Overhauled audio system, now with internal mixing and sample-rate-conversion

This commit is contained in:
Jack Andersen 2016-03-23 14:01:57 -10:00
parent 5b275866a7
commit 1eb46301c0
13 changed files with 924 additions and 341 deletions

View File

@ -179,7 +179,10 @@ add_library(boo
lib/inputdev/DeviceBase.cpp include/boo/inputdev/DeviceBase.hpp
lib/inputdev/DeviceSignature.cpp include/boo/inputdev/DeviceSignature.hpp
lib/inputdev/IHIDDevice.hpp
lib/audiodev/AudioMatrix.hpp
lib/audiodev/AudioMatrix.cpp
lib/audiodev/AudioVoiceEngine.hpp
lib/audiodev/AudioVoiceEngine.cpp
lib/audiodev/AudioVoice.hpp
lib/audiodev/AudioVoice.cpp
include/boo/inputdev/IHIDListener.hpp
@ -187,7 +190,7 @@ add_library(boo
include/boo/graphicsdev/IGraphicsDataFactory.hpp
include/boo/graphicsdev/IGraphicsCommandQueue.hpp
include/boo/audiodev/IAudioVoice.hpp
include/boo/audiodev/IAudioVoiceAllocator.hpp
include/boo/audiodev/IAudioVoiceEngine.hpp
include/boo/IWindow.hpp
include/boo/IApplication.hpp
include/boo/System.hpp

View File

@ -1,56 +0,0 @@
#ifndef BOO_AUDIOMATRIX_HPP
#define BOO_AUDIOMATRIX_HPP
#include "IAudioVoice.hpp"
#include <vector>
#include <stdint.h>
namespace boo
{
class AudioMatrixMono
{
AudioChannelSet m_setOut = AudioChannelSet::Stereo;
float m_coefs[8];
std::vector<int16_t> m_interleaveBuf;
public:
AudioMatrixMono() {setDefaultMatrixCoefficients();}
AudioChannelSet audioChannelSet() const {return m_setOut;}
void setAudioChannelSet(AudioChannelSet set) {m_setOut = set;}
void setDefaultMatrixCoefficients();
void setMatrixCoefficients(const float coefs[8])
{
for (int i=0 ; i<8 ; ++i)
m_coefs[i] = coefs[i];
}
void bufferMonoSampleData(IAudioVoice& voice, const int16_t* data, size_t samples);
};
class AudioMatrixStereo
{
AudioChannelSet m_setOut = AudioChannelSet::Stereo;
float m_coefs[8][2];
std::vector<int16_t> m_interleaveBuf;
public:
AudioMatrixStereo() {setDefaultMatrixCoefficients();}
AudioChannelSet audioChannelSet() const {return m_setOut;}
void setAudioChannelSet(AudioChannelSet set) {m_setOut = set;}
void setDefaultMatrixCoefficients();
void setMatrixCoefficients(const float coefs[8][2])
{
for (int i=0 ; i<8 ; ++i)
{
m_coefs[i][0] = coefs[i][0];
m_coefs[i][1] = coefs[i][1];
}
}
void bufferStereoSampleData(IAudioVoice& voice, const int16_t* data, size_t frames);
};
}
#endif // BOO_AUDIOMATRIX_HPP

View File

@ -56,18 +56,33 @@ struct IAudioVoice
{
virtual ~IAudioVoice() = default;
/** Get voice's actual channel-map based on client request and HW capabilities */
virtual const ChannelMap& channelMap() const=0;
/** Reset channel-gains to voice defaults */
virtual void setDefaultMatrixCoefficients()=0;
/** Called by client in response to IAudioVoiceCallback::needsNextBuffer()
* Supplying channel-interleaved sample data */
virtual void bufferSampleData(const int16_t* data, size_t frames)=0;
/** Set channel-gains for mono audio source (AudioChannel enum for array index) */
virtual void setMonoMatrixCoefficients(const float coefs[8])=0;
/** Set channel-gains for stereo audio source (AudioChannel enum for array index) */
virtual void setStereoMatrixCoefficients(const float coefs[8][2])=0;
/** Called by client to dynamically adjust the pitch of voices with dynamic pitch enabled */
virtual void setPitchRatio(double ratio)=0;
/** Instructs platform to begin consuming sample data; invoking callback as needed */
virtual void start()=0;
/** Instructs platform to stop consuming sample data */
virtual void stop()=0;
/** Invalidates this voice by removing it from the AudioVoiceEngine */
virtual void unbindVoice()=0;
};
struct IAudioVoiceCallback
{
/** boo calls this on behalf of the audio platform to request more audio
* frames from the client */
virtual size_t supplyAudio(IAudioVoice& voice, size_t frames, int16_t* data)=0;
};
}

View File

@ -1,43 +0,0 @@
#ifndef BOO_IAUDIOVOICEALLOCATOR_HPP
#define BOO_IAUDIOVOICEALLOCATOR_HPP
#include "IAudioVoice.hpp"
#include <memory>
namespace boo
{
struct IAudioVoiceCallback
{
/** boo calls this on behalf of the audio platform to request more audio
* frames from the client */
virtual void needsNextBuffer(IAudioVoice& voice, size_t frames)=0;
};
struct IAudioVoiceAllocator
{
virtual ~IAudioVoiceAllocator() = default;
/** Client calls this to request allocation of new mixer-voice.
* Returns empty unique_ptr if necessary resources aren't available.
* ChannelLayout automatically reduces to maximum-supported layout by HW.
*
* Client must be prepared to supply audio frames via the callback when this is called;
* the backing audio-buffers are primed with initial data for low-latency playback start */
virtual std::unique_ptr<IAudioVoice> allocateNewVoice(AudioChannelSet layoutOut,
unsigned sampleRate,
IAudioVoiceCallback* cb)=0;
/** Client may use this to determine current speaker-setup */
virtual AudioChannelSet getAvailableSet()=0;
/** Ensure all voices' platform buffers are filled as much as possible */
virtual void pumpVoices()=0;
};
/** Obtain host platform's voice allocator */
std::unique_ptr<IAudioVoiceAllocator> NewAudioVoiceAllocator();
}
#endif // BOO_IAUDIOVOICEALLOCATOR_HPP

