boo/lib/graphicsdev/GL.cpp

1949 lines
73 KiB
C++

#include "boo/graphicsdev/GL.hpp"
#include "boo/graphicsdev/glew.h"
#include "boo/IApplication.hpp"
#include "Common.hpp"
#include <thread>
#include <condition_variable>
#include <array>
#include <unordered_map>
#include <unordered_set>
#include "xxhash/xxhash.h"
#include "glslang/Public/ShaderLang.h"
#include "glslang/Include/Types.h"
#include "StandAlone/ResourceLimits.h"
#if _WIN32
#include "../win/WinCommon.hpp"
#endif
#include "logvisor/logvisor.hpp"
#undef min
#undef max
static const char* GammaVS = "#version 330\n" BOO_GLSL_BINDING_HEAD
"layout(location=0) in vec4 posIn;\n"
"layout(location=1) in vec4 uvIn;\n"
"\n"
"struct VertToFrag\n"
"{\n"
" vec2 uv;\n"
"};\n"
"\n"
"SBINDING(0) out VertToFrag vtf;\n"
"void main()\n"
"{\n"
" vtf.uv = uvIn.xy;\n"
" gl_Position = posIn;\n"
"}\n";
static const char* GammaFS = "#version 330\n" BOO_GLSL_BINDING_HEAD
"struct VertToFrag\n"
"{\n"
" vec2 uv;\n"
"};\n"
"\n"
"SBINDING(0) in VertToFrag vtf;\n"
"layout(location=0) out vec4 colorOut;\n"
"TBINDING0 uniform sampler2D screenTex;\n"
"TBINDING1 uniform sampler2D gammaLUT;\n"
"void main()\n"
"{\n"
" ivec4 tex = ivec4(texture(screenTex, vtf.uv) * 65535.0);\n"
" for (int i=0 ; i<3 ; ++i)\n"
" colorOut[i] = texelFetch(gammaLUT, ivec2(tex[i] % 256, tex[i] / 256), 0).r;\n"
"}\n";
namespace boo {
static logvisor::Module Log("boo::GL");
class GLDataFactoryImpl;
struct GLCommandQueue;
class GLDataFactoryImpl : public GLDataFactory, public GraphicsDataFactoryHead {
friend struct GLCommandQueue;
friend class GLDataFactory::Context;
IGraphicsContext* m_parent;
GLContext* m_glCtx;
bool m_hasTessellation = false;
uint32_t m_maxPatchSize = 0;
float m_gamma = 1.f;
ObjToken<IShaderPipeline> m_gammaShader;
ObjToken<ITextureD> m_gammaLUT;
ObjToken<IGraphicsBufferS> m_gammaVBO;
ObjToken<IShaderDataBinding> m_gammaBinding;
void SetupGammaResources() {
/* Good enough place for this */
if (!glslang::InitializeProcess())
Log.report(logvisor::Error, "unable to initialize glslang");
if (GLEW_ARB_tessellation_shader) {
m_hasTessellation = true;
GLint maxPVerts = 0;
glGetIntegerv(GL_MAX_PATCH_VERTICES, &maxPVerts);
m_maxPatchSize = uint32_t(maxPVerts);
}
glEnable(GL_TEXTURE_CUBE_MAP_SEAMLESS);
commitTransaction([this](IGraphicsDataFactory::Context& ctx) {
auto vertex = ctx.newShaderStage((uint8_t*)GammaVS, 0, PipelineStage::Vertex);
auto fragment = ctx.newShaderStage((uint8_t*)GammaFS, 0, PipelineStage::Fragment);
AdditionalPipelineInfo info = {
BlendFactor::One, BlendFactor::Zero, Primitive::TriStrips, ZTest::None, false, true, false, CullMode::None};
const VertexElementDescriptor vfmt[] = {{VertexSemantic::Position4}, {VertexSemantic::UV4}};
m_gammaShader = ctx.newShaderPipeline(vertex, fragment, vfmt, info);
m_gammaLUT = ctx.newDynamicTexture(256, 256, TextureFormat::I16, TextureClampMode::ClampToEdge);
const struct Vert {
float pos[4];
float uv[4];
} verts[4] = {{{-1.f, -1.f, 0.f, 1.f}, {0.f, 0.f, 0.f, 0.f}},
{{1.f, -1.f, 0.f, 1.f}, {1.f, 0.f, 0.f, 0.f}},
{{-1.f, 1.f, 0.f, 1.f}, {0.f, 1.f, 0.f, 0.f}},
{{1.f, 1.f, 0.f, 1.f}, {1.f, 1.f, 0.f, 0.f}}};
m_gammaVBO = ctx.newStaticBuffer(BufferUse::Vertex, verts, 32, 4);
ObjToken<ITexture> texs[] = {{}, m_gammaLUT.get()};
m_gammaBinding = ctx.newShaderDataBinding(m_gammaShader, m_gammaVBO.get(), {}, {}, 0, nullptr, nullptr, 2, texs,
nullptr, nullptr);
return true;
} BooTrace);
}
void DestroyGammaResources() {
m_gammaBinding.reset();
m_gammaVBO.reset();
m_gammaLUT.reset();
m_gammaShader.reset();
}
public:
GLDataFactoryImpl(IGraphicsContext* parent, GLContext* glCtx) : m_parent(parent), m_glCtx(glCtx) {}
Platform platform() const { return Platform::OpenGL; }
const SystemChar* platformName() const { return _SYS_STR("OpenGL"); }
void commitTransaction(const FactoryCommitFunc& trans __BooTraceArgs);
ObjToken<IGraphicsBufferD> newPoolBuffer(BufferUse use, size_t stride, size_t count __BooTraceArgs);
void setDisplayGamma(float gamma) {
m_gamma = gamma;
if (gamma != 1.f)
UpdateGammaLUT(m_gammaLUT.get(), gamma);
}
bool isTessellationSupported(uint32_t& maxPatchSizeOut) {
maxPatchSizeOut = m_maxPatchSize;
return m_hasTessellation;
