boo/soxr/src/rate.h

727 lines
26 KiB
C

/* SoX Resampler Library Copyright (c) 2007-14 robs@users.sourceforge.net
* Licence for this file: LGPL v2.1 See LICENCE for details. */
#include <math.h>
#include <assert.h>
#include <string.h>
#include <stdlib.h>
#include "filter.h"
#if defined SOXR_LIB
#include "internal.h"
typedef void (* fn_t)(void);
extern fn_t RDFT_CB[11];
#define rdft_forward_setup (*(void * (*)(int))RDFT_CB[0])
#define rdft_backward_setup (*(void * (*)(int))RDFT_CB[1])
#define rdft_delete_setup (*(void (*)(void *))RDFT_CB[2])
#define rdft_forward (*(void (*)(int, void *, sample_t *, sample_t *))RDFT_CB[3])
#define rdft_oforward (*(void (*)(int, void *, sample_t *, sample_t *))RDFT_CB[4])
#define rdft_backward (*(void (*)(int, void *, sample_t *, sample_t *))RDFT_CB[5])
#define rdft_obackward (*(void (*)(int, void *, sample_t *, sample_t *))RDFT_CB[6])
#define rdft_convolve (*(void (*)(int, void *, sample_t *, sample_t const *))RDFT_CB[7])
#define rdft_convolve_portion (*(void (*)(int, sample_t *, sample_t const *))RDFT_CB[8])
#define rdft_multiplier (*(int (*)(void))RDFT_CB[9])
#define rdft_reorder_back (*(void (*)(int, void *, sample_t *, sample_t *))RDFT_CB[10])
#endif
#if RATE_SIMD /* Align for SIMD: */
#include "simd.h"
#if 0 /* Not using this yet. */
#define RATE_SIMD_POLY 1
#define num_coefs4 ((num_coefs + 3) & ~3)
#define coefs4_check(i) ((i) < num_coefs)
#else
#define RATE_SIMD_POLY 0
#define num_coefs4 num_coefs
#define coefs4_check(i) 1
#endif
#define aligned_free _soxr_simd_aligned_free
#define aligned_malloc _soxr_simd_aligned_malloc
#define aligned_calloc _soxr_simd_aligned_calloc
#if 0
#define FIFO_REALLOC aligned_realloc
#define FIFO_MALLOC aligned_malloc
#define FIFO_FREE aligned_free
static void * aligned_realloc(void * q, size_t nb_bytes, size_t copy_bytes) {
void * p = aligned_malloc(nb_bytes);
if (p) memcpy(p, q, copy_bytes);
aligned_free(q);
return p;
}
#endif
#else
#define RATE_SIMD_POLY 0
#define num_coefs4 num_coefs
#define coefs4_check(i) 1
#define aligned_free free
#define aligned_malloc malloc
#define aligned_calloc calloc
#endif
#define FIFO_SIZE_T int
#include "fifo.h"
typedef union { /* Int64 in parts */
#if WORDS_BIGENDIAN
struct {int32_t ms; uint32_t ls;} parts;
#else
struct {uint32_t ls; int32_t ms;} parts;
#endif
int64_t all;
} int64p_t;
typedef union { /* Uint64 in parts */
#if WORDS_BIGENDIAN
struct {uint32_t ms, ls;} parts;
#else
struct {uint32_t ls, ms;} parts;
#endif
uint64_t all;
} uint64p_t;
#define FLOAT_HI_PREC_CLOCK 0 /* Non-float hi-prec has ~96 bits. */
#define float_step_t long double /* __float128 is also a (slow) option */
#define coef(coef_p, interp_order, fir_len, phase_num, coef_interp_num, fir_coef_num) coef_p[(fir_len) * ((interp_order) + 1) * (phase_num) + ((interp_order) + 1) * (fir_coef_num) + (interp_order - coef_interp_num)]
#define raw_coef_t double
static sample_t * prepare_coefs(raw_coef_t const * coefs, int num_coefs,
