boo/lib/graphicsdev/GLES3.cpp

654 lines
19 KiB
C++
Raw Normal View History

#include "boo/graphicsdev/GLES3.hpp"
#include "boo/IGraphicsContext.hpp"
#include <GLES3/gl3ext.h>
#include <stdio.h>
#include <vector>
#include <thread>
#include <mutex>
#include <condition_variable>
namespace boo
{
struct GLES3Data : IGraphicsData
{
std::vector<std::unique_ptr<class GLES3ShaderPipeline>> m_SPs;
std::vector<std::unique_ptr<class GLES3GraphicsBufferS>> m_SBufs;
std::vector<std::unique_ptr<class GLES3GraphicsBufferD>> m_DBufs;
std::vector<std::unique_ptr<class GLES3TextureS>> m_STexs;
std::vector<std::unique_ptr<class GLES3TextureD>> m_DTexs;
};
static const GLenum USE_TABLE[] =
{
GL_INVALID_ENUM,
GL_ARRAY_BUFFER,
GL_ELEMENT_ARRAY_BUFFER,
GL_UNIFORM_BUFFER
};
class GLES3GraphicsBufferS : IGraphicsBufferS
{
friend class GLES3DataFactory;
GLuint m_buf;
GLenum m_target;
GLES3GraphicsBufferS(IGraphicsDataFactory::BufferUse use, const void* data, size_t sz)
{
m_target = USE_TABLE[use];
glGenBuffers(1, &m_buf);
glBindBuffer(m_target, m_buf);
glBufferData(m_target, sz, data, GL_STATIC_DRAW);
}
public:
~GLES3GraphicsBufferS() {glDeleteBuffers(1, &m_buf);}
};
class GLES3GraphicsBufferD : IGraphicsBufferD
{
friend class GLES3DataFactory;
GLuint m_buf;
GLenum m_target;
void* m_mappedBuf = nullptr;
size_t m_mappedSize = 0;
GLES3GraphicsBufferD(IGraphicsDataFactory::BufferUse use)
{
m_target = USE_TABLE[use];
glGenBuffers(1, &m_buf);
}
public:
~GLES3GraphicsBufferD() {glDeleteBuffers(1, &m_buf);}
void load(const void* data, size_t sz)
{
glBindBuffer(m_target, m_buf);
glBufferData(m_target, sz, data, GL_DYNAMIC_DRAW);
}
void* map(size_t sz)
{
if (m_mappedBuf)
free(m_mappedBuf);
m_mappedBuf = malloc(sz);
m_mappedSize = sz;
return m_mappedBuf;
}
void unmap()
{
glBindBuffer(m_target, m_buf);
glBufferData(m_target, m_mappedSize, m_mappedBuf, GL_DYNAMIC_DRAW);
free(m_mappedBuf);
m_mappedBuf = nullptr;
}
};
const IGraphicsBufferS*
GLES3DataFactory::newStaticBuffer(BufferUse use, const void* data, size_t sz)
{
GLES3GraphicsBufferS* retval = new GLES3GraphicsBufferS(use, data, sz);
static_cast<GLES3Data*>(m_deferredData.get())->m_SBufs.emplace_back(retval);
return retval;
}
IGraphicsBufferD*
GLES3DataFactory::newDynamicBuffer(BufferUse use)
{
GLES3GraphicsBufferD* retval = new GLES3GraphicsBufferD(use);
static_cast<GLES3Data*>(m_deferredData.get())->m_DBufs.emplace_back(retval);
return retval;
}
class GLES3TextureS : ITextureS
{
friend class GLES3DataFactory;
GLuint m_tex;
GLES3TextureS(size_t width, size_t height, size_t mips,
IGraphicsDataFactory::TextureFormat fmt,
const void* data, size_t sz)
{
const uint8_t* dataIt = static_cast<const uint8_t*>(data);
glGenTextures(1, &m_tex);
glBindTexture(GL_TEXTURE_2D, m_tex);
if (fmt == IGraphicsDataFactory::TextureFormatRGBA8)
{
for (size_t i=0 ; i<mips ; ++i)
{
glTexImage2D(GL_TEXTURE_2D, i, GL_RGBA, width, height, 0, GL_RGBA, GL_UNSIGNED_BYTE, dataIt);
dataIt += width * height * 4;
width /= 2;
height /= 2;
}
}
}
public:
~GLES3TextureS() {glDeleteTextures(1, &m_tex);}
};
class GLES3TextureD : ITextureD
{
friend class GLES3DataFactory;
