphaBlend.dstFactor) {
return false;
}
}
if (a->mAttachmentState->HasDepthStencilAttachment()) {
const DepthStencilStateDescriptor& descA = a->mDepthStencilState;
const DepthStencilStateDescriptor& descB = b->mDepthStencilState;
if (descA.depthWriteEnabled != descB.depthWriteEnabled ||
descA.depthCompare != descB.depthCompare) {
return false;
}
if (descA.stencilReadMask != descB.stencilReadMask ||
descA.stencilWriteMask != descB.stencilWriteMask) {
return false;
}
if (descA.stencilFront.compare != descB.stencilFront.compare ||
descA.stencilFront.failOp != descB.stencilFront.failOp ||
descA.stencilFront.depthFailOp != descB.stencilFront.depthFailOp ||
descA.stencilFront.passOp != descB.stencilFront.passOp) {
return false;
}
if (descA.stencilBack.compare != descB.stencilBack.compare ||
descA.stencilBack.failOp != descB.stencilBack.failOp ||
descA.stencilBack.depthFailOp != descB.stencilBack.depthFailOp ||
descA.stencilBack.passOp != descB.stencilBack.passOp) {
return false;
}
}
// Check vertex state
if (a->mAttributeLocationsUsed != b->mAttributeLocationsUsed) {
return false;
}
for (uint32_t i : IterateBitSet(a->mAttributeLocationsUsed)) {
const VertexAttributeInfo& descA = a->GetAttribute(i);
const VertexAttributeInfo& descB = b->GetAttribute(i);
if (descA.shaderLocation != descB.shaderLocation ||
descA.vertexBufferSlot != descB.vertexBufferSlot || descA.offset != descB.offset ||
descA.format != descB.format) {
return false;
}
}
if (a->mVertexBufferSlotsUsed != b->mVertexBufferSlotsUsed) {
return false;
}
for (uint32_t i : IterateBitSet(a->mVertexBufferSlotsUsed)) {
const VertexBufferInfo& descA = a->GetVertexBuffer(i);
const VertexBufferInfo& descB = b->GetVertexBuffer(i);
if (descA.arrayStride != descB.arrayStride || descA.stepMode != descB.stepMode) {
return false;
}
}
if (a->mVertexState.indexFormat != b->mVertexState.indexFormat) {
return false;
}
// Check rasterization state
{
const RasterizationStateDescriptor& descA = a->mRasterizationState;
const RasterizationStateDescriptor& descB = b->mRasterizationState;
if (descA.frontFace != descB.frontFace || descA.cullMode != descB.cullMode) {
return false;
}
ASSERT(!std::isnan(descA.depthBiasSlopeScale));
ASSERT(!std::isnan(descB.depthBiasSlopeScale));
ASSERT(!std::isnan(descA.depthBiasClamp));
ASSERT(!std::isnan(descB.depthBiasClamp));
if (descA.depthBias != descB.depthBias ||
descA.depthBiasSlopeScale != descB.depthBiasSlopeScale ||
descA.depthBiasClamp != descB.depthBiasClamp) {
return false;
}
}
// Check other state
if (a->mPrimitiveTopology != b->mPrimitiveTopology || a->mSampleMask != b->mSampleMask ||
a->mAlphaToCoverageEnabled != b->mAlphaToCoverageEnabled) {
return false;
}
return true;
}
} // namespace dawn_native