int num_phases, int interp_order, double multiplier)
{
int i, j, length = num_coefs4 * num_phases;
sample_t * result = malloc((size_t)(length * (interp_order + 1)) * sizeof(*result));
double fm1 = coefs[0], f1 = 0, f2 = 0;
for (i = num_coefs4 - 1; i >= 0; --i)
for (j = num_phases - 1; j >= 0; --j) {
double f0 = fm1, b = 0, c = 0, d = 0; /* = 0 to kill compiler warning */
int pos = i * num_phases + j - 1;
fm1 = coefs4_check(i) && pos > 0 ? coefs[pos - 1] * multiplier : 0;
switch (interp_order) {
case 1: b = f1 - f0; break;
case 2: b = f1 - (.5 * (f2+f0) - f1) - f0; c = .5 * (f2+f0) - f1; break;
case 3: c=.5*(f1+fm1)-f0;d=(1/6.)*(f2-f1+fm1-f0-4*c);b=f1-f0-d-c; break;
default: if (interp_order) assert(0);
}
#define coef_coef(x) \
coef(result, interp_order, num_coefs4, j, x, num_coefs4 - 1 - i)
coef_coef(0) = (sample_t)f0;
if (interp_order > 0) coef_coef(1) = (sample_t)b;
if (interp_order > 1) coef_coef(2) = (sample_t)c;
if (interp_order > 2) coef_coef(3) = (sample_t)d;
#undef coef_coef
f2 = f1, f1 = f0;
}
return result;
}
typedef struct {
int dft_length, num_taps, post_peak;
void * dft_forward_setup, * dft_backward_setup;
sample_t * coefs;
} dft_filter_t;
typedef struct { /* So generated filter coefs may be shared between channels */
sample_t * poly_fir_coefs;
dft_filter_t dft_filter[2];
} rate_shared_t;
typedef enum {
irrational_stage = 1,
cubic_stage,
dft_stage,
half_stage,
rational_stage
} stage_type_t;
struct stage;
typedef void (* stage_fn_t)(struct stage * input, fifo_t * output);
#define MULT32 (65536. * 65536.)
typedef union { /* Fixed point arithmetic */
struct {uint64p_t ls; int64p_t ms;} fix;
float_step_t flt;
} step_t;
typedef struct stage {
/* Common to all stage types: */
stage_type_t type;
stage_fn_t fn;
fifo_t fifo;
int pre; /* Number of past samples to store */
int pre_post; /* pre + number of future samples to store */
int preload; /* Number of zero samples to pre-load the fifo */
double out_in_ratio; /* For buffer management. */
/* For a stage with variable (run-time generated) filter coefs: */
rate_shared_t * shared;
unsigned dft_filter_num; /* Which, if any, of the 2 DFT filters to use */
sample_t * dft_scratch, * dft_out;
/* For a stage with variable L/M: */
step_t at, step;
bool use_hi_prec_clock;
int L, remM;
int n, phase_bits, block_len;
double mult, phase0;
} stage_t;
#define stage_occupancy(s) max(0, fifo_occupancy(&(s)->fifo) - (s)->pre_post)
#define stage_read_p(s) ((sample_t *)fifo_read_ptr(&(s)->fifo) + (s)->pre)
static void cubic_stage_fn(stage_t * p, fifo_t * output_fifo)
{
int i, num_in = stage_occupancy(p), max_num_out = 1 + (int)(num_in*p->out_in_ratio);
sample_t const * input = stage_read_p(p);
sample_t * output = fifo_reserve(output_fifo, max_num_out);
#define integer fix.ms.parts.ms
#define fraction fix.ms.parts.ls
#define whole fix.ms.all
for (i = 0; p->at.integer < num_in; ++i, p->at.whole += p->step.whole) {
