mirror of
https://github.com/encounter/dawn-cmake.git
synced 2025-05-14 03:11:29 +00:00
Replace TODOs for those tests that now fail with another issue. Fixed: tint:682 Change-Id: I2665f0d4f495e4efc5adef4cf46a965df7c8936c Reviewed-on: https://dawn-review.googlesource.com/c/dawn/+/46451 Auto-Submit: Ben Clayton <bclayton@google.com> Commit-Queue: Austin Eng <enga@chromium.org> Reviewed-by: Corentin Wallez <cwallez@chromium.org> Reviewed-by: Austin Eng <enga@chromium.org>
811 lines
35 KiB
C++
811 lines
35 KiB
C++
// Copyright 2020 The Dawn Authors
|
||
//
|
||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||
// you may not use this file except in compliance with the License.
|
||
// You may obtain a copy of the License at
|
||
//
|
||
// http://www.apache.org/licenses/LICENSE-2.0
|
||
//
|
||
// Unless required by applicable law or agreed to in writing, software
|
||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
// See the License for the specific language governing permissions and
|
||
// limitations under the License.
|
||
|
||
// This file contains test for deprecated parts of Dawn's API while following WebGPU's evolution.
|
||
// It contains test for the "old" behavior that will be deleted once users are migrated, tests that
|
||
// a deprecation warning is emitted when the "old" behavior is used, and tests that an error is
|
||
// emitted when both the old and the new behavior are used (when applicable).
|
||
|
||
#include "tests/DawnTest.h"
|
||
|
||
#include "utils/ComboRenderPipelineDescriptor.h"
|
||
#include "utils/WGPUHelpers.h"
|
||
|
||
class QueryTests : public DawnTest {
|
||
protected:
|
||
wgpu::Buffer CreateResolveBuffer(uint64_t size) {
|
||
wgpu::BufferDescriptor descriptor;
|
||
descriptor.size = size;
|
||
descriptor.usage = wgpu::BufferUsage::QueryResolve | wgpu::BufferUsage::CopySrc |
|
||
wgpu::BufferUsage::CopyDst;
|
||
return device.CreateBuffer(&descriptor);
|
||
}
|
||
};
|
||
|
||
// Clear the content of the result buffer into 0xFFFFFFFF.
|
||
constexpr static uint64_t kSentinelValue = ~uint64_t(0u);
|
||
constexpr static uint64_t kZero = 0u;
|
||
|
||
class OcclusionExpectation : public detail::Expectation {
|
||
public:
|
||
enum class Result { Zero, NonZero };
|
||
|
||
~OcclusionExpectation() override = default;
|
||
|
||
OcclusionExpectation(Result expected) {
|
||
mExpected = expected;
|
||
}
|
||
|
||
testing::AssertionResult Check(const void* data, size_t size) override {
|
||
ASSERT(size % sizeof(uint64_t) == 0);
|
||
const uint64_t* actual = static_cast<const uint64_t*>(data);
|
||
for (size_t i = 0; i < size / sizeof(uint64_t); i++) {
|
||
if (actual[i] == kSentinelValue) {
|
||
return testing::AssertionFailure()
|
||
<< "Data[" << i << "] was not written (it kept the sentinel value of "
|
||
<< kSentinelValue << ")." << std::endl;
|
||
}
|
||
if (mExpected == Result::Zero && actual[i] != 0) {
|
||
return testing::AssertionFailure()
|
||
<< "Expected data[" << i << "] to be zero, actual: " << actual[i] << "."
|
||
<< std::endl;
|
||
}
|
||
if (mExpected == Result::NonZero && actual[i] == 0) {
|
||
return testing::AssertionFailure()
|
||
<< "Expected data[" << i << "] to be non-zero." << std::endl;
|
||
}
|
||
}
|
||
|
||
return testing::AssertionSuccess();
|
||
}
|
||
|
||
private:
|
||
Result mExpected;
|
||
};
|
||
|
||
class OcclusionQueryTests : public QueryTests {
|
||
protected:
|
||
void SetUp() override {
|
||
DawnTest::SetUp();
|
||
|
||
// Create basic render pipeline
|
||
vsModule = utils::CreateShaderModule(device, R"(
|
||
[[builtin(vertex_index)]] var<in> VertexIndex : u32;
|
||
[[builtin(position)]] var<out> Position : vec4<f32>;
|
||
[[stage(vertex)]] fn main() -> void {
|
||
const pos : array<vec2<f32>, 3> = array<vec2<f32>, 3>(
|
||
vec2<f32>( 1.0, 1.0),
|
||
vec2<f32>(-1.0, -1.0),
|
||
vec2<f32>( 1.0, -1.0));
|
||
Position = vec4<f32>(pos[VertexIndex], 0.0, 1.0);
|
||
})");
|
||
|
||
fsModule = utils::CreateShaderModule(device, R"(
|
||
[[location(0)]] var<out> fragColor : vec4<f32>;
|
||
[[stage(fragment)]] fn main() -> void {
|
||
fragColor = vec4<f32>(0.0, 1.0, 0.0, 1.0);
|
||
})");
|
||
|
||
utils::ComboRenderPipelineDescriptor2 descriptor;
|
||
descriptor.vertex.module = vsModule;
|
||
descriptor.cFragment.module = fsModule;
|
||
|
||
pipeline = device.CreateRenderPipeline2(&descriptor);
|
||
}
|
||
|
||
struct ScissorRect {
|
||
uint32_t x;
|
||
uint32_t y;
|
||
uint32_t width;
|
||
uint32_t height;
|
||
};
|
||
|
||
wgpu::QuerySet CreateOcclusionQuerySet(uint32_t count) {
|
||
wgpu::QuerySetDescriptor descriptor;
|
||
descriptor.count = count;
|
||
descriptor.type = wgpu::QueryType::Occlusion;
|
||
return device.CreateQuerySet(&descriptor);
|
||
}
|
||
|
||
wgpu::Texture CreateRenderTexture(wgpu::TextureFormat format) {
|
||
wgpu::TextureDescriptor descriptor;
|
||
descriptor.size = {kRTSize, kRTSize, 1};
|
||
descriptor.format = format;
|
||
descriptor.usage = wgpu::TextureUsage::RenderAttachment;
|
||
return device.CreateTexture(&descriptor);
|
||
}
|
||
|
||
void TestOcclusionQueryWithDepthStencilTest(bool depthTestEnabled,
|
||
bool stencilTestEnabled,
|
||
OcclusionExpectation::Result expected) {
|
||
constexpr uint32_t kQueryCount = 1;
|
||
|
||
utils::ComboRenderPipelineDescriptor2 descriptor;
|
||
descriptor.vertex.module = vsModule;
|
||
descriptor.cFragment.module = fsModule;
|
||
|
||
// Enable depth and stencil tests and set comparison tests never pass.