View File

@ -0,0 +1,43 @@
#ifndef BOO_IAUDIOVOICEENGINE_HPP
#define BOO_IAUDIOVOICEENGINE_HPP
#include "IAudioVoice.hpp"
#include <memory>
namespace boo
{
/** Mixing and sample-rate-conversion system. Allocates voices and mixes them
* before sending the final samples to an OS-supplied audio-queue */
struct IAudioVoiceEngine
{
virtual ~IAudioVoiceEngine() = default;
/** Client calls this to request allocation of new mixer-voice.
* Returns empty unique_ptr if necessary resources aren't available.
* ChannelLayout automatically reduces to maximum-supported layout by HW.
*
* Client must be prepared to supply audio frames via the callback when this is called;
* the backing audio-buffers are primed with initial data for low-latency playback start */
virtual std::unique_ptr<IAudioVoice> allocateNewMonoVoice(double sampleRate,
IAudioVoiceCallback* cb,
bool dynamicPitch=false)=0;
/** Same as allocateNewMonoVoice, but source audio is stereo-interleaved */
virtual std::unique_ptr<IAudioVoice> allocateNewStereoVoice(double sampleRate,
IAudioVoiceCallback* cb,
bool dynamicPitch=false)=0;
/** Client may use this to determine current speaker-setup */
virtual AudioChannelSet getAvailableSet()=0;
/** Ensure backing platform buffer is filled as much as possible with mixed samples */
virtual void pumpAndMixVoices()=0;
};
/** Construct host platform's voice engine */
std::unique_ptr<IAudioVoiceEngine> NewAudioVoiceEngine();
}
#endif // BOO_IAUDIOVOICEENGINE_HPP