friend class GLES3CommandQueue;
GLuint m_tex;
GLuint m_fbo;
void* m_mappedBuf = nullptr;
size_t m_mappedSize = 0;
size_t m_width = 0;
size_t m_height = 0;
GLES3TextureD(size_t width, size_t height,
IGraphicsDataFactory::TextureFormat fmt)
{
m_width = width;
m_height = height;
glGenTextures(1, &m_tex);
glBindTexture(GL_TEXTURE_2D, m_tex);
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, width, height, 0, GL_RGBA, GL_UNSIGNED_BYTE, nullptr);
}
public:
~GLES3TextureD() {glDeleteTextures(1, &m_tex);}
void load(const void* data, size_t sz)
{
glBindTexture(GL_TEXTURE_2D, m_tex);
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, m_width, m_height, 0, GL_RGBA, GL_UNSIGNED_BYTE, data);
}
void* map(size_t sz)
{
if (m_mappedBuf)
free(m_mappedBuf);
m_mappedBuf = malloc(sz);
m_mappedSize = sz;
return m_mappedBuf;
}
void unmap()
{
glBindTexture(GL_TEXTURE_2D, m_tex);
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, m_width, m_height, 0, GL_RGBA, GL_UNSIGNED_BYTE, m_mappedBuf);
free(m_mappedBuf);
m_mappedBuf = nullptr;
}
};
const ITextureS*
GLES3DataFactory::newStaticTexture(size_t width, size_t height, size_t mips, TextureFormat fmt,
const void* data, size_t sz)
{
GLES3TextureS* retval = new GLES3TextureS(width, height, mips, fmt, data, sz);
static_cast<GLES3Data*>(m_deferredData.get())->m_STexs.emplace_back(retval);
return retval;
}
ITextureD*
GLES3DataFactory::newDynamicTexture(size_t width, size_t height, TextureFormat fmt)
{
GLES3TextureD* retval = new GLES3TextureD(width, height, fmt);
static_cast<GLES3Data*>(m_deferredData.get())->m_DTexs.emplace_back(retval);
return retval;
}
class GLES3ShaderPipeline : IShaderPipeline
{
friend class GLES3DataFactory;
GLuint m_vert = 0;
GLuint m_frag = 0;
GLuint m_prog = 0;
GLenum m_sfactor = GL_ONE;
GLenum m_dfactor = GL_ZERO;
bool initObjects()
{
m_vert = glCreateShader(GL_VERTEX_SHADER);
m_frag = glCreateShader(GL_FRAGMENT_SHADER);
m_prog = glCreateProgram();
if (!m_vert || !m_frag || !m_prog)
{
glDeleteShader(m_vert);
m_vert = 0;
glDeleteShader(m_frag);
m_frag = 0;
glDeleteProgram(m_prog);
m_prog = 0;
return false;
}
glAttachShader(m_prog, m_vert);
glAttachShader(m_prog, m_frag);
return true;
}
void clearObjects()
{
if (m_vert)
glDeleteShader(m_vert);
if (m_frag)
glDeleteShader(m_frag);
if (m_prog)
glDeleteProgram(m_prog);
}
GLES3ShaderPipeline() = default;
public:
operator bool() const {return m_prog != 0;}
~GLES3ShaderPipeline() {clearObjects();}
GLES3ShaderPipeline& operator=(const GLES3ShaderPipeline&) = delete;
GLES3ShaderPipeline(const GLES3ShaderPipeline&) = delete;
GLES3ShaderPipeline& operator=(GLES3ShaderPipeline&& other)
{
m_vert = other.m_vert;
other.m_vert = 0;
m_frag = other.m_frag;
other.m_frag = 0;
m_prog = other.m_prog;
other.m_prog = 0;
return *this;
}
GLES3ShaderPipeline(GLES3ShaderPipeline&& other) {*this = std::move(other);}
};
bool GLES3VertexArray::initObjects()
{
glGenVertexArrays(1, &m_vao);
if (!m_vao)
return false;
return true;
}
void GLES3VertexArray::clearObjects()
{
glDeleteVertexArrays(1, &m_vao);
m_vao = 0;
}
static const GLint SEMANTIC_COUNT_TABLE[] =
{
3,