|
||
wgpu::DepthStencilState* depthStencil =
|
||
descriptor.EnableDepthStencil(wgpu::TextureFormat::Depth24PlusStencil8);
|
||
depthStencil->depthCompare =
|
||
depthTestEnabled ? wgpu::CompareFunction::Never : wgpu::CompareFunction::Always;
|
||
depthStencil->stencilFront.compare =
|
||
stencilTestEnabled ? wgpu::CompareFunction::Never : wgpu::CompareFunction::Always;
|
||
depthStencil->stencilBack.compare =
|
||
stencilTestEnabled ? wgpu::CompareFunction::Never : wgpu::CompareFunction::Always;
|
||
|
||
wgpu::RenderPipeline renderPipeline = device.CreateRenderPipeline2(&descriptor);
|
||
|
||
wgpu::Texture renderTarget = CreateRenderTexture(wgpu::TextureFormat::RGBA8Unorm);
|
||
wgpu::TextureView renderTargetView = renderTarget.CreateView();
|
||
|
||
wgpu::Texture depthTexture = CreateRenderTexture(wgpu::TextureFormat::Depth24PlusStencil8);
|
||
wgpu::TextureView depthTextureView = depthTexture.CreateView();
|
||
|
||
wgpu::QuerySet querySet = CreateOcclusionQuerySet(kQueryCount);
|
||
wgpu::Buffer destination = CreateResolveBuffer(kQueryCount * sizeof(uint64_t));
|
||
// Set all bits in buffer to check 0 is correctly written if there is no sample passed the
|
||
// occlusion testing
|
||
queue.WriteBuffer(destination, 0, &kSentinelValue, sizeof(kSentinelValue));
|
||
|
||
utils::ComboRenderPassDescriptor renderPass({renderTargetView}, depthTextureView);
|
||
renderPass.occlusionQuerySet = querySet;
|
||
|
||
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
|
||
wgpu::RenderPassEncoder pass = encoder.BeginRenderPass(&renderPass);
|
||
pass.SetPipeline(renderPipeline);
|
||
pass.SetStencilReference(0);
|
||
pass.BeginOcclusionQuery(0);
|
||
pass.Draw(3);
|
||
pass.EndOcclusionQuery();
|
||
pass.EndPass();
|
||
|
||
encoder.ResolveQuerySet(querySet, 0, kQueryCount, destination, 0);
|
||
wgpu::CommandBuffer commands = encoder.Finish();
|
||
queue.Submit(1, &commands);
|
||
|
||
EXPECT_BUFFER(destination, 0, sizeof(uint64_t), new OcclusionExpectation(expected));
|
||
}
|
||
|
||
void TestOcclusionQueryWithScissorTest(ScissorRect rect,
|
||
OcclusionExpectation::Result expected) {
|
||
constexpr uint32_t kQueryCount = 1;
|
||
|
||
wgpu::QuerySet querySet = CreateOcclusionQuerySet(kQueryCount);
|
||
wgpu::Buffer destination = CreateResolveBuffer(kQueryCount * sizeof(uint64_t));
|
||
// Set all bits in buffer to check 0 is correctly written if there is no sample passed the
|
||
// occlusion testing
|
||
queue.WriteBuffer(destination, 0, &kSentinelValue, sizeof(kSentinelValue));
|
||
|
||
utils::BasicRenderPass renderPass = utils::CreateBasicRenderPass(device, kRTSize, kRTSize);
|
||
renderPass.renderPassInfo.occlusionQuerySet = querySet;
|
||
|
||
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
|
||
wgpu::RenderPassEncoder pass = encoder.BeginRenderPass(&renderPass.renderPassInfo);
|
||
pass.SetPipeline(pipeline);
|
||
pass.SetScissorRect(rect.x, rect.y, rect.width, rect.height);
|
||
pass.BeginOcclusionQuery(0);
|
||
pass.Draw(3);
|
||
pass.EndOcclusionQuery();
|
||
pass.EndPass();
|
||
|
||
encoder.ResolveQuerySet(querySet, 0, kQueryCount, destination, 0);
|
||
wgpu::CommandBuffer commands = encoder.Finish();
|
||
queue.Submit(1, &commands);
|
||
|
||
EXPECT_BUFFER(destination, 0, sizeof(uint64_t), new OcclusionExpectation(expected));
|
||
}
|
||
|
||
wgpu::ShaderModule vsModule;
|
||
wgpu::ShaderModule fsModule;
|
||
|
||
wgpu::RenderPipeline pipeline;
|
||
|
||
constexpr static unsigned int kRTSize = 4;
|
||
};
|
||
|
||
// Test creating query set with the type of Occlusion
|
||
TEST_P(OcclusionQueryTests, QuerySetCreation) {
|
||
CreateOcclusionQuerySet(1);
|
||
}
|
||
|
||
// Test destroying query set
|
||
TEST_P(OcclusionQueryTests, QuerySetDestroy) {
|
||
wgpu::QuerySet querySet = CreateOcclusionQuerySet(1);
|
||
querySet.Destroy();
|
||
}
|
||
|
||
// Draw a bottom right triangle with depth/stencil testing enabled and check whether there is
|
||
// sample passed the testing by non-precise occlusion query with the results:
|
||
// zero indicates that no sample passed depth/stencil testing,
|
||
// non-zero indicates that at least one sample passed depth/stencil testing.