View File

@ -1,217 +1,36 @@
#include <memory>
#include <list>
#include "boo/audiodev/IAudioVoiceAllocator.hpp"
#include "AudioVoiceEngine.hpp"
#include "logvisor/logvisor.hpp"
#include <alsa/asoundlib.h>
#include <signal.h>
namespace boo
{
static logvisor::Module Log("boo::ALSA");
struct ALSAAudioVoiceAllocator;
struct ALSAAudioVoice : IAudioVoice
struct ALSAAudioVoiceEngine : BaseAudioVoiceEngine
{
ALSAAudioVoiceAllocator& m_parent;
std::list<ALSAAudioVoice*>::iterator m_parentIt;
ChannelMap m_map;
IAudioVoiceCallback* m_cb;
snd_pcm_t* m_pcm = nullptr;
snd_pcm_t* m_pcm;
snd_pcm_uframes_t m_bufSize;
snd_pcm_uframes_t m_periodSize;
const ChannelMap& channelMap() const {return m_map;}
std::vector<int16_t> m_final16;
std::vector<int32_t> m_final32;
std::vector<float> m_finalFlt;
ALSAAudioVoice(ALSAAudioVoiceAllocator& parent, AudioChannelSet set,
unsigned sampleRate, IAudioVoiceCallback* cb)
: m_parent(parent), m_cb(cb)
~ALSAAudioVoiceEngine()
{
if (snd_pcm_open(&m_pcm, "default", SND_PCM_STREAM_PLAYBACK, SND_PCM_ASYNC) < 0)
{
Log.report(logvisor::Error, "unable to allocate ALSA voice");
return;
}
unsigned chCount = ChannelCount(set);
int err;
while ((err = snd_pcm_set_params(m_pcm, SND_PCM_FORMAT_S16, SND_PCM_ACCESS_RW_INTERLEAVED,
chCount, sampleRate, 1, 100000)) < 0)
{
if (set == AudioChannelSet::Stereo)
break;
set = AudioChannelSet(int(set) - 1);
chCount = ChannelCount(set);
}
if (err < 0)
{
snd_pcm_close(m_pcm);
m_pcm = nullptr;
Log.report(logvisor::Error, "unable to set ALSA voice params");
return;
}
snd_pcm_drain(m_pcm);
snd_pcm_close(m_pcm);
}
AudioChannelSet _getAvailableSet()
{
snd_pcm_chmap_query_t** chmaps = snd_pcm_query_chmaps(m_pcm);
if (chmaps)
{
snd_pcm_chmap_t* foundChmap = nullptr;
for (snd_pcm_chmap_query_t** chmap = chmaps ; *chmap != nullptr ; ++chmap)
{
if ((*chmap)->map.channels == chCount)
{
snd_pcm_chmap_t* chm = &(*chmap)->map;
uint64_t chBits = 0;
for (int c=0 ; c<chm->channels ; ++c)
chBits |= 1 << chm->pos[c];
bool good = false;
switch (set)
{
case AudioChannelSet::Stereo:
if ((chBits & (1 << SND_CHMAP_FL)) != 0 &&
(chBits & (1 << SND_CHMAP_FR)) != 0)
good = true;
break;
case AudioChannelSet::Quad:
if ((chBits & (1 << SND_CHMAP_FL)) != 0 &&
(chBits & (1 << SND_CHMAP_FR)) != 0 &&
(chBits & (1 << SND_CHMAP_RL)) != 0 &&
(chBits & (1 << SND_CHMAP_RR)) != 0)
good = true;
break;
case AudioChannelSet::Surround51:
if ((chBits & (1 << SND_CHMAP_FL)) != 0 &&
(chBits & (1 << SND_CHMAP_FR)) != 0 &&
(chBits & (1 << SND_CHMAP_RL)) != 0 &&
(chBits & (1 << SND_CHMAP_RR)) != 0 &&
(chBits & (1 << SND_CHMAP_FC)) != 0 &&
(chBits & (1 << SND_CHMAP_LFE)) != 0)
good = true;
break;
case AudioChannelSet::Surround71:
if ((chBits & (1 << SND_CHMAP_FL)) != 0 &&
(chBits & (1 << SND_CHMAP_FR)) != 0 &&
(chBits & (1 << SND_CHMAP_RL)) != 0 &&
(chBits & (1 << SND_CHMAP_RR)) != 0 &&
(chBits & (1 << SND_CHMAP_FC)) != 0 &&
(chBits & (1 << SND_CHMAP_LFE)) != 0 &&
(chBits & (1 << SND_CHMAP_SL)) != 0 &&
(chBits & (1 << SND_CHMAP_SR)) != 0)
good = true;
break;
default: break;
}
if (good)
{
foundChmap = chm;
break;
}
}
}
if (!foundChmap)
{
snd_pcm_close(m_pcm);
m_pcm = nullptr;
snd_pcm_free_chmaps(chmaps);
Log.report(logvisor::Error, "unable to find matching ALSA voice chmap");
return;
}
m_map.m_channelCount = chCount;
for (int c=0 ; c<foundChmap->channels ; ++c)
m_map.m_channels[c] = AudioChannel(foundChmap->pos[c] - 3);
snd_pcm_set_chmap(m_pcm, foundChmap);
snd_pcm_free_chmaps(chmaps);
}
else
{
m_map.m_channelCount = 2;
m_map.m_channels[0] = AudioChannel::FrontLeft;
m_map.m_channels[1] = AudioChannel::FrontRight;
}
snd_pcm_get_params(m_pcm, &m_bufSize, &m_periodSize);
snd_pcm_prepare(m_pcm);
pump();
}
~ALSAAudioVoice();
void bufferSampleData(const int16_t* data, size_t frames)
{
if (m_pcm)
snd_pcm_writei(m_pcm, data, frames);
}
void start()
{
if (m_pcm)
snd_pcm_start(m_pcm);
}
void stop()
{
if (m_pcm)
snd_pcm_drain(m_pcm);
}
void pump()
{
snd_pcm_sframes_t frames = snd_pcm_avail(m_pcm);
if (frames < 0)
{
snd_pcm_state_t st = snd_pcm_state(m_pcm);
if (st == SND_PCM_STATE_XRUN)
{
snd_pcm_prepare(m_pcm);
frames = snd_pcm_avail(m_pcm);
fprintf(stderr, "REC %ld\n", frames);
}
else
return;
}
if (frames < 0)
return;
snd_pcm_sframes_t buffers = frames / m_periodSize;
for (snd_pcm_sframes_t b=0 ; b<buffers ; ++b)
m_cb->needsNextBuffer(*this, m_periodSize);
}
};
struct ALSAAudioVoiceAllocator : IAudioVoiceAllocator
{
std::list<ALSAAudioVoice*> m_allocatedVoices;
std::unique_ptr<IAudioVoice> allocateNewVoice(AudioChannelSet layoutOut,
unsigned sampleRate,
IAudioVoiceCallback* cb)
{
ALSAAudioVoice* newVoice = new ALSAAudioVoice(*this, layoutOut, sampleRate, cb);
newVoice->m_parentIt = m_allocatedVoices.insert(m_allocatedVoices.end(), newVoice);
std::unique_ptr<IAudioVoice> ret(newVoice);
if (!newVoice->m_pcm)
return {};
return ret;
}
AudioChannelSet getAvailableSet()
{
snd_pcm_t* pcm;
if (snd_pcm_open(&pcm, "default", SND_PCM_STREAM_PLAYBACK, SND_PCM_ASYNC) < 0)
{
Log.report(logvisor::Error, "unable to allocate ALSA voice");
return AudioChannelSet::Unknown;
}
snd_pcm_chmap_query_t** chmaps = snd_pcm_query_chmaps(pcm);
if (!chmaps)
{
snd_pcm_close(pcm);
return AudioChannelSet::Stereo;
}
static const std::array<AudioChannelSet, 4> testSets =
{AudioChannelSet::Surround71, AudioChannelSet::Surround51,
AudioChannelSet::Quad, AudioChannelSet::Stereo};
@ -279,23 +98,242 @@ struct ALSAAudioVoiceAllocator : IAudioVoiceAllocator
return AudioChannelSet::Unknown;
}
void pumpVoices()
AudioVoiceEngineMixInfo _getEngineMixInfo()
{
for (ALSAAudioVoice* vox : m_allocatedVoices)
vox->pump();
if (snd_pcm_open(&m_pcm, "default", SND_PCM_STREAM_PLAYBACK, 0) < 0)
{
Log.report(logvisor::Error, "unable to allocate ALSA voice");
return {};
}
AudioVoiceEngineMixInfo ret = {};