3,
4,
2,
4
};
static const size_t SEMANTIC_SIZE_TABLE[] =
{
12,
12,
4,
8,
16
};
static const GLenum SEMANTIC_TYPE_TABLE[] =
{
GL_FLOAT,
GL_FLOAT,
GL_UNSIGNED_BYTE,
GL_FLOAT,
GL_FLOAT
};
GLES3VertexArray GLES3DataFactory::newVertexArray
(size_t elementCount, const VertexElementDescriptor* elements)
{
GLES3VertexArray vertArray;
if (!vertArray.initObjects())
{
fprintf(stderr, "unable to create vertex array object\n");
return vertArray;
}
size_t stride = 0;
for (size_t i=0 ; i<elementCount ; ++i)
{
const VertexElementDescriptor* desc = &elements[i];
stride += SEMANTIC_SIZE_TABLE[desc->semantic];
}
size_t offset = 0;
glBindVertexArray(vertArray.m_vao);
const IGraphicsBuffer* lastVBO = nullptr;
const IGraphicsBuffer* lastEBO = nullptr;
for (size_t i=0 ; i<elementCount ; ++i)
{
const VertexElementDescriptor* desc = &elements[i];
if (desc->vertBuffer != lastVBO)
{
lastVBO = desc->vertBuffer;
if (lastVBO->dynamic())
{
const GLES3GraphicsBufferD* vbo = static_cast<const GLES3GraphicsBufferD*>(lastVBO);
glBindBuffer(GL_ARRAY_BUFFER, vbo->m_buf);
}
else
{
const GLES3GraphicsBufferS* vbo = static_cast<const GLES3GraphicsBufferS*>(lastVBO);
glBindBuffer(GL_ARRAY_BUFFER, vbo->m_buf);
}
}
if (desc->indexBuffer != lastEBO)
{
lastEBO = desc->indexBuffer;
if (lastEBO->dynamic())
{
const GLES3GraphicsBufferD* ebo = static_cast<const GLES3GraphicsBufferD*>(lastEBO);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, ebo->m_buf);
}
else
{
const GLES3GraphicsBufferS* ebo = static_cast<const GLES3GraphicsBufferS*>(lastEBO);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, ebo->m_buf);
}
}
glVertexAttribPointer(i, SEMANTIC_COUNT_TABLE[desc->semantic],
SEMANTIC_TYPE_TABLE[desc->semantic], GL_TRUE, stride, (void*)offset);
offset += SEMANTIC_SIZE_TABLE[desc->semantic];
}
return vertArray;
}
static const GLenum BLEND_FACTOR_TABLE[] =
{
GL_ZERO,
GL_ONE,
GL_SRC_COLOR,
GL_ONE_MINUS_SRC_COLOR,
GL_DST_COLOR,
GL_ONE_MINUS_DST_COLOR,
GL_SRC_ALPHA,
GL_ONE_MINUS_SRC_ALPHA,
GL_DST_ALPHA,
GL_ONE_MINUS_DST_ALPHA
};
const IShaderPipeline* GLES3DataFactory::newShaderPipeline
(const char* vertSource, const char* fragSource,
BlendFactor srcFac, BlendFactor dstFac,
bool depthTest, bool depthWrite, bool backfaceCulling)
{
GLES3ShaderPipeline shader;
if (!shader.initObjects())
{
fprintf(stderr, "unable to create shader objects\n");
return nullptr;
}
shader.m_sfactor = BLEND_FACTOR_TABLE[srcFac];
shader.m_dfactor = BLEND_FACTOR_TABLE[dstFac];
glShaderSource(shader.m_vert, 1, &vertSource, nullptr);
glCompileShader(shader.m_vert);
GLint status;
glGetShaderiv(shader.m_vert, GL_COMPILE_STATUS, &status);
if (status != GL_TRUE)
{
GLint logLen;
glGetShaderiv(shader.m_vert, GL_INFO_LOG_LENGTH, &logLen);
char* log = (char*)malloc(logLen);
glGetShaderInfoLog(shader.m_vert, logLen, nullptr, log);
fprintf(stderr, "unable to compile vert source\n%s\n%s\n", log, vertSource);
free(log);
return nullptr;
}
glShaderSource(shader.m_frag, 1, &fragSource, nullptr);
glCompileShader(shader.m_frag);
glGetShaderiv(shader.m_frag, GL_COMPILE_STATUS, &status);
if (status != GL_TRUE)
{
GLint logLen;