|
||
TEST_P(OcclusionQueryTests, QueryWithDepthStencilTest) {
|
||
// Disable depth/stencil testing, the samples always pass the testing, the expected occlusion
|
||
// result is non-zero.
|
||
TestOcclusionQueryWithDepthStencilTest(false, false, OcclusionExpectation::Result::NonZero);
|
||
|
||
// Only enable depth testing and set the samples never pass the testing, the expected occlusion
|
||
// result is zero.
|
||
TestOcclusionQueryWithDepthStencilTest(true, false, OcclusionExpectation::Result::Zero);
|
||
|
||
// Only enable stencil testing and set the samples never pass the testing, the expected
|
||
// occlusion result is zero.
|
||
TestOcclusionQueryWithDepthStencilTest(false, true, OcclusionExpectation::Result::Zero);
|
||
}
|
||
|
||
// Draw a bottom right triangle with scissor testing enabled and check whether there is
|
||
// sample passed the testing by non-precise occlusion query with the results:
|
||
// zero indicates that no sample passed scissor testing,
|
||
// non-zero indicates that at least one sample passed scissor testing.
|
||
TEST_P(OcclusionQueryTests, QueryWithScissorTest) {
|
||
// TODO(hao.x.li@intel.com): It's failed weirdly on Intel TGL(Window Vulkan) which says
|
||
// the destination buffer keep sentinel value in the second case, it cannot be reproduced with
|
||
// any debug actions including Vulkan validation layers enabled, and takes time to find out if
|
||
// the WriteBuffer and ResolveQuerySet are not executed in order or the ResolveQuerySet does not
|
||
// copy the result to the buffer. In order to integrate end2end tests to Intel driver CL without
|
||
// unknown issues, skip it until we find the root cause.
|
||
DAWN_SKIP_TEST_IF(IsWindows() && IsVulkan() && IsIntel());
|
||
|
||
// Test there are samples passed scissor testing, the expected occlusion result is non-zero.
|
||
TestOcclusionQueryWithScissorTest({2, 1, 2, 1}, OcclusionExpectation::Result::NonZero);
|
||
|
||
// Test there is no sample passed scissor testing, the expected occlusion result is zero.
|
||
TestOcclusionQueryWithScissorTest({0, 0, 2, 1}, OcclusionExpectation::Result::Zero);
|
||
}
|
||
|
||
// Test begin occlusion query with same query index on different render pass
|
||
TEST_P(OcclusionQueryTests, Rewrite) {
|
||
constexpr uint32_t kQueryCount = 1;
|
||
|
||
wgpu::QuerySet querySet = CreateOcclusionQuerySet(kQueryCount);
|
||
wgpu::Buffer destination = CreateResolveBuffer(kQueryCount * sizeof(uint64_t));
|
||
// Set all bits in buffer to check 0 is correctly written if there is no sample passed the
|
||
// occlusion testing
|
||
queue.WriteBuffer(destination, 0, &kSentinelValue, sizeof(kSentinelValue));
|
||
|
||
utils::BasicRenderPass renderPass = utils::CreateBasicRenderPass(device, kRTSize, kRTSize);
|
||
renderPass.renderPassInfo.occlusionQuerySet = querySet;
|
||
|
||
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
|
||
|
||
// Begin occlusion without draw call
|
||
wgpu::RenderPassEncoder pass = encoder.BeginRenderPass(&renderPass.renderPassInfo);
|
||
pass.BeginOcclusionQuery(0);
|
||
pass.EndOcclusionQuery();
|
||
pass.EndPass();
|
||
|
||
// Begin occlusion with same query index with draw call
|
||
wgpu::RenderPassEncoder rewritePass = encoder.BeginRenderPass(&renderPass.renderPassInfo);
|
||
rewritePass.SetPipeline(pipeline);
|
||
rewritePass.BeginOcclusionQuery(0);
|
||
rewritePass.Draw(3);
|
||
rewritePass.EndOcclusionQuery();
|
||
rewritePass.EndPass();
|
||
|
||
encoder.ResolveQuerySet(querySet, 0, kQueryCount, destination, 0);
|
||
wgpu::CommandBuffer commands = encoder.Finish();
|
||
queue.Submit(1, &commands);
|
||
|
||
EXPECT_BUFFER(destination, 0, sizeof(uint64_t),
|
||
new OcclusionExpectation(OcclusionExpectation::Result::NonZero));
|
||
}
|
||
|
||
// Test resolving occlusion query correctly if the queries are written sparsely, which also tests
|
||
// the query resetting at the start of render passes on Vulkan backend.
|
||
TEST_P(OcclusionQueryTests, ResolveSparseQueries) {
|
||
// TODO(hao.x.li@intel.com): Clear the resolve region of the buffer to 0 if there is at least
|
||
// one query not written and the resolve buffer has been initialized or fully used.