/* Query audio card for best supported format amd sample-rate */
snd_pcm_hw_params_t* hwParams;
snd_pcm_hw_params_malloc(&hwParams);
snd_pcm_hw_params_any(m_pcm, hwParams);
snd_pcm_format_t bestFmt;
if (!snd_pcm_hw_params_test_format(m_pcm, hwParams, SND_PCM_FORMAT_S32))
{
bestFmt = SND_PCM_FORMAT_S32;
ret.m_sampleFormat = SOXR_INT32_I;
ret.m_bitsPerSample = 32;
}
else if (!snd_pcm_hw_params_test_format(m_pcm, hwParams, SND_PCM_FORMAT_S16))
{
bestFmt = SND_PCM_FORMAT_S16;
ret.m_sampleFormat = SOXR_INT16_I;
ret.m_bitsPerSample = 16;
}
else
{
snd_pcm_close(m_pcm);
m_pcm = nullptr;
Log.report(logvisor::Fatal, "unsupported audio formats on default ALSA device");
return {};
}
unsigned int bestRate;
if (!snd_pcm_hw_params_test_rate(m_pcm, hwParams, 96000, 0))
{
bestRate = 96000;
ret.m_sampleRate = 96000.0;
}
else if (!snd_pcm_hw_params_test_rate(m_pcm, hwParams, 48000, 0))
{
bestRate = 48000;
ret.m_sampleRate = 48000.0;
}
else
{
snd_pcm_close(m_pcm);
m_pcm = nullptr;
Log.report(logvisor::Fatal, "unsupported audio sample rates on default ALSA device");
return {};
}
snd_pcm_hw_params_free(hwParams);
/* Query audio card for channel map */
ret.m_channels = _getAvailableSet();
/* Populate channel map */
unsigned chCount = ChannelCount(ret.m_channels);
int err;
while ((err = snd_pcm_set_params(m_pcm, bestFmt, SND_PCM_ACCESS_RW_INTERLEAVED,
chCount, bestRate, 0, 100000)) < 0)
{
if (ret.m_channels == AudioChannelSet::Stereo)
break;
ret.m_channels = AudioChannelSet(int(ret.m_channels) - 1);
chCount = ChannelCount(ret.m_channels);
}
if (err < 0)
{
snd_pcm_close(m_pcm);
m_pcm = nullptr;
Log.report(logvisor::Error, "unable to set ALSA voice params");
return {};
}
snd_pcm_chmap_query_t** chmaps = snd_pcm_query_chmaps(m_pcm);
ChannelMap& chmapOut = ret.m_channelMap;
if (chmaps)
{
snd_pcm_chmap_t* foundChmap = nullptr;
for (snd_pcm_chmap_query_t** chmap = chmaps ; *chmap != nullptr ; ++chmap)
{
if ((*chmap)->map.channels == chCount)
{
snd_pcm_chmap_t* chm = &(*chmap)->map;
uint64_t chBits = 0;
for (int c=0 ; c<chm->channels ; ++c)
chBits |= 1 << chm->pos[c];
bool good = false;
switch (ret.m_channels)
{
case AudioChannelSet::Stereo:
if ((chBits & (1 << SND_CHMAP_FL)) != 0 &&
(chBits & (1 << SND_CHMAP_FR)) != 0)
good = true;
break;
case AudioChannelSet::Quad:
if ((chBits & (1 << SND_CHMAP_FL)) != 0 &&
(chBits & (1 << SND_CHMAP_FR)) != 0 &&
(chBits & (1 << SND_CHMAP_RL)) != 0 &&
(chBits & (1 << SND_CHMAP_RR)) != 0)
good = true;
break;
case AudioChannelSet::Surround51:
if ((chBits & (1 << SND_CHMAP_FL)) != 0 &&
(chBits & (1 << SND_CHMAP_FR)) != 0 &&
(chBits & (1 << SND_CHMAP_RL)) != 0 &&
(chBits & (1 << SND_CHMAP_RR)) != 0 &&
(chBits & (1 << SND_CHMAP_FC)) != 0 &&
(chBits & (1 << SND_CHMAP_LFE)) != 0)
good = true;
break;
case AudioChannelSet::Surround71:
if ((chBits & (1 << SND_CHMAP_FL)) != 0 &&
(chBits & (1 << SND_CHMAP_FR)) != 0 &&
(chBits & (1 << SND_CHMAP_RL)) != 0 &&
(chBits & (1 << SND_CHMAP_RR)) != 0 &&
(chBits & (1 << SND_CHMAP_FC)) != 0 &&
(chBits & (1 << SND_CHMAP_LFE)) != 0 &&
(chBits & (1 << SND_CHMAP_SL)) != 0 &&
(chBits & (1 << SND_CHMAP_SR)) != 0)
good = true;
break;
default: break;
}
if (good)
{
foundChmap = chm;
break;
}
}
}
if (!foundChmap)
{
snd_pcm_close(m_pcm);
m_pcm = nullptr;
snd_pcm_free_chmaps(chmaps);
Log.report(logvisor::Error, "unable to find matching ALSA voice chmap");
return {};
}
chmapOut.m_channelCount = chCount;
for (int c=0 ; c<foundChmap->channels ; ++c)
chmapOut.m_channels[c] = AudioChannel(foundChmap->pos[c] - 3);
snd_pcm_set_chmap(m_pcm, foundChmap);
snd_pcm_free_chmaps(chmaps);
}
else
{
chmapOut.m_channelCount = 2;
chmapOut.m_channels[0] = AudioChannel::FrontLeft;
chmapOut.m_channels[1] = AudioChannel::FrontRight;
}
return ret;
}
ALSAAudioVoiceEngine()
: BaseAudioVoiceEngine(std::bind(&ALSAAudioVoiceEngine::_getEngineMixInfo, this))
{
/* Base class will call _getEngineMixInfo first */
snd_pcm_get_params(m_pcm, &m_bufSize, &m_periodSize);
snd_pcm_prepare(m_pcm);
m_mixInfo.m_periodFrames = m_periodSize;
/* Allocate master mix space */
switch (m_mixInfo.m_sampleFormat)
{
case SOXR_INT16_I:
m_final16.resize(m_periodSize * m_mixInfo.m_channelMap.m_channelCount);
break;
case SOXR_INT32_I:
m_final32.resize(m_periodSize * m_mixInfo.m_channelMap.m_channelCount);
break;
case SOXR_FLOAT32_I:
m_finalFlt.resize(m_periodSize * m_mixInfo.m_channelMap.m_channelCount);
break;
default:
break;
}
}
void pumpAndMixVoices()
{
snd_pcm_sframes_t frames = snd_pcm_avail_update(m_pcm);
if (frames < 0)
{
snd_pcm_state_t st = snd_pcm_state(m_pcm);
if (st == SND_PCM_STATE_XRUN)
{
snd_pcm_prepare(m_pcm);
frames = snd_pcm_avail_update(m_pcm);
Log.report(logvisor::Warning, "ALSA underrun %ld frames", frames);
}
else
return;
}
if (frames < 0)
return;
snd_pcm_sframes_t buffers = frames / m_periodSize;
for (snd_pcm_sframes_t b=0 ; b<buffers ; ++b)
{
switch (m_mixInfo.m_sampleFormat)
{
case SOXR_INT16_I:
_pumpAndMixVoices(m_periodSize, m_final16.data());
snd_pcm_writei(m_pcm, m_final16.data(), m_periodSize);
break;
case SOXR_INT32_I:
_pumpAndMixVoices(m_periodSize, m_final32.data());
snd_pcm_writei(m_pcm, m_final32.data(), m_periodSize);
break;
case SOXR_FLOAT32_I:
_pumpAndMixVoices(m_periodSize, m_finalFlt.data());
snd_pcm_writei(m_pcm, m_finalFlt.data(), m_periodSize);
break;
default:
break;
}
}
}
};
ALSAAudioVoice::~ALSAAudioVoice()
std::unique_ptr<IAudioVoiceEngine> NewAudioVoiceEngine()
{
if (m_pcm)
snd_pcm_close(m_pcm);
m_parent.m_allocatedVoices.erase(m_parentIt);
}
std::unique_ptr<IAudioVoiceAllocator> NewAudioVoiceAllocator()
{
return std::make_unique<ALSAAudioVoiceAllocator>();
std::unique_ptr<IAudioVoiceEngine> ret = std::make_unique<ALSAAudioVoiceEngine>();
if (!static_cast<ALSAAudioVoiceEngine&>(*ret).m_pcm)
return {};
return ret;
}
}