glGetShaderiv(shader.m_frag, GL_INFO_LOG_LENGTH, &logLen);
char* log = (char*)malloc(logLen);
glGetShaderInfoLog(shader.m_frag, logLen, nullptr, log);
fprintf(stderr, "unable to compile frag source\n%s\n%s\n", log, fragSource);
free(log);
return nullptr;
}
glLinkProgram(shader.m_prog);
glGetProgramiv(shader.m_prog, GL_LINK_STATUS, &status);
if (status != GL_TRUE)
{
GLint logLen;
glGetProgramiv(shader.m_prog, GL_INFO_LOG_LENGTH, &logLen);
char* log = (char*)malloc(logLen);
glGetProgramInfoLog(shader.m_prog, logLen, nullptr, log);
fprintf(stderr, "unable to link shader program\n%s\n", log);
free(log);
return nullptr;
}
GLES3ShaderPipeline* retval = new GLES3ShaderPipeline(std::move(shader));
static_cast<GLES3Data*>(m_deferredData.get())->m_SPs.emplace_back(retval);
return retval;
}
struct GLES3ShaderDataBinding : IShaderDataBinding
{
void bind() const
{
}
};
const IShaderDataBinding*
GLES3DataFactory::newShaderDataBinding(const IShaderPipeline* pipeline,
size_t bufCount, const IGraphicsBuffer** bufs,
size_t texCount, const ITexture** texs)
{
return nullptr;
}
GLES3DataFactory::GLES3DataFactory()
: m_deferredData(new struct GLES3Data()) {}
void GLES3DataFactory::reset()
{
m_deferredData.reset(new struct GLES3Data());
}
std::unique_ptr<IGraphicsData> GLES3DataFactory::commit()
{
std::unique_ptr<IGraphicsData> retval(new struct GLES3Data());
m_deferredData.swap(retval);
return retval;
}
struct GLES3CommandQueue : IGraphicsCommandQueue
{
Platform platform() const {return IGraphicsDataFactory::PlatformOGLES3;}
const char* platformName() const {return "OpenGL ES 3.0";}
IGraphicsContext& m_parent;
struct Command
{
enum Op
{
OpSetShaderDataBinding,
OpSetRenderTarget,
OpSetClearColor,
OpClearTarget,
OpSetDrawPrimitive,
OpDraw,
OpDrawIndexed,
OpDrawInstances,
OpDrawInstancesIndexed
} m_op;
union
{
const IShaderDataBinding* binding;
const ITextureD* target;
float rgba[4];
GLbitfield flags;
Primitive prim;
struct
{
size_t start;
size_t count;
size_t instCount;
};
};
Command(Op op) : m_op(op) {}
};
std::vector<Command> m_cmdBufs[3];
size_t m_fillBuf = 0;
size_t m_completeBuf = 0;
size_t m_drawBuf = 0;
bool m_running = true;
std::thread m_thr;
std::mutex m_mt;
std::condition_variable m_cv;
static void RenderingWorker(GLES3CommandQueue* self)
{
self->m_parent.makeCurrent();
while (self->m_running)
{
{
std::unique_lock<std::mutex> lk(self->m_mt);
self->m_cv.wait(lk);
if (!self->m_running)
break;
self->m_drawBuf = self->m_completeBuf;
}
std::vector<Command>& cmds = self->m_cmdBufs[self->m_drawBuf];
GLenum prim = GL_TRIANGLES;
for (const Command& cmd : cmds)
{
switch (cmd.m_op)
{
case Command::OpSetShaderDataBinding:
static_cast<const GLES3ShaderDataBinding*>(cmd.binding)->bind();
break;
case Command::OpSetRenderTarget:
{
const GLES3TextureD* tex = static_cast<const GLES3TextureD*>(cmd.target);
glBindFramebuffer(GL_DRAW_FRAMEBUFFER, tex->m_fbo);
break;
}
case Command::OpSetClearColor:
glClearColor(cmd.rgba[0], cmd.rgba[1], cmd.rgba[2], cmd.rgba[3]);
break;
case Command::OpClearTarget:
glClear(cmd.flags);
break;
case Command::OpSetDrawPrimitive:
if (cmd.prim == PrimitiveTriangles)