|
||
DAWN_SKIP_TEST_IF(IsVulkan());
|
||
|
||
// TODO(hao.x.li@intel.com): Investigate why it's failed on D3D12 on Nvidia when running with
|
||
// the previous occlusion tests. Expect resolve to 0 for these unwritten queries but the
|
||
// occlusion result of the previous tests is got.
|
||
DAWN_SKIP_TEST_IF(IsD3D12() & IsNvidia());
|
||
|
||
constexpr uint32_t kQueryCount = 7;
|
||
|
||
wgpu::QuerySet querySet = CreateOcclusionQuerySet(kQueryCount);
|
||
wgpu::Buffer destination = CreateResolveBuffer(kQueryCount * sizeof(uint64_t));
|
||
// Set sentinel values to check the queries are resolved correctly if the queries are
|
||
// written sparsely.
|
||
std::vector<uint64_t> sentinelValues(kQueryCount, kSentinelValue);
|
||
queue.WriteBuffer(destination, 0, sentinelValues.data(), kQueryCount * sizeof(uint64_t));
|
||
|
||
utils::BasicRenderPass renderPass = utils::CreateBasicRenderPass(device, kRTSize, kRTSize);
|
||
renderPass.renderPassInfo.occlusionQuerySet = querySet;
|
||
|
||
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
|
||
wgpu::RenderPassEncoder pass = encoder.BeginRenderPass(&renderPass.renderPassInfo);
|
||
pass.SetPipeline(pipeline);
|
||
|
||
// Write queries sparsely for testing the query resetting on Vulkan and resolving unwritten
|
||
// queries to 0.
|
||
// 0 - not written (tests starting with not written).
|
||
// 1 - written (tests combing multiple written, although other tests already do it).
|
||
// 2 - written.
|
||
// 3 - not written (tests skipping over not written in the middle).
|
||
// 4 - not written.
|
||
// 5 - written (tests another written query in the middle).
|
||
// 6 - not written (tests the last query not being written).
|
||
pass.BeginOcclusionQuery(1);
|
||
pass.Draw(3);
|
||
pass.EndOcclusionQuery();
|
||
pass.BeginOcclusionQuery(2);
|
||
pass.Draw(3);
|
||
pass.EndOcclusionQuery();
|
||
pass.BeginOcclusionQuery(5);
|
||
pass.Draw(3);
|
||
pass.EndOcclusionQuery();
|
||
pass.EndPass();
|
||
|
||
encoder.ResolveQuerySet(querySet, 0, kQueryCount, destination, 0);
|
||
wgpu::CommandBuffer commands = encoder.Finish();
|
||
queue.Submit(1, &commands);
|
||
|
||
// The query at index 0 should be resolved to 0.
|
||
EXPECT_BUFFER_U64_RANGE_EQ(&kZero, destination, 0, 1);
|
||
EXPECT_BUFFER(destination, sizeof(uint64_t), 2 * sizeof(uint64_t),
|
||
new OcclusionExpectation(OcclusionExpectation::Result::NonZero));
|
||
// The queries at index 3 and 4 should be resolved to 0.
|
||
std::vector<uint64_t> zeros(2, kZero);
|
||
EXPECT_BUFFER_U64_RANGE_EQ(zeros.data(), destination, 3 * sizeof(uint64_t), 2);
|
||
EXPECT_BUFFER(destination, 5 * sizeof(uint64_t), sizeof(uint64_t),
|
||
new OcclusionExpectation(OcclusionExpectation::Result::NonZero));
|
||
// The query at index 6 should be resolved to 0.
|
||
EXPECT_BUFFER_U64_RANGE_EQ(&kZero, destination, 6 * sizeof(uint64_t), 1);
|
||
}
|
||
|
||
// Test resolving occlusion query to 0 if all queries are not written
|
||
TEST_P(OcclusionQueryTests, ResolveWithoutWritten) {
|
||
// TODO(hao.x.li@intel.com): Clear the resolve region of the buffer to 0 if there is at least
|
||
// one query not written and the resolve buffer has been initialized or fully used.
|
||
DAWN_SKIP_TEST_IF(IsVulkan());
|
||
|
||
// TODO(hao.x.li@intel.com): Investigate why it's failed on D3D12 on Nvidia when running with
|
||
// the previous occlusion tests. Expect resolve to 0 but the occlusion result of the previous
|
||
// tests is got.
|
||
DAWN_SKIP_TEST_IF(IsD3D12() & IsNvidia());
|
||
|
||
constexpr uint32_t kQueryCount = 1;
|
||
|
||
wgpu::QuerySet querySet = CreateOcclusionQuerySet(kQueryCount);
|
||
wgpu::Buffer destination = CreateResolveBuffer(kQueryCount * sizeof(uint64_t));
|
||
// Set sentinel values to check 0 is correctly written if resolving query set without
|
||
// any written.
|
||
queue.WriteBuffer(destination, 0, &kSentinelValue, sizeof(kSentinelValue));
|
||
|
||
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
|
||
encoder.ResolveQuerySet(querySet, 0, kQueryCount, destination, 0);
|
||
wgpu::CommandBuffer commands = encoder.Finish();
|
||
queue.Submit(1, &commands);
|
||
|
||
EXPECT_BUFFER_U64_RANGE_EQ(&kZero, destination, 0, 1);
|
||
}
|
||
|
||
// Test resolving occlusion query to the destination buffer with offset
|
||
TEST_P(OcclusionQueryTests, ResolveToBufferWithOffset) {
|
||
constexpr uint32_t kQueryCount = 2;
|
||
|
||
wgpu::QuerySet querySet = CreateOcclusionQuerySet(kQueryCount);
|
||
|
||
utils::BasicRenderPass renderPass = utils::CreateBasicRenderPass(device, kRTSize, kRTSize);
|
||
renderPass.renderPassInfo.occlusionQuerySet = querySet;
|
||
|
||
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
|
||
wgpu::RenderPassEncoder pass = encoder.BeginRenderPass(&renderPass.renderPassInfo);
|
||
pass.SetPipeline(pipeline);
|
||
pass.BeginOcclusionQuery(0);
|
||
pass.Draw(3);
|
||
pass.EndOcclusionQuery();
|
||
pass.EndPass();
|
||
wgpu::CommandBuffer commands = encoder.Finish();
|
||
queue.Submit(1, &commands);
|
||
|
||
// Resolve the query result to first slot in the buffer, other slots should not be written.