View File

@ -217,7 +217,7 @@ struct AQSAudioVoice : IAudioVoice
}
};
struct AQSAudioVoiceAllocator : IAudioVoiceAllocator
struct AQSAudioVoiceAllocator : IAudioVoiceEngine
{
static void DummyCallback(void* inUserData, AudioQueueRef inAQ, AudioQueueBufferRef inBuffer) {}
@ -283,7 +283,7 @@ struct AQSAudioVoiceAllocator : IAudioVoiceAllocator
void pumpVoices() {}
};
std::unique_ptr<IAudioVoiceAllocator> NewAudioVoiceAllocator()
std::unique_ptr<IAudioVoiceEngine> NewAudioVoiceAllocator()
{
return std::make_unique<AQSAudioVoiceAllocator>();
}

View File

@ -1,13 +1,42 @@
#include "boo/audiodev/AudioMatrix.hpp"
#include "AudioMatrix.hpp"
#include "AudioVoiceEngine.hpp"
#include <string.h>
#include <limits.h>
namespace boo
{
void AudioMatrixMono::setDefaultMatrixCoefficients()
static inline int16_t Clamp16(float in)
{
if (in < SHRT_MIN)
return SHRT_MIN;
else if (in > SHRT_MAX)
return SHRT_MAX;
return in;
}
static inline int32_t Clamp32(float in)
{
if (in < INT_MIN)
return INT_MIN;
else if (in > INT_MAX)
return INT_MAX;
return in;
}
static inline float ClampFlt(float in)
{
if (in < -1.f)
return -1.f;
else if (in > 1.f)
return 1.f;
return in;
}
void AudioMatrixMono::setDefaultMatrixCoefficients(AudioChannelSet acSet)
{
memset(m_coefs, 0, sizeof(m_coefs));
switch (m_setOut)
switch (acSet)
{
case AudioChannelSet::Stereo:
case AudioChannelSet::Quad:
@ -22,27 +51,58 @@ void AudioMatrixMono::setDefaultMatrixCoefficients()
}
}
void AudioMatrixMono::bufferMonoSampleData(IAudioVoice& voice, const int16_t* data, size_t samples)
void AudioMatrixMono::mixMonoSampleData(const AudioVoiceEngineMixInfo& info,
const int16_t* dataIn, int16_t* dataOut, size_t samples) const
{
const ChannelMap& chmap = voice.channelMap();
m_interleaveBuf.clear();
m_interleaveBuf.reserve(samples * chmap.m_channelCount);
for (size_t s=0 ; s<samples ; ++s, ++data)
const ChannelMap& chmap = info.m_channelMap;
for (size_t s=0 ; s<samples ; ++s, ++dataIn)
for (unsigned c=0 ; c<chmap.m_channelCount ; ++c)
{
AudioChannel ch = chmap.m_channels[c];
if (ch == AudioChannel::Unknown)
m_interleaveBuf.push_back(0);
else
m_interleaveBuf.push_back(data[0] * m_coefs[int(ch)]);
if (ch != AudioChannel::Unknown)
{
*dataOut = Clamp16(*dataOut + *dataIn * m_coefs[int(ch)]);
++dataOut;
}
}
voice.bufferSampleData(m_interleaveBuf.data(), samples);
}
void AudioMatrixStereo::setDefaultMatrixCoefficients()
void AudioMatrixMono::mixMonoSampleData(const AudioVoiceEngineMixInfo& info,
const int32_t* dataIn, int32_t* dataOut, size_t samples) const
{
const ChannelMap& chmap = info.m_channelMap;
for (size_t s=0 ; s<samples ; ++s, ++dataIn)
for (unsigned c=0 ; c<chmap.m_channelCount ; ++c)
{
AudioChannel ch = chmap.m_channels[c];
if (ch != AudioChannel::Unknown)
{
*dataOut = Clamp32(*dataOut + *dataIn * m_coefs[int(ch)]);
++dataOut;
}
}
}
void AudioMatrixMono::mixMonoSampleData(const AudioVoiceEngineMixInfo& info,
const float* dataIn, float* dataOut, size_t samples) const
{
const ChannelMap& chmap = info.m_channelMap;
for (size_t s=0 ; s<samples ; ++s, ++dataIn)
for (unsigned c=0 ; c<chmap.m_channelCount ; ++c)
{
AudioChannel ch = chmap.m_channels[c];
if (ch != AudioChannel::Unknown)
{
*dataOut = ClampFlt(*dataOut + *dataIn * m_coefs[int(ch)]);
++dataOut;
}
}
}
void AudioMatrixStereo::setDefaultMatrixCoefficients(AudioChannelSet acSet)
{
memset(m_coefs, 0, sizeof(m_coefs));
switch (m_setOut)
switch (acSet)
{
case AudioChannelSet::Stereo:
case AudioChannelSet::Quad:
@ -58,22 +118,58 @@ void AudioMatrixStereo::setDefaultMatrixCoefficients()
}
}
void AudioMatrixStereo::bufferStereoSampleData(IAudioVoice& voice, const int16_t* data, size_t frames)
void AudioMatrixStereo::mixStereoSampleData(const AudioVoiceEngineMixInfo& info,
const int16_t* dataIn, int16_t* dataOut, size_t frames) const
{
const ChannelMap& chmap = voice.channelMap();
m_interleaveBuf.clear();
m_interleaveBuf.reserve(frames * chmap.m_channelCount);
for (size_t f=0 ; f<frames ; ++f, data += 2)
const ChannelMap& chmap = info.m_channelMap;
for (size_t f=0 ; f<frames ; ++f, dataIn += 2)
for (unsigned c=0 ; c<chmap.m_channelCount ; ++c)
{
AudioChannel ch = chmap.m_channels[c];
if (ch == AudioChannel::Unknown)
m_interleaveBuf.push_back(0);
else
m_interleaveBuf.push_back(data[0] * m_coefs[int(ch)][0] +
data[1] * m_coefs[int(ch)][1]);
if (ch != AudioChannel::Unknown)
{
*dataOut = Clamp16(*dataOut +
dataIn[0] * m_coefs[int(ch)][0] +
dataIn[1] * m_coefs[int(ch)][1]);
++dataOut;
}
}
}
void AudioMatrixStereo::mixStereoSampleData(const AudioVoiceEngineMixInfo& info,
const int32_t* dataIn, int32_t* dataOut, size_t frames) const
{
const ChannelMap& chmap = info.m_channelMap;
for (size_t f=0 ; f<frames ; ++f, dataIn += 2)
for (unsigned c=0 ; c<chmap.m_channelCount ; ++c)
{
AudioChannel ch = chmap.m_channels[c];
if (ch != AudioChannel::Unknown)
{
*dataOut = Clamp32(*dataOut +
dataIn[0] * m_coefs[int(ch)][0] +
dataIn[1] * m_coefs[int(ch)][1]);
++dataOut;
}
}
}
void AudioMatrixStereo::mixStereoSampleData(const AudioVoiceEngineMixInfo& info,
const float* dataIn, float* dataOut, size_t frames) const
{
const ChannelMap& chmap = info.m_channelMap;
for (size_t f=0 ; f<frames ; ++f, dataIn += 2)
for (unsigned c=0 ; c<chmap.m_channelCount ; ++c)
{
AudioChannel ch = chmap.m_channels[c];
if (ch != AudioChannel::Unknown)
{
*dataOut = ClampFlt(*dataOut +
dataIn[0] * m_coefs[int(ch)][0] +
dataIn[1] * m_coefs[int(ch)][1]);
++dataOut;
}
}
voice.bufferSampleData(m_interleaveBuf.data(), frames);
}
}