sample_t const * s = input + p->at.integer;
double x = p->at.fraction * (1 / MULT32);
double b = .5*(s[1]+s[-1])-*s, a = (1/6.)*(s[2]-s[1]+s[-1]-*s-4*b);
double c = s[1]-*s-a-b;
output[i] = (sample_t)(p->mult * (((a*x + b)*x + c)*x + *s));
}
assert(max_num_out - i >= 0);
fifo_trim_by(output_fifo, max_num_out - i);
fifo_read(&p->fifo, p->at.integer, NULL);
p->at.integer = 0;
}
#if RATE_SIMD
#define dft_out p->dft_out
#else
#define dft_out output
#endif
static void dft_stage_fn(stage_t * p, fifo_t * output_fifo)
{
sample_t * output;
int i, j, num_in = max(0, fifo_occupancy(&p->fifo));
rate_shared_t const * s = p->shared;
dft_filter_t const * f = &s->dft_filter[p->dft_filter_num];
int const overlap = f->num_taps - 1;
while (p->at.integer + p->L * num_in >= f->dft_length) {
div_t divd = div(f->dft_length - overlap - p->at.integer + p->L - 1, p->L);
sample_t const * input = fifo_read_ptr(&p->fifo);
fifo_read(&p->fifo, divd.quot, NULL);
num_in -= divd.quot;
output = fifo_reserve(output_fifo, f->dft_length);
if (lsx_is_power_of_2(p->L)) { /* F-domain */
int portion = f->dft_length / p->L;
memcpy(dft_out, input, (unsigned)portion * sizeof(*dft_out));
rdft_oforward(portion, f->dft_forward_setup, dft_out, p->dft_scratch);
for (i = portion + 2; i < (portion << 1); i += 2) /* Mirror image. */
dft_out[i] = dft_out[(portion << 1) - i],
dft_out[i+1] = -dft_out[(portion << 1) - i + 1];
dft_out[portion] = dft_out[1];
dft_out[portion + 1] = 0;
dft_out[1] = dft_out[0];
for (portion <<= 1; i < f->dft_length; i += portion, portion <<= 1) {
memcpy(dft_out + i, dft_out, (size_t)portion * sizeof(*dft_out));
dft_out[i + 1] = 0;
}
if (p->step.integer > 0)
rdft_reorder_back(f->dft_length, f->dft_backward_setup, dft_out, p->dft_scratch);
} else {
if (p->L == 1)
memcpy(dft_out, input, (size_t)f->dft_length * sizeof(*dft_out));
else {
memset(dft_out, 0, (size_t)f->dft_length * sizeof(*dft_out));
for (j = 0, i = p->at.integer; i < f->dft_length; ++j, i += p->L)
dft_out[i] = input[j];
p->at.integer = p->L - 1 - divd.rem;
}
if (p->step.integer > 0)
rdft_forward(f->dft_length, f->dft_forward_setup, dft_out, p->dft_scratch);
else
rdft_oforward(f->dft_length, f->dft_forward_setup, dft_out, p->dft_scratch);
}
if (p->step.integer > 0) {
rdft_convolve(f->dft_length, f->dft_backward_setup, dft_out, f->coefs);
rdft_backward(f->dft_length, f->dft_backward_setup, dft_out, p->dft_scratch);
#if RATE_SIMD
if (p->step.integer == 1)
memcpy(output, dft_out, (size_t)f->dft_length * sizeof(sample_t));
#endif
if (p->step.integer != 1) {
for (j = 0, i = p->remM; i < f->dft_length - overlap; ++j,
i += p->step.integer)
output[j] = dft_out[i];
p->remM = i - (f->dft_length - overlap);
fifo_trim_by(output_fifo, f->dft_length - j);
}
else fifo_trim_by(output_fifo, overlap);
}
else { /* F-domain */
int m = -p->step.integer;
rdft_convolve_portion(f->dft_length >> m, dft_out, f->coefs);
rdft_obackward(f->dft_length >> m, f->dft_backward_setup, dft_out, p->dft_scratch);