|
||
{
|
||
wgpu::Buffer destination = CreateResolveBuffer(kQueryCount * sizeof(uint64_t));
|
||
// Set sentinel values to check the query is resolved to the correct slot of the buffer.
|
||
std::vector<uint64_t> sentinelValues(kQueryCount, kSentinelValue);
|
||
queue.WriteBuffer(destination, 0, sentinelValues.data(), kQueryCount * sizeof(uint64_t));
|
||
|
||
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
|
||
encoder.ResolveQuerySet(querySet, 0, 1, destination, 0);
|
||
wgpu::CommandBuffer commands = encoder.Finish();
|
||
queue.Submit(1, &commands);
|
||
|
||
EXPECT_BUFFER(destination, 0, sizeof(uint64_t),
|
||
new OcclusionExpectation(OcclusionExpectation::Result::NonZero));
|
||
EXPECT_BUFFER_U64_RANGE_EQ(&kSentinelValue, destination, sizeof(uint64_t), 1);
|
||
}
|
||
|
||
// Resolve the query result to second slot in the buffer, the first one should not be written.
|
||
{
|
||
wgpu::Buffer destination = CreateResolveBuffer(kQueryCount * sizeof(uint64_t));
|
||
// Set sentinel values to check the query is resolved to the correct slot of the buffer.
|
||
std::vector<uint64_t> sentinelValues(kQueryCount, kSentinelValue);
|
||
queue.WriteBuffer(destination, 0, sentinelValues.data(), kQueryCount * sizeof(uint64_t));
|
||
|
||
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
|
||
encoder.ResolveQuerySet(querySet, 0, 1, destination, sizeof(uint64_t));
|
||
wgpu::CommandBuffer commands = encoder.Finish();
|
||
queue.Submit(1, &commands);
|
||
|
||
EXPECT_BUFFER_U64_RANGE_EQ(&kSentinelValue, destination, 0, 1);
|
||
EXPECT_BUFFER(destination, sizeof(uint64_t), sizeof(uint64_t),
|
||
new OcclusionExpectation(OcclusionExpectation::Result::NonZero));
|
||
}
|
||
}
|
||
|
||
DAWN_INSTANTIATE_TEST(OcclusionQueryTests, D3D12Backend(), MetalBackend(), VulkanBackend());
|
||
|
||
class PipelineStatisticsQueryTests : public QueryTests {
|
||
protected:
|
||
void SetUp() override {
|
||
DawnTest::SetUp();
|
||
|
||
// Skip all tests if pipeline statistics extension is not supported
|
||
DAWN_SKIP_TEST_IF(!SupportsExtensions({"pipeline_statistics_query"}));
|
||
}
|
||
|
||
std::vector<const char*> GetRequiredExtensions() override {
|
||
std::vector<const char*> requiredExtensions = {};
|
||
if (SupportsExtensions({"pipeline_statistics_query"})) {
|
||
requiredExtensions.push_back("pipeline_statistics_query");
|
||
}
|
||
|
||
return requiredExtensions;
|
||
}
|
||
};
|
||
|
||
// Test creating query set with the type of PipelineStatistics
|
||
TEST_P(PipelineStatisticsQueryTests, QuerySetCreation) {
|
||
wgpu::QuerySetDescriptor descriptor;
|
||
descriptor.count = 1;
|
||
descriptor.type = wgpu::QueryType::PipelineStatistics;
|
||
wgpu::PipelineStatisticName pipelineStatistics[2] = {
|
||
wgpu::PipelineStatisticName::ClipperInvocations,
|
||
wgpu::PipelineStatisticName::VertexShaderInvocations};
|
||
descriptor.pipelineStatistics = pipelineStatistics;
|
||
descriptor.pipelineStatisticsCount = 2;
|
||
device.CreateQuerySet(&descriptor);
|
||
}
|
||
|
||
DAWN_INSTANTIATE_TEST(PipelineStatisticsQueryTests,
|
||
D3D12Backend(),
|
||
MetalBackend(),
|
||
OpenGLBackend(),
|
||
OpenGLESBackend(),
|
||
VulkanBackend());
|
||
|
||
class TimestampExpectation : public detail::Expectation {
|
||
public:
|
||
~TimestampExpectation() override = default;
|
||
|
||
// Expect the timestamp results are greater than 0.