View File

@ -0,0 +1,59 @@
#ifndef BOO_AUDIOMATRIX_HPP
#define BOO_AUDIOMATRIX_HPP
#include "boo/audiodev/IAudioVoice.hpp"
#include <vector>
#include <stdint.h>
namespace boo
{
struct AudioVoiceEngineMixInfo;
class AudioMatrixMono
{
float m_coefs[8];
public:
AudioMatrixMono() {setDefaultMatrixCoefficients(AudioChannelSet::Stereo);}
void setDefaultMatrixCoefficients(AudioChannelSet acSet);
void setMatrixCoefficients(const float coefs[8])
{
for (int i=0 ; i<8 ; ++i)
m_coefs[i] = coefs[i];
}
void mixMonoSampleData(const AudioVoiceEngineMixInfo& info,
const int16_t* dataIn, int16_t* dataOut, size_t samples) const;
void mixMonoSampleData(const AudioVoiceEngineMixInfo& info,
const int32_t* dataIn, int32_t* dataOut, size_t samples) const;
void mixMonoSampleData(const AudioVoiceEngineMixInfo& info,
const float* dataIn, float* dataOut, size_t samples) const;
};
class AudioMatrixStereo
{
float m_coefs[8][2];
public:
AudioMatrixStereo() {setDefaultMatrixCoefficients(AudioChannelSet::Stereo);}
void setDefaultMatrixCoefficients(AudioChannelSet acSet);
void setMatrixCoefficients(const float coefs[8][2])
{
for (int i=0 ; i<8 ; ++i)
{
m_coefs[i][0] = coefs[i][0];
m_coefs[i][1] = coefs[i][1];
}
}
void mixStereoSampleData(const AudioVoiceEngineMixInfo& info,
const int16_t* dataIn, int16_t* dataOut, size_t frames) const;
void mixStereoSampleData(const AudioVoiceEngineMixInfo& info,
const int32_t* dataIn, int32_t* dataOut, size_t frames) const;
void mixStereoSampleData(const AudioVoiceEngineMixInfo& info,
const float* dataIn, float* dataOut, size_t frames) const;
};
}
#endif // BOO_AUDIOMATRIX_HPP