}
};
static const GLenum USE_TABLE[] = {GL_INVALID_ENUM, GL_ARRAY_BUFFER, GL_ELEMENT_ARRAY_BUFFER, GL_UNIFORM_BUFFER};
class GLGraphicsBufferS : public GraphicsDataNode<IGraphicsBufferS> {
friend class GLDataFactory;
friend struct GLCommandQueue;
GLuint m_buf;
GLenum m_target;
GLGraphicsBufferS(const ObjToken<BaseGraphicsData>& parent, BufferUse use, const void* data, size_t sz)
: GraphicsDataNode<IGraphicsBufferS>(parent) {
m_target = USE_TABLE[int(use)];
glGenBuffers(1, &m_buf);
glBindBuffer(m_target, m_buf);
glBufferData(m_target, sz, data, GL_STATIC_DRAW);
}
public:
~GLGraphicsBufferS() { glDeleteBuffers(1, &m_buf); }
void bindVertex() const { glBindBuffer(GL_ARRAY_BUFFER, m_buf); }
void bindIndex() const { glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, m_buf); }
void bindUniform(size_t idx) const { glBindBufferBase(GL_UNIFORM_BUFFER, idx, m_buf); }
void bindUniformRange(size_t idx, GLintptr off, GLsizeiptr size) const {
glBindBufferRange(GL_UNIFORM_BUFFER, idx, m_buf, off, size);
}
};
template <class DataCls>
class GLGraphicsBufferD : public GraphicsDataNode<IGraphicsBufferD, DataCls> {
friend class GLDataFactory;
friend class GLDataFactoryImpl;
friend struct GLCommandQueue;
GLuint m_bufs[3];
GLenum m_target;
std::unique_ptr<uint8_t[]> m_cpuBuf;
size_t m_cpuSz = 0;
int m_validMask = 0;
GLGraphicsBufferD(const ObjToken<DataCls>& parent, BufferUse use, size_t sz)
: GraphicsDataNode<IGraphicsBufferD, DataCls>(parent)
, m_target(USE_TABLE[int(use)])
, m_cpuBuf(new uint8_t[sz])
, m_cpuSz(sz) {
glGenBuffers(3, m_bufs);
for (int i = 0; i < 3; ++i) {
glBindBuffer(m_target, m_bufs[i]);
glBufferData(m_target, m_cpuSz, nullptr, GL_STREAM_DRAW);
}
}
public:
~GLGraphicsBufferD() { glDeleteBuffers(3, m_bufs); }
void update(int b) {
int slot = 1 << b;
if ((slot & m_validMask) == 0) {
glBindBuffer(m_target, m_bufs[b]);
glBufferSubData(m_target, 0, m_cpuSz, m_cpuBuf.get());
m_validMask |= slot;
}
}
void load(const void* data, size_t sz) {
size_t bufSz = std::min(sz, m_cpuSz);
memcpy(m_cpuBuf.get(), data, bufSz);
m_validMask = 0;
}
void* map(size_t sz) {
if (sz > m_cpuSz)
return nullptr;
return m_cpuBuf.get();
}
void unmap() { m_validMask = 0; }
void bindVertex(int b) { glBindBuffer(GL_ARRAY_BUFFER, m_bufs[b]); }
void bindIndex(int b) { glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, m_bufs[b]); }
void bindUniform(size_t idx, int b) { glBindBufferBase(GL_UNIFORM_BUFFER, idx, m_bufs[b]); }
void bindUniformRange(size_t idx, GLintptr off, GLsizeiptr size, int b) {
glBindBufferRange(GL_UNIFORM_BUFFER, idx, m_bufs[b], off, size);
}
};
ObjToken<IGraphicsBufferS> GLDataFactory::Context::newStaticBuffer(BufferUse use, const void* data, size_t stride,
size_t count) {
BOO_MSAN_NO_INTERCEPT
return {new GLGraphicsBufferS(m_data, use, data, stride * count)};
}
static void SetClampMode(GLenum target, TextureClampMode clampMode) {
switch (clampMode) {
case TextureClampMode::Repeat: {
glTexParameteri(target, GL_TEXTURE_WRAP_S, GL_REPEAT);
glTexParameteri(target, GL_TEXTURE_WRAP_T, GL_REPEAT);
glTexParameteri(target, GL_TEXTURE_WRAP_R, GL_REPEAT);
break;
}
case TextureClampMode::ClampToWhite: {
glTexParameteri(target, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_BORDER);
glTexParameteri(target, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_BORDER);
glTexParameteri(target, GL_TEXTURE_WRAP_R, GL_CLAMP_TO_BORDER);
GLfloat color[] = {1.f, 1.f, 1.f, 1.f};
glTexParameterfv(target, GL_TEXTURE_BORDER_COLOR, color);
break;
}
case TextureClampMode::ClampToBlack: {
glTexParameteri(target, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_BORDER);
glTexParameteri(target, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_BORDER);
glTexParameteri(target, GL_TEXTURE_WRAP_R, GL_CLAMP_TO_BORDER);
GLfloat color[] = {0.f, 0.f, 0.f, 1.f};
glTexParameterfv(target, GL_TEXTURE_BORDER_COLOR, color);
break;
}
case TextureClampMode::ClampToEdge: {
glTexParameteri(target, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(target, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
glTexParameteri(target, GL_TEXTURE_WRAP_R, GL_CLAMP_TO_EDGE);
break;
}
case TextureClampMode::