prim = GL_TRIANGLES;
else if (cmd.prim == TrimitiveTriStrips)
prim = GL_TRIANGLE_STRIP;
break;
case Command::OpDraw:
glDrawArrays(prim, cmd.start, cmd.count);
break;
case Command::OpDrawIndexed:
glDrawElements(prim, cmd.count, GL_UNSIGNED_INT, (void*)cmd.start);
break;
case Command::OpDrawInstances:
glDrawArraysInstanced(prim, cmd.start, cmd.count, cmd.instCount);
break;
case Command::OpDrawInstancesIndexed:
glDrawElementsInstanced(prim, cmd.count, GL_UNSIGNED_INT, (void*)cmd.start, cmd.instCount);
break;
default: break;
}
}
cmds.clear();
}
}
GLES3CommandQueue(IGraphicsContext& parent)
: m_parent(parent),
m_thr(RenderingWorker, this) {}
~GLES3CommandQueue()
{
m_running = false;
m_cv.notify_one();
m_thr.join();
}
void setShaderDataBinding(const IShaderDataBinding* binding)
{
std::vector<Command>& cmds = m_cmdBufs[m_fillBuf];
cmds.emplace_back(Command::OpSetShaderDataBinding);
cmds.back().binding = binding;
}
void setRenderTarget(const ITextureD* target)
{
std::vector<Command>& cmds = m_cmdBufs[m_fillBuf];
cmds.emplace_back(Command::OpSetRenderTarget);
cmds.back().target = target;
}
void setClearColor(const float rgba[4])
{
std::vector<Command>& cmds = m_cmdBufs[m_fillBuf];
cmds.emplace_back(Command::OpSetClearColor);
cmds.back().rgba[0] = rgba[0];
cmds.back().rgba[1] = rgba[1];
cmds.back().rgba[2] = rgba[2];
cmds.back().rgba[3] = rgba[3];
}
void clearTarget(bool render=true, bool depth=true)
{
std::vector<Command>& cmds = m_cmdBufs[m_fillBuf];
cmds.emplace_back(Command::OpClearTarget);
cmds.back().flags = 0;
if (render)
cmds.back().flags |= GL_COLOR_BUFFER_BIT;
if (depth)
cmds.back().flags |= GL_DEPTH_BUFFER_BIT;
}
void setDrawPrimitive(Primitive prim)
{
std::vector<Command>& cmds = m_cmdBufs[m_fillBuf];
cmds.emplace_back(Command::OpSetDrawPrimitive);
cmds.back().prim = prim;
}
void draw(size_t start, size_t count)
{
std::vector<Command>& cmds = m_cmdBufs[m_fillBuf];
cmds.emplace_back(Command::OpDraw);
cmds.back().start = start;
cmds.back().count = count;
}
void drawIndexed(size_t start, size_t count)
{
std::vector<Command>& cmds = m_cmdBufs[m_fillBuf];
cmds.emplace_back(Command::OpDrawIndexed);
cmds.back().start = start;
cmds.back().count = count;
}
void drawInstances(size_t start, size_t count, size_t instCount)
{
std::vector<Command>& cmds = m_cmdBufs[m_fillBuf];
cmds.emplace_back(Command::OpDrawInstances);
cmds.back().start = start;
cmds.back().count = count;
cmds.back().instCount = instCount;
}
void drawInstancesIndexed(size_t start, size_t count, size_t instCount)
{
std::vector<Command>& cmds = m_cmdBufs[m_fillBuf];
cmds.emplace_back(Command::OpDrawInstancesIndexed);
cmds.back().start = start;
cmds.back().count = count;
cmds.back().instCount = instCount;
}
void execute()
{
std::unique_lock<std::mutex> lk(m_mt);
m_completeBuf = m_fillBuf;
for (size_t i=0 ; i<3 ; ++i)
{
if (i == m_completeBuf || i == m_drawBuf)
continue;
m_fillBuf = i;
break;
}
lk.unlock();
m_cv.notify_one();
m_cmdBufs[m_fillBuf].clear();
}
};
IGraphicsCommandQueue* _NewGLES3CommandQueue(IGraphicsContext& parent)
{
return new struct GLES3CommandQueue(parent);
}
}