#if RATE_SIMD
memcpy(output, dft_out, (size_t)(f->dft_length >> m) * sizeof(sample_t));
#endif
fifo_trim_by(output_fifo, (((1 << m) - 1) * f->dft_length + overlap) >>m);
}
}
}
#undef dft_out
/* Set to 4 x nearest power of 2 */
/* or half of that if danger of causing too many cache misses. */
static int set_dft_length(int num_taps, int min, int large)
{
double d = log((double)num_taps) / log(2.);
return 1 << range_limit((int)(d + 2.77), min, max((int)(d + 1.77), large));
}
static void dft_stage_init(
unsigned instance, double Fp, double Fs, double Fn, double att,
double phase, stage_t * p, int L, int M, double * multiplier,
int min_dft_size, int large_dft_size)
{
dft_filter_t * f = &p->shared->dft_filter[instance];
int num_taps = 0, dft_length = f->dft_length, i;
bool f_domain_m = abs(3-M) == 1 && Fs <= 1;
if (!dft_length) {
int k = phase == 50 && lsx_is_power_of_2(L) && Fn == L? L << 1 : 4;
double * h = lsx_design_lpf(Fp, Fs, Fn, att, &num_taps, -k, -1.);
if (phase != 50)
lsx_fir_to_phase(&h, &num_taps, &f->post_peak, phase);
else f->post_peak = num_taps / 2;
dft_length = set_dft_length(num_taps, min_dft_size, large_dft_size);
f->coefs = aligned_calloc((size_t)dft_length, sizeof(*f->coefs));
for (i = 0; i < num_taps; ++i)
f->coefs[(i + dft_length - num_taps + 1) & (dft_length - 1)]
= (sample_t)(h[i] * ((1. / dft_length) * rdft_multiplier() * L * *multiplier));
free(h);
}
#if RATE_SIMD
p->dft_out = aligned_malloc(sizeof(sample_t) * (size_t)dft_length);
#endif
#if 1 /* In fact, currently, only pffft needs this. */
p->dft_scratch = aligned_malloc(2 * sizeof(sample_t) * (size_t)dft_length);
#endif
if (!f->dft_length) {
void * coef_setup = rdft_forward_setup(dft_length);
int Lp = lsx_is_power_of_2(L)? L : 1;
int Mp = f_domain_m? M : 1;
f->dft_forward_setup = rdft_forward_setup(dft_length / Lp);
f->dft_backward_setup = rdft_backward_setup(dft_length / Mp);
if (Mp == 1)
rdft_forward(dft_length, coef_setup, f->coefs, p->dft_scratch);
else
rdft_oforward(dft_length, coef_setup, f->coefs, p->dft_scratch);
rdft_delete_setup(coef_setup);
f->num_taps = num_taps;
f->dft_length = dft_length;
lsx_debug("fir_len=%i dft_length=%i Fp=%g Fs=%g Fn=%g att=%g %i/%i",
num_taps, dft_length, Fp, Fs, Fn, att, L, M);
}
*multiplier = 1;
p->out_in_ratio = (double)L / M;
p->type = dft_stage;
p->fn = dft_stage_fn;
p->preload = f->post_peak / L;
p->at.integer = f->post_peak % L;
p->L = L;
p->step.integer = f_domain_m? -M/2 : M;
p->dft_filter_num = instance;
p->block_len = f->dft_length - (f->num_taps - 1);
p->phase0 = p->at.integer / p->L;
}
#include "filters.h"
typedef struct {
double factor;
uint64_t samples_in, samples_out;
int num_stages;
stage_t * stages;
} rate_t;
#define pre_stage p->stages[shift]
#define arb_stage p->stages[shift + have_pre_stage]
#define post_stage p->stages[shift + have_pre_stage + have_arb_stage]
#define have_pre_stage (preM * preL != 1)