|
||
testing::AssertionResult Check(const void* data, size_t size) override {
|
||
ASSERT(size % sizeof(uint64_t) == 0);
|
||
const uint64_t* timestamps = static_cast<const uint64_t*>(data);
|
||
for (size_t i = 0; i < size / sizeof(uint64_t); i++) {
|
||
if (timestamps[i] == 0) {
|
||
return testing::AssertionFailure()
|
||
<< "Expected data[" << i << "] to be greater than 0." << std::endl;
|
||
}
|
||
}
|
||
|
||
return testing::AssertionSuccess();
|
||
}
|
||
};
|
||
|
||
class TimestampQueryTests : public QueryTests {
|
||
protected:
|
||
void SetUp() override {
|
||
DawnTest::SetUp();
|
||
|
||
// TODO(crbug.com/tint/683): internal compiler error: TINT_UNIMPLEMENTED
|
||
DAWN_SKIP_TEST_IF(IsD3D12() && HasToggleEnabled("use_tint_generator"));
|
||
|
||
// Skip all tests if timestamp extension is not supported
|
||
DAWN_SKIP_TEST_IF(!SupportsExtensions({"timestamp_query"}));
|
||
}
|
||
|
||
std::vector<const char*> GetRequiredExtensions() override {
|
||
std::vector<const char*> requiredExtensions = {};
|
||
if (SupportsExtensions({"timestamp_query"})) {
|
||
requiredExtensions.push_back("timestamp_query");
|
||
}
|
||
return requiredExtensions;
|
||
}
|
||
|
||
wgpu::QuerySet CreateQuerySetForTimestamp(uint32_t queryCount) {
|
||
wgpu::QuerySetDescriptor descriptor;
|
||
descriptor.count = queryCount;
|
||
descriptor.type = wgpu::QueryType::Timestamp;
|
||
return device.CreateQuerySet(&descriptor);
|
||
}
|
||
};
|
||
|
||
// Test creating query set with the type of Timestamp
|
||
TEST_P(TimestampQueryTests, QuerySetCreation) {
|
||
CreateQuerySetForTimestamp(1);
|
||
}
|
||
|
||
// Test calling timestamp query from command encoder
|
||
TEST_P(TimestampQueryTests, TimestampOnCommandEncoder) {
|
||
// TODO(hao.x.li@intel.com): Crash occurs if we only call WriteTimestamp in a command encoder
|
||
// without any copy commands on Metal on AMD GPU. See https://crbug.com/dawn/545.
|
||
DAWN_SKIP_TEST_IF(IsMetal() && IsAMD());
|
||
|
||
constexpr uint32_t kQueryCount = 2;
|
||
|
||
// Write timestamp with different query indexes
|
||
{
|
||
wgpu::QuerySet querySet = CreateQuerySetForTimestamp(kQueryCount);
|
||
wgpu::Buffer destination = CreateResolveBuffer(kQueryCount * sizeof(uint64_t));
|
||
|
||
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
|
||
encoder.WriteTimestamp(querySet, 0);
|
||
encoder.WriteTimestamp(querySet, 1);
|
||
encoder.ResolveQuerySet(querySet, 0, kQueryCount, destination, 0);
|
||
wgpu::CommandBuffer commands = encoder.Finish();
|
||
queue.Submit(1, &commands);
|
||
|
||
EXPECT_BUFFER(destination, 0, kQueryCount * sizeof(uint64_t), new TimestampExpectation);
|
||
}
|
||
|
||
// Write timestamp with same query index outside pass on same encoder
|
||
{
|
||
wgpu::QuerySet querySet = CreateQuerySetForTimestamp(kQueryCount);
|
||
wgpu::Buffer destination = CreateResolveBuffer(kQueryCount * sizeof(uint64_t));
|
||
|
||
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
|
||
encoder.WriteTimestamp(querySet, 0);
|
||
encoder.WriteTimestamp(querySet, 1);
|
||
encoder.WriteTimestamp(querySet, 0);
|
||
encoder.WriteTimestamp(querySet, 1);
|
||
encoder.ResolveQuerySet(querySet, 0, kQueryCount, destination, 0);
|
||
wgpu::CommandBuffer commands = encoder.Finish();
|
||
queue.Submit(1, &commands);
|
||
|
||
EXPECT_BUFFER(destination, 0, kQueryCount * sizeof(uint64_t), new TimestampExpectation);
|
||
}
|
||
}
|
||
|
||
// Test calling timestamp query from render pass encoder
|
||
TEST_P(TimestampQueryTests, TimestampOnRenderPass) {
|
||
constexpr uint32_t kQueryCount = 2;
|
||
|
||
// Write timestamp with different query indexes
|
||
{
|
||
wgpu::QuerySet querySet = CreateQuerySetForTimestamp(kQueryCount);
|
||
wgpu::Buffer destination = CreateResolveBuffer(kQueryCount * sizeof(uint64_t));
|
||
|
||
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
|
||
utils::BasicRenderPass renderPass = utils::CreateBasicRenderPass(device, 1, 1);
|
||
wgpu::RenderPassEncoder pass = encoder.BeginRenderPass(&renderPass.renderPassInfo);
|
||
pass.WriteTimestamp(querySet, 0);
|
||
pass.WriteTimestamp(querySet, 1);
|
||
pass.EndPass();
|
||
encoder.ResolveQuerySet(querySet, 0, kQueryCount, destination, 0);
|
||
wgpu::CommandBuffer commands = encoder.Finish();
|
||
queue.Submit(1, &commands);
|
||
|
||
EXPECT_BUFFER(destination, 0, kQueryCount * sizeof(uint64_t), new TimestampExpectation);
|
||
}
|
||
|
||
// Write timestamp with same query index, not need test rewrite inside render pass due to it's
|
||
// not allowed
|
||
{
|
||
wgpu::QuerySet querySet = CreateQuerySetForTimestamp(kQueryCount);
|
||
wgpu::Buffer destination = CreateResolveBuffer(kQueryCount * sizeof(uint64_t));
|
||
|
||
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
|
||
encoder.WriteTimestamp(querySet, 0);
|
||
encoder.WriteTimestamp(querySet, 1);
|
||
|
||
utils::BasicRenderPass renderPass = utils::CreateBasicRenderPass(device, 1, 1);
|
||
wgpu::RenderPassEncoder pass = encoder.BeginRenderPass(&renderPass.renderPassInfo);
|
||