View File

@ -0,0 +1,239 @@
#include "AudioVoice.hpp"
#include "AudioVoiceEngine.hpp"
#include "logvisor/logvisor.hpp"
namespace boo
{
static logvisor::Module Log("boo::AudioVoice");
static std::vector<int16_t> scratchIn;
static std::vector<int16_t> scratch16;
static std::vector<int32_t> scratch32;
static std::vector<float> scratchFlt;
AudioVoice::AudioVoice(BaseAudioVoiceEngine& parent, IAudioVoiceCallback* cb, bool dynamicRate)
: m_parent(parent), m_cb(cb), m_dynamicRate(dynamicRate) {}
AudioVoice::~AudioVoice()
{
unbindVoice();
soxr_delete(m_src);
}
void AudioVoice::setPitchRatio(double ratio)
{
if (m_dynamicRate)
{
soxr_error_t err = soxr_set_io_ratio(m_src, ratio, m_parent.mixInfo().m_periodFrames);
if (err)
{
Log.report(logvisor::Fatal, "unable to set resampler rate: %s", soxr_strerror(err));
return;
}
}
}
void AudioVoice::start()
{
m_running = true;
}
void AudioVoice::stop()
{
m_running = false;
}
void AudioVoice::unbindVoice()
{
if (m_bound)
{
m_parent.m_activeVoices.erase(m_parentIt);
m_bound = false;
}
}
AudioVoiceMono::AudioVoiceMono(BaseAudioVoiceEngine& parent, IAudioVoiceCallback* cb,
double sampleRate, bool dynamicRate)
: AudioVoice(parent, cb, dynamicRate)
{
soxr_io_spec_t ioSpec = soxr_io_spec(SOXR_INT16_I, parent.mixInfo().m_sampleFormat);
soxr_quality_spec_t qSpec = soxr_quality_spec(SOXR_20_BITQ, dynamicRate ? SOXR_VR : 0);
soxr_error_t err;
m_src = soxr_create(sampleRate, parent.mixInfo().m_sampleRate, 1,
&err, &ioSpec, &qSpec, nullptr);
if (err)
{
Log.report(logvisor::Fatal, "unable to create soxr resampler: %s", soxr_strerror(err));
return;
}
soxr_set_input_fn(m_src, soxr_input_fn_t(SRCCallback), this, 0);
}
size_t AudioVoiceMono::SRCCallback(AudioVoiceMono* ctx, int16_t** data, size_t frames)
{
if (scratchIn.size() < frames)
scratchIn.resize(frames);
*data = scratchIn.data();
return ctx->m_cb->supplyAudio(*ctx, frames, scratchIn.data());
}
size_t AudioVoiceMono::pumpAndMix(const AudioVoiceEngineMixInfo& mixInfo,
size_t frames, int16_t* buf)
{
if (scratch16.size() < frames)
scratch16.resize(frames);
size_t oDone = soxr_output(m_src, scratch16.data(), frames);
m_matrix.mixMonoSampleData(mixInfo, scratch16.data(), buf, oDone);
return oDone;
}
size_t AudioVoiceMono::pumpAndMix(const AudioVoiceEngineMixInfo& mixInfo,
size_t frames, int32_t* buf)
{
if (scratch32.size() < frames)
scratch32.resize(frames);
size_t oDone = soxr_output(m_src, scratch32.data(), frames);
m_matrix.mixMonoSampleData(mixInfo, scratch32.data(), buf, oDone);
return oDone;
}
size_t AudioVoiceMono::pumpAndMix(const AudioVoiceEngineMixInfo& mixInfo,
size_t frames, float* buf)
{
if (scratchFlt.size() < frames)
scratchFlt.resize(frames);
size_t oDone = soxr_output(m_src, scratchFlt.data(), frames);
m_matrix.mixMonoSampleData(mixInfo, scratchFlt.data(), buf, oDone);
return oDone;
}
void AudioVoiceMono::setDefaultMatrixCoefficients()
{
m_matrix.setDefaultMatrixCoefficients(m_parent.mixInfo().m_channels);
}
void AudioVoiceMono::setMonoMatrixCoefficients(const float coefs[8])
{
m_matrix.setMatrixCoefficients(coefs);
}
void AudioVoiceMono::setStereoMatrixCoefficients(const float coefs[8][2])
{
float newCoefs[8] =
{
coefs[0][0],
coefs[1][0],
coefs[2][0],
coefs[3][0],
coefs[4][0],
coefs[5][0],
coefs[6][0],
coefs[7][0]
};
m_matrix.setMatrixCoefficients(newCoefs);
}
AudioVoiceStereo::AudioVoiceStereo(BaseAudioVoiceEngine& parent, IAudioVoiceCallback* cb,
double sampleRate, bool dynamicRate)
: AudioVoice(parent, cb, dynamicRate)
{
soxr_io_spec_t ioSpec = soxr_io_spec(SOXR_INT16_I, parent.mixInfo().m_sampleFormat);
soxr_quality_spec_t qSpec = soxr_quality_spec(SOXR_20_BITQ, dynamicRate ? SOXR_VR : 0);
soxr_error_t err;
m_src = soxr_create(sampleRate, parent.mixInfo().m_sampleRate, 2,
&err, &ioSpec, &qSpec, nullptr);
if (!m_src)
{
Log.report(logvisor::Fatal, "unable to create soxr resampler: %s", soxr_strerror(err));
return;
}
soxr_set_input_fn(m_src, soxr_input_fn_t(SRCCallback), this, 0);
}
size_t AudioVoiceStereo::SRCCallback(AudioVoiceStereo* ctx, int16_t** data, size_t frames)
{
size_t samples = frames * 2;
if (scratchIn.size() < samples)
scratchIn.resize(samples);
*data = scratchIn.data();
return ctx->m_cb->supplyAudio(*ctx, frames, scratchIn.data());
}
size_t AudioVoiceStereo::pumpAndMix(const AudioVoiceEngineMixInfo& mixInfo,
size_t frames, int16_t* buf)
{
size_t samples = frames * 2;
if (scratch16.size() < samples)
scratch16.resize(samples);
size_t oDone = soxr_output(m_src, scratch16.data(), frames);
m_matrix.mixStereoSampleData(mixInfo, scratch16.data(), buf, oDone);
return oDone;
}
size_t AudioVoiceStereo::pumpAndMix(const AudioVoiceEngineMixInfo& mixInfo,
size_t frames, int32_t* buf)
{
size_t samples = frames * 2;
if (scratch32.size() < samples)
scratch32.resize(samples);
size_t oDone = soxr_output(m_src, scratch32.data(), frames);
m_matrix.mixStereoSampleData(mixInfo, scratch32.data(), buf, oDone);
return oDone;
}
size_t AudioVoiceStereo::pumpAndMix(const AudioVoiceEngineMixInfo& mixInfo,
size_t frames, float* buf)
{
size_t samples = frames * 2;
if (scratchFlt.size() < samples)
scratchFlt.resize(samples);
size_t oDone = soxr_output(m_src, scratchFlt.data(), frames);
m_matrix.mixStereoSampleData(mixInfo, scratchFlt.data(), buf, oDone);
return oDone;
}
void AudioVoiceStereo::setDefaultMatrixCoefficients()
{
m_matrix.setDefaultMatrixCoefficients(m_parent.mixInfo().m_channels);
}
void AudioVoiceStereo::setMonoMatrixCoefficients(const float coefs[8])
{
float newCoefs[8][2] =
{
{coefs[0], coefs[0]},
{coefs[1], coefs[1]},
{coefs[2], coefs[2]},
{coefs[3], coefs[3]},
{coefs[4], coefs[4]},
{coefs[5], coefs[5]},
{coefs[6], coefs[6]},
{coefs[7], coefs[7]}
};
m_matrix.setMatrixCoefficients(newCoefs);
}
void AudioVoiceStereo::setStereoMatrixCoefficients(const float coefs[8][2])
{
m_matrix.setMatrixCoefficients(coefs);
}
}