#define have_arb_stage (arbM * arbL != 1)
#define have_post_stage (postM * postL != 1)
#define TO_3dB(a) ((1.6e-6*a-7.5e-4)*a+.646)
#define LOW_Q_BW0 (1385 / 2048.) /* 0.67625 rounded to be a FP exact. */
typedef enum {
rolloff_none, rolloff_small /* <= 0.01 dB */, rolloff_medium /* <= 0.35 dB */
} rolloff_t;
static char const * rate_init(
/* Private work areas (to be supplied by the client): */
rate_t * p, /* Per audio channel. */
rate_shared_t * shared, /* Between channels (undergoing same rate change)*/
/* Public parameters: Typically */
double factor, /* Input rate divided by output rate. */
double bits, /* Required bit-accuracy (pass + stop) 16|20|28 */
double phase, /* Linear/minimum etc. filter phase. 50 */
double passband_end, /* 0dB pt. bandwidth to preserve; nyquist=1 0.913*/
double stopband_begin, /* Aliasing/imaging control; > passband_end 1 */
rolloff_t rolloff, /* Pass-band roll-off small */
bool maintain_3dB_pt, /* true */
double multiplier, /* Linear gain to apply during conversion. 1 */
/* Primarily for test/development purposes: */
bool use_hi_prec_clock, /* Increase irrational ratio accuracy. false */
int interpolator, /* Force a particular coef interpolator. -1 */
size_t max_coefs_size, /* k bytes of coefs to try to keep below. 400 */
bool noSmallIntOpt, /* Disable small integer optimisations. false */
int log2_min_dft_size,
int log2_large_dft_size)
{
double att = (bits + 1) * linear_to_dB(2.), attArb = att; /* pass + stop */
double tbw0 = 1 - passband_end, Fs_a = stopband_begin;
double arbM = factor, tbw_tighten = 1;
int n = 0, i, preL = 1, preM = 1, shift = 0, arbL = 1, postL = 1, postM = 1;
bool upsample = false, rational = false, iOpt = !noSmallIntOpt;
int mode = rolloff > rolloff_small? factor > 1 || passband_end > LOW_Q_BW0:
(int)ceil(2 + (bits - 17) / 4);
stage_t * s;
assert(factor > 0);
assert(!bits || (15 <= bits && bits <= 33));
assert(0 <= phase && phase <= 100);
assert(.53 <= passband_end);
assert(stopband_begin <= 1.2);
assert(passband_end + .005 < stopband_begin);
p->factor = factor;
if (bits) while (!n++) { /* Determine stages: */
int try, L, M, x, maxL = interpolator > 0? 1 : mode? 2048 :
(int)ceil((double)max_coefs_size * 1000. / (U100_l * sizeof(sample_t)));
double d, epsilon = 0, frac;
upsample = arbM < 1;
for (i = (int)(arbM * .5), shift = 0; i >>= 1; arbM *= .5, ++shift);
preM = upsample || (arbM > 1.5 && arbM < 2);
postM = 1 + (arbM > 1 && preM), arbM /= postM;
preL = 1 + (!preM && arbM < 2) + (upsample && mode), arbM *= preL;
if ((frac = arbM - (int)arbM))
epsilon = fabs((uint32_t)(frac * MULT32 + .5) / (frac * MULT32) - 1);
for (i = 1, rational = !frac; i <= maxL && !rational; ++i) {
d = frac * i, try = (int)(d + .5);
if ((rational = fabs(try / d - 1) <= epsilon)) { /* No long doubles! */
if (try == i)
arbM = ceil(arbM), shift += arbM > 2, arbM /= 1 + (arbM > 2);
else arbM = i * (int)arbM + try, arbL = i;
}
}