pass.WriteTimestamp(querySet, 0);
|
||
pass.WriteTimestamp(querySet, 1);
|
||
pass.EndPass();
|
||
encoder.ResolveQuerySet(querySet, 0, kQueryCount, destination, 0);
|
||
wgpu::CommandBuffer commands = encoder.Finish();
|
||
queue.Submit(1, &commands);
|
||
|
||
EXPECT_BUFFER(destination, 0, kQueryCount * sizeof(uint64_t), new TimestampExpectation);
|
||
}
|
||
}
|
||
|
||
// Test calling timestamp query from compute pass encoder
|
||
TEST_P(TimestampQueryTests, TimestampOnComputePass) {
|
||
constexpr uint32_t kQueryCount = 2;
|
||
|
||
// Write timestamp with different query indexes
|
||
{
|
||
wgpu::QuerySet querySet = CreateQuerySetForTimestamp(kQueryCount);
|
||
wgpu::Buffer destination = CreateResolveBuffer(kQueryCount * sizeof(uint64_t));
|
||
|
||
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
|
||
wgpu::ComputePassEncoder pass = encoder.BeginComputePass();
|
||
pass.WriteTimestamp(querySet, 0);
|
||
pass.WriteTimestamp(querySet, 1);
|
||
pass.EndPass();
|
||
encoder.ResolveQuerySet(querySet, 0, kQueryCount, destination, 0);
|
||
wgpu::CommandBuffer commands = encoder.Finish();
|
||
queue.Submit(1, &commands);
|
||
|
||
EXPECT_BUFFER(destination, 0, kQueryCount * sizeof(uint64_t), new TimestampExpectation);
|
||
}
|
||
|
||
// Write timestamp with same query index on both the outside and the inside of the compute pass
|
||
{
|
||
wgpu::QuerySet querySet = CreateQuerySetForTimestamp(kQueryCount);
|
||
wgpu::Buffer destination = CreateResolveBuffer(kQueryCount * sizeof(uint64_t));
|
||
|
||
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
|
||
encoder.WriteTimestamp(querySet, 0);
|
||
encoder.WriteTimestamp(querySet, 1);
|
||
|
||
wgpu::ComputePassEncoder pass = encoder.BeginComputePass();
|
||
pass.WriteTimestamp(querySet, 0);
|
||
pass.WriteTimestamp(querySet, 1);
|
||
pass.EndPass();
|
||
|
||
encoder.ResolveQuerySet(querySet, 0, kQueryCount, destination, 0);
|
||
wgpu::CommandBuffer commands = encoder.Finish();
|
||
queue.Submit(1, &commands);
|
||
|
||
EXPECT_BUFFER(destination, 0, kQueryCount * sizeof(uint64_t), new TimestampExpectation);
|
||
}
|
||
|
||
// Write timestamp with same query index inside compute pass
|
||
{
|
||
wgpu::QuerySet querySet = CreateQuerySetForTimestamp(kQueryCount);
|
||
wgpu::Buffer destination = CreateResolveBuffer(kQueryCount * sizeof(uint64_t));
|
||
|
||
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
|
||
wgpu::ComputePassEncoder pass = encoder.BeginComputePass();
|
||
pass.WriteTimestamp(querySet, 0);
|
||
pass.WriteTimestamp(querySet, 1);
|
||
pass.WriteTimestamp(querySet, 0);
|
||
pass.WriteTimestamp(querySet, 1);
|
||
pass.EndPass();
|
||
|
||
encoder.ResolveQuerySet(querySet, 0, kQueryCount, destination, 0);
|
||
wgpu::CommandBuffer commands = encoder.Finish();
|
||
queue.Submit(1, &commands);
|
||
|
||
EXPECT_BUFFER(destination, 0, kQueryCount * sizeof(uint64_t), new TimestampExpectation);
|
||
}
|
||
}
|
||
|
||
// Test resolving timestamp query from another different encoder
|
||
TEST_P(TimestampQueryTests, ResolveFromAnotherEncoder) {
|
||
constexpr uint32_t kQueryCount = 2;
|
||
|
||
wgpu::QuerySet querySet = CreateQuerySetForTimestamp(kQueryCount);
|
||
wgpu::Buffer destination = CreateResolveBuffer(kQueryCount * sizeof(uint64_t));
|
||
|
||
wgpu::CommandEncoder timestampEncoder = device.CreateCommandEncoder();
|
||
timestampEncoder.WriteTimestamp(querySet, 0);
|
||
timestampEncoder.WriteTimestamp(querySet, 1);
|
||
wgpu::CommandBuffer timestampCommands = timestampEncoder.Finish();
|
||
queue.Submit(1, ×tampCommands);
|
||
|
||
wgpu::CommandEncoder resolveEncoder = device.CreateCommandEncoder();
|
||
resolveEncoder.ResolveQuerySet(querySet, 0, kQueryCount, destination, 0);
|
||
wgpu::CommandBuffer resolveCommands = resolveEncoder.Finish();
|
||
queue.Submit(1, &resolveCommands);
|
||
|
||
EXPECT_BUFFER(destination, 0, kQueryCount * sizeof(uint64_t), new TimestampExpectation);
|
||
}
|
||
|
||
// Test resolving timestamp query correctly if the queries are written sparsely
|
||
TEST_P(TimestampQueryTests, ResolveSparseQueries) {
|
||
constexpr uint32_t kQueryCount = 4;
|
||
|
||
wgpu::QuerySet querySet = CreateQuerySetForTimestamp(kQueryCount);
|
||
wgpu::Buffer destination = CreateResolveBuffer(kQueryCount * sizeof(uint64_t));
|
||
// Set sentinel values to check the queries are resolved correctly if the queries are
|
||
// written sparsely
|
||
std::vector<uint64_t> sentinelValues{0, kSentinelValue, 0, kSentinelValue};
|
||
queue.WriteBuffer(destination, 0, sentinelValues.data(), kQueryCount * sizeof(uint64_t));
|
||
|
||
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
|
||
encoder.WriteTimestamp(querySet, 0);
|
||
encoder.WriteTimestamp(querySet, 2);
|
||
encoder.ResolveQuerySet(querySet, 0, kQueryCount, destination, 0);
|
||
wgpu::CommandBuffer commands = encoder.Finish();
|
||
queue.Submit(1, &commands);
|
||
|
||
EXPECT_BUFFER(destination, 0, sizeof(uint64_t), new TimestampExpectation);
|
||
// The query with no value written should be resolved to 0.