View File

@ -2,13 +2,90 @@
#define BOO_AUDIOVOICE_HPP
#include <soxr.h>
#include <list>
#include "boo/audiodev/IAudioVoice.hpp"
#include "AudioMatrix.hpp"
namespace boo
{
class BaseAudioVoiceEngine;
struct AudioVoiceEngineMixInfo;
class AudioVoice
class AudioVoice : public IAudioVoice
{
soxr_t m_voice;
friend class BaseAudioVoiceEngine;
protected:
/* Mixer-engine relationships */
BaseAudioVoiceEngine& m_parent;
std::list<AudioVoice*>::iterator m_parentIt;
bool m_bound = false;
void bindVoice(std::list<AudioVoice*>::iterator pIt)
{
m_bound = true;
m_parentIt = pIt;
}
/* Callback (audio source) */
IAudioVoiceCallback* m_cb;
/* Sample-rate converter */
soxr_t m_src;
bool m_dynamicRate;
/* Running bool */
bool m_running = false;
virtual size_t pumpAndMix(const AudioVoiceEngineMixInfo& mixInfo, size_t frames, int16_t* buf)=0;
virtual size_t pumpAndMix(const AudioVoiceEngineMixInfo& mixInfo, size_t frames, int32_t* buf)=0;
virtual size_t pumpAndMix(const AudioVoiceEngineMixInfo& mixInfo, size_t frames, float* buf)=0;
AudioVoice(BaseAudioVoiceEngine& parent, IAudioVoiceCallback* cb, bool dynamicRate);
public:
~AudioVoice();
void setPitchRatio(double ratio);
void start();
void stop();
void unbindVoice();
};
class AudioVoiceMono : public AudioVoice
{
AudioMatrixMono m_matrix;
static size_t SRCCallback(AudioVoiceMono* ctx,
int16_t** data, size_t requestedLen);
size_t pumpAndMix(const AudioVoiceEngineMixInfo& mixInfo, size_t frames, int16_t* buf);
size_t pumpAndMix(const AudioVoiceEngineMixInfo& mixInfo, size_t frames, int32_t* buf);
size_t pumpAndMix(const AudioVoiceEngineMixInfo& mixInfo, size_t frames, float* buf);
public:
AudioVoiceMono(BaseAudioVoiceEngine& parent, IAudioVoiceCallback* cb,
double sampleRate, bool dynamicRate);
void setDefaultMatrixCoefficients();
void setMonoMatrixCoefficients(const float coefs[8]);
void setStereoMatrixCoefficients(const float coefs[8][2]);
};
class AudioVoiceStereo : public AudioVoice
{
AudioMatrixStereo m_matrix;
static size_t SRCCallback(AudioVoiceStereo* ctx,
int16_t** data, size_t requestedLen);
size_t pumpAndMix(const AudioVoiceEngineMixInfo& mixInfo, size_t frames, int16_t* buf);
size_t pumpAndMix(const AudioVoiceEngineMixInfo& mixInfo, size_t frames, int32_t* buf);
size_t pumpAndMix(const AudioVoiceEngineMixInfo& mixInfo, size_t frames, float* buf);
public:
AudioVoiceStereo(BaseAudioVoiceEngine& parent, IAudioVoiceCallback* cb,
double sampleRate, bool dynamicRate);
void setDefaultMatrixCoefficients();
void setMonoMatrixCoefficients(const float coefs[8]);
void setStereoMatrixCoefficients(const float coefs[8][2]);
};
}

View File

@ -0,0 +1,61 @@
#include "AudioVoiceEngine.hpp"
#include <string.h>
namespace boo
{
void BaseAudioVoiceEngine::_pumpAndMixVoices(size_t frames, int16_t* dataOut)
{
memset(dataOut, 0, sizeof(int16_t) * frames * m_mixInfo.m_channelMap.m_channelCount);
for (AudioVoice* vox : m_activeVoices)
if (vox->m_running)
vox->pumpAndMix(m_mixInfo, frames, dataOut);
}
void BaseAudioVoiceEngine::_pumpAndMixVoices(size_t frames, int32_t* dataOut)
{
memset(dataOut, 0, sizeof(int32_t) * frames * m_mixInfo.m_channelMap.m_channelCount);
for (AudioVoice* vox : m_activeVoices)
if (vox->m_running)
vox->pumpAndMix(m_mixInfo, frames, dataOut);
}
void BaseAudioVoiceEngine::_pumpAndMixVoices(size_t frames, float* dataOut)
{
memset(dataOut, 0, sizeof(float) * frames * m_mixInfo.m_channelMap.m_channelCount);
for (AudioVoice* vox : m_activeVoices)
if (vox->m_running)
vox->pumpAndMix(m_mixInfo, frames, dataOut);
}
BaseAudioVoiceEngine::BaseAudioVoiceEngine
(const std::function<AudioVoiceEngineMixInfo()>& getEngineMixInfo)
{
m_mixInfo = getEngineMixInfo();
}
std::unique_ptr<IAudioVoice>
BaseAudioVoiceEngine::allocateNewMonoVoice(double sampleRate,
IAudioVoiceCallback* cb,
bool dynamicPitch)
{
std::unique_ptr<IAudioVoice> ret =
std::make_unique<AudioVoiceMono>(*this, cb, sampleRate, dynamicPitch);
AudioVoiceMono* retMono = static_cast<AudioVoiceMono*>(ret.get());
retMono->bindVoice(m_activeVoices.insert(m_activeVoices.end(), retMono));
return ret;
}
std::unique_ptr<IAudioVoice>
BaseAudioVoiceEngine::allocateNewStereoVoice(double sampleRate,
IAudioVoiceCallback* cb,
bool dynamicPitch)
{
std::unique_ptr<IAudioVoice> ret =
std::make_unique<AudioVoiceStereo>(*this, cb, sampleRate, dynamicPitch);
AudioVoiceStereo* retStereo = static_cast<AudioVoiceStereo*>(ret.get());
retStereo->bindVoice(m_activeVoices.insert(m_activeVoices.end(), retStereo));
return ret;
}
}

View File

@ -0,0 +1,51 @@
#ifndef BOO_AUDIOVOICEENGINE_HPP
#define BOO_AUDIOVOICEENGINE_HPP
#include "boo/audiodev/IAudioVoiceEngine.hpp"
#include "AudioVoice.hpp"
namespace boo
{
/** Pertinent information from audio backend about optimal mixed-audio representation */
struct AudioVoiceEngineMixInfo
{
double m_sampleRate;
soxr_datatype_t m_sampleFormat;
unsigned m_bitsPerSample;
AudioChannelSet m_channels;
ChannelMap m_channelMap;
size_t m_periodFrames;
};
/** Base class for managing mixing and sample-rate-conversion amongst active voices */
class BaseAudioVoiceEngine : public IAudioVoiceEngine
{
protected:
friend class AudioVoice;
AudioVoiceEngineMixInfo m_mixInfo;
std::list<AudioVoice*> m_activeVoices;
void _pumpAndMixVoices(size_t frames, int16_t* dataOut);
void _pumpAndMixVoices(size_t frames, int32_t* dataOut);
void _pumpAndMixVoices(size_t frames, float* dataOut);
public:
BaseAudioVoiceEngine(const std::function<AudioVoiceEngineMixInfo()>& getEngineMixInfo);
std::unique_ptr<IAudioVoice> allocateNewMonoVoice(double sampleRate,
IAudioVoiceCallback* cb,
bool dynamicPitch=false);
std::unique_ptr<IAudioVoice> allocateNewStereoVoice(double sampleRate,
IAudioVoiceCallback* cb,
bool dynamicPitch=false);
const AudioVoiceEngineMixInfo& mixInfo() const {return m_mixInfo;}
AudioChannelSet getAvailableSet() {return m_mixInfo.m_channels;}
void pumpAndMixVoices() {}
};
}
#endif // BOO_AUDIOVOICEENGINE_HPP