L = preL * arbL, M = (int)(arbM * postM), x = (L|M)&1, L >>= !x, M >>= !x;
if (iOpt && postL == 1 && (d = preL * arbL / arbM) > 4 && d != 5) {
for (postL = 4, i = (int)(d / 16); (i >>= 1) && postL < 256; postL <<= 1);
arbM = arbM * postL / arbL / preL, arbL = 1, n = 0;
} else if (rational && (max(L, M) < 3 + 2 * iOpt || L * M < 6 * iOpt))
preL = L, preM = M, arbM = arbL = postM = 1;
if (!mode && (!rational || !n))
++mode, n = 0;
}
p->num_stages = shift + have_pre_stage + have_arb_stage + have_post_stage;
if (!p->num_stages && multiplier != 1) {
bits = arbL = 0; /* Use cubic_stage in this case. */
++p->num_stages;
}
p->stages = calloc((size_t)p->num_stages + 1, sizeof(*p->stages));
for (i = 0; i < p->num_stages; ++i)
p->stages[i].shared = shared;
if ((n = p->num_stages) > 1) { /* Att. budget: */
if (have_arb_stage)
att += linear_to_dB(2.), attArb = att, --n;
att += linear_to_dB((double)n);
}
for (n = 0; (size_t)n + 1 < array_length(half_firs) && att > half_firs[n].att; ++n);
for (i = 0, s = p->stages; i < shift; ++i, ++s) {
s->type = half_stage;
s->fn = half_firs[n].fn;
s->pre_post = 4 * half_firs[n].num_coefs;
s->preload = s->pre = s->pre_post >> 1;
}
if (have_pre_stage) {
if (maintain_3dB_pt && have_post_stage) { /* Trans. bands overlapping. */
double tbw3 = tbw0 * TO_3dB(att); /* FFS: consider Fs_a. */
double x = ((2.1429e-4 - 5.2083e-7 * att) * att - .015863) * att + 3.95;
x = att * pow((tbw0 - tbw3) / (postM / (factor * postL) - 1 + tbw0), x);
if (x > .035) {
tbw_tighten = ((4.3074e-3 - 3.9121e-4 * x) * x - .040009) * x + 1.0014;
lsx_debug("x=%g tbw_tighten=%g", x, tbw_tighten);
}
}
dft_stage_init(0, 1 - tbw0 * tbw_tighten, Fs_a, preM? max(preL, preM) :
arbM / arbL, att, phase, &pre_stage, preL, max(preM, 1), &multiplier,
log2_min_dft_size, log2_large_dft_size);
}
if (!bits && have_arb_stage) { /* `Quick' cubic arb stage: */
arb_stage.type = cubic_stage;
arb_stage.fn = cubic_stage_fn;
arb_stage.mult = multiplier, multiplier = 1;
arb_stage.step.whole = (int64_t)(arbM * MULT32 + .5);
arb_stage.pre_post = max(3, arb_stage.step.integer);
arb_stage.preload = arb_stage.pre = 1;
arb_stage.out_in_ratio = MULT32 / (double)arb_stage.step.whole;
}
else if (have_arb_stage) { /* Higher quality arb stage: */
poly_fir_t const * f = &poly_firs[6*(upsample + !!preM) + mode - !upsample];
int order, num_coefs = (int)f->interp[0].scalar, phase_bits, phases;
size_t coefs_size;
double x = .5, at, Fp, Fs, Fn, mult = upsample? 1 : arbL / arbM;
poly_fir1_t const * f1;
Fn = !upsample && preM? x = arbM / arbL : 1;
Fp = !preM? mult : mode? .5 : 1;
Fs = 2 - Fp; /* Ignore Fs_a; it would have little benefit here. */
Fp *= 1 - tbw0;
if (rolloff > rolloff_small && mode)
Fp = !preM? mult * .5 - .125 : mult * .05 + .1;
else if (rolloff == rolloff_small)
Fp = Fs - (Fs - .148 * x - Fp * .852) * (.00813 * bits + .973);
i = (interpolator < 0? !rational : max(interpolator, !rational)) - 1;
do {
f1 = &f->interp[++i];
assert(f1->fn);