|
||
EXPECT_BUFFER_U64_RANGE_EQ(&kZero, destination, sizeof(uint64_t), 1);
|
||
EXPECT_BUFFER(destination, 2 * sizeof(uint64_t), sizeof(uint64_t), new TimestampExpectation);
|
||
// The query with no value written should be resolved to 0.
|
||
EXPECT_BUFFER_U64_RANGE_EQ(&kZero, destination, 3 * sizeof(uint64_t), 1);
|
||
}
|
||
|
||
// Test resolving timestamp query to 0 if all queries are not written
|
||
TEST_P(TimestampQueryTests, ResolveWithoutWritten) {
|
||
constexpr uint32_t kQueryCount = 2;
|
||
|
||
wgpu::QuerySet querySet = CreateQuerySetForTimestamp(kQueryCount);
|
||
wgpu::Buffer destination = CreateResolveBuffer(kQueryCount * sizeof(uint64_t));
|
||
// Set sentinel values to check 0 is correctly written if resolving query set with no
|
||
// query is written
|
||
std::vector<uint64_t> sentinelValues(kQueryCount, kSentinelValue);
|
||
queue.WriteBuffer(destination, 0, sentinelValues.data(), kQueryCount * sizeof(uint64_t));
|
||
|
||
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
|
||
encoder.ResolveQuerySet(querySet, 0, kQueryCount, destination, 0);
|
||
wgpu::CommandBuffer commands = encoder.Finish();
|
||
queue.Submit(1, &commands);
|
||
|
||
std::vector<uint64_t> expectedZeros(kQueryCount);
|
||
EXPECT_BUFFER_U64_RANGE_EQ(expectedZeros.data(), destination, 0, kQueryCount);
|
||
}
|
||
|
||
// Test resolving timestamp query to one slot in the buffer
|
||
TEST_P(TimestampQueryTests, ResolveToBufferWithOffset) {
|
||
// TODO(hao.x.li@intel.com): Fail to resolve query to buffer with offset on Windows Vulkan and
|
||
// Metal on Intel platforms, need investigation.
|
||
DAWN_SKIP_TEST_IF(IsWindows() && IsIntel() && IsVulkan());
|
||
DAWN_SKIP_TEST_IF(IsIntel() && IsMetal());
|
||
|
||
// TODO(hao.x.li@intel.com): Crash occurs if we only call WriteTimestamp in a command encoder
|
||
// without any copy commands on Metal on AMD GPU. See https://crbug.com/dawn/545.
|
||
DAWN_SKIP_TEST_IF(IsMetal() && IsAMD());
|
||
|
||
constexpr uint32_t kQueryCount = 2;
|
||
constexpr uint64_t kZero = 0;
|
||
|
||
wgpu::QuerySet querySet = CreateQuerySetForTimestamp(kQueryCount);
|
||
|
||
// Resolve the query result to first slot in the buffer, other slots should not be written
|
||
{
|
||
wgpu::Buffer destination = CreateResolveBuffer(kQueryCount * sizeof(uint64_t));
|
||
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
|
||
encoder.WriteTimestamp(querySet, 0);
|
||
encoder.WriteTimestamp(querySet, 1);
|
||
encoder.ResolveQuerySet(querySet, 0, 1, destination, 0);
|
||
wgpu::CommandBuffer commands = encoder.Finish();
|
||
queue.Submit(1, &commands);
|
||
|
||
EXPECT_BUFFER(destination, 0, sizeof(uint64_t), new TimestampExpectation);
|
||
EXPECT_BUFFER_U64_RANGE_EQ(&kZero, destination, sizeof(uint64_t), 1);
|
||
}
|
||
|
||
// Resolve the query result to the buffer with offset, the slots before the offset
|
||
// should not be written
|
||
{
|
||
wgpu::Buffer destination = CreateResolveBuffer(kQueryCount * sizeof(uint64_t));
|
||
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
|
||
encoder.WriteTimestamp(querySet, 0);
|
||
encoder.WriteTimestamp(querySet, 1);
|
||
encoder.ResolveQuerySet(querySet, 0, 1, destination, sizeof(uint64_t));
|
||
wgpu::CommandBuffer commands = encoder.Finish();
|
||
queue.Submit(1, &commands);
|
||
|
||
EXPECT_BUFFER_U64_RANGE_EQ(&kZero, destination, 0, 1);
|
||
EXPECT_BUFFER(destination, sizeof(uint64_t), sizeof(uint64_t), new TimestampExpectation);
|
||
}
|
||
}
|
||
|
||
DAWN_INSTANTIATE_TEST(TimestampQueryTests,
|
||
D3D12Backend(),
|
||
MetalBackend(),
|
||
OpenGLBackend(),
|
||
OpenGLESBackend(),
|
||
VulkanBackend());
|