if (i)
arbM /= arbL, arbL = 1, rational = false;
phase_bits = (int)ceil(f1->scalar + log(mult)/log(2.));
phases = !rational? (1 << phase_bits) : arbL;
if (!f->interp[0].scalar) {
int phases0 = max(phases, 19), n0 = 0;
lsx_design_lpf(Fp, Fs, -Fn, attArb, &n0, phases0, f->beta);
num_coefs = n0 / phases0 + 1, num_coefs += num_coefs & !preM;
}
if ((num_coefs & 1) && rational && (arbL & 1))
phases <<= 1, arbL <<= 1, arbM *= 2;
at = arbL * (arb_stage.phase0 = .5 * (num_coefs & 1));
order = i + (i && mode > 4);
coefs_size = (size_t)(num_coefs4 * phases * (order + 1)) * sizeof(sample_t);
} while (interpolator < 0 && i < 2 && f->interp[i+1].fn &&
coefs_size / 1000 > max_coefs_size);
if (!arb_stage.shared->poly_fir_coefs) {
int num_taps = num_coefs * phases - 1;
raw_coef_t * coefs = lsx_design_lpf(
Fp, Fs, Fn, attArb, &num_taps, phases, f->beta);
arb_stage.shared->poly_fir_coefs = prepare_coefs(
coefs, num_coefs, phases, order, multiplier);
lsx_debug("fir_len=%i phases=%i coef_interp=%i size=%.3gk",
num_coefs, phases, order, (double)coefs_size / 1000.);
free(coefs);
}
multiplier = 1;
arb_stage.type = rational? rational_stage : irrational_stage;
arb_stage.fn = f1->fn;
arb_stage.pre_post = num_coefs4 - 1;
arb_stage.preload = ((num_coefs - 1) >> 1) + (num_coefs4 - num_coefs);
arb_stage.n = num_coefs4;
arb_stage.phase_bits = phase_bits;
arb_stage.L = arbL;
arb_stage.use_hi_prec_clock = mode > 1 && use_hi_prec_clock && !rational;
#if FLOAT_HI_PREC_CLOCK
if (arb_stage.use_hi_prec_clock) {
arb_stage.at.flt = at;
arb_stage.step.flt = arbM;
arb_stage.out_in_ratio = (double)(arbL / arb_stage.step.flt);
} else
#endif
{
arb_stage.at.whole = (int64_t)(at * MULT32 + .5);
#if !FLOAT_HI_PREC_CLOCK
if (arb_stage.use_hi_prec_clock) {
arb_stage.at.fix.ls.parts.ms = 0x80000000ul;
arbM *= MULT32;
arb_stage.step.whole = (int64_t)arbM;
arbM -= (double)arb_stage.step.whole;
arbM *= MULT32 * MULT32;
arb_stage.step.fix.ls.all = (uint64_t)arbM;
} else
#endif
arb_stage.step.whole = (int64_t)(arbM * MULT32 + .5);
arb_stage.out_in_ratio = MULT32 * arbL / (double)arb_stage.step.whole;
}
}
if (have_post_stage)
dft_stage_init(1, 1 - (1 - (1 - tbw0) *
(upsample? factor * postL / postM : 1)) * tbw_tighten, Fs_a,
(double)max(postL, postM), att, phase, &post_stage, postL, postM,
&multiplier, log2_min_dft_size, log2_large_dft_size);
lsx_debug("%g: »%i⋅%i/%i⋅%i/%g⋅%i/%i",
1/factor, shift, preL, preM, arbL, arbM, postL, postM);
for (i = 0, s = p->stages; i < p->num_stages; ++i, ++s) {
fifo_create(&s->fifo, (int)sizeof(sample_t));
memset(fifo_reserve(&s->fifo, s->preload), 0, sizeof(sample_t) * (size_t)s->preload);
lsx_debug("%5i|%-5i preload=%i remL=%i o/i=%g",
s->pre, s->pre_post - s->pre, s->preload, s->at.integer, s->out_in_ratio);
}
fifo_create(&s->fifo, (int)sizeof(sample_t));
return 0;
}
static void rate_process(rate_t * p)
{
stage_t * stage = p->stages;
int i;
for (i = 0; i < p->num_stages; ++i, ++stage)
stage->fn(stage, &(stage+1)->fifo);
}
static sample_t * rate_input(rate_t * p, sample_t const * samples, size_t n)
{
p->samples_in += n;
return fifo_write(&p->stages[0].fifo, (int)n, samples);
}
static sample_t const * rate_output(rate_t * p, sample_t * samples, size_t * n)
{
fifo_t * fifo = &p->stages[p->num_stages].fifo;
p->samples_out += *n = min(*n, (size_t)fifo_occupancy(fifo));
return fifo_read(fifo, (int)*n, samples);
}
static void rate_flush(rate_t * p)
{
fifo_t * fifo = &p->stages[p->num_stages].fifo;
#if defined _MSC_VER && _MSC_VER == 1200
uint64_t samples_out = (uint64_t)(int64_t)((double)(int64_t)p->samples_in / p->factor + .5);
#else
uint64_t samples_out = (uint64_t)((double)p->samples_in / p->factor + .5);
#endif
size_t remaining = (size_t)(samples_out - p->samples_out);
if ((size_t)fifo_occupancy(fifo) < remaining) {
uint64_t samples_in = p->samples_in;
sample_t * buff = calloc(1024, sizeof(*buff));
while ((size_t)fifo_occupancy(fifo) < remaining) {
rate_input(p, buff, 1024);
rate_process(p);
}
fifo_trim_to(fifo, (int)remaining);
p->samples_in = samples_in;
free(buff);
}
}
static void rate_close(rate_t * p)
{
rate_shared_t * shared = p->stages[0].shared;
int i;
for (i = 0; i <= p->num_stages; ++i) {
stage_t * s = &p->stages[i];
aligned_free(s->dft_scratch);
aligned_free(s->dft_out);
fifo_delete(&s->fifo);
}
if (shared) {
for (i = 0; i < 2; ++i) {
dft_filter_t * f= &shared->dft_filter[i];
aligned_free(f->coefs);
rdft_delete_setup(f->dft_forward_setup);
rdft_delete_setup(f->dft_backward_setup);
}
free(shared->poly_fir_coefs);
memset(shared, 0, sizeof(*shared));
}
free(p->stages);
}
#if defined SOXR_LIB
static double rate_delay(rate_t * p)
{
#if defined _MSC_VER && _MSC_VER == 1200
double samples_out = (double)(int64_t)p->samples_in / p->factor;
return max(0, samples_out - (double)(int64_t)p->samples_out);
#else
double samples_out = (double)p->samples_in / p->factor;
return max(0, samples_out - (double)p->samples_out);
#endif
}
static void rate_sizes(size_t * shared, size_t * channel)
{
*shared = sizeof(rate_shared_t);
*channel = sizeof(rate_t);
}
#include "soxr.h"
static char const * rate_create(
void * channel,
void * shared,
double io_ratio,
soxr_quality_spec_t * q_spec,
soxr_runtime_spec_t * r_spec,
double scale)
{
return rate_init(
channel, shared,
io_ratio,
q_spec->precision,
q_spec->phase_response,
q_spec->passband_end,
q_spec->stopband_begin,
"\1\2\0"[q_spec->flags & 3],
!!(q_spec->flags & SOXR_MAINTAIN_3DB_PT),
scale,
!!(q_spec->flags & SOXR_HI_PREC_CLOCK),
(int)(r_spec->flags & 3) - 1,
r_spec->coef_size_kbytes,
!!(r_spec->flags & SOXR_NOSMALLINTOPT),
(int)r_spec->log2_min_dft_size,
(int)r_spec->log2_large_dft_size);
}
static char const * id(void)
{
return RATE_ID;
}
fn_t RATE_CB[] = {
(fn_t)rate_input,
(fn_t)rate_process,
(fn_t)rate_output,
(fn_t)rate_flush,
(fn_t)rate_close,
(fn_t)rate_delay,
(fn_t)rate_sizes,
(fn_t)rate_create,
(fn_t)0,
(fn_t)id,
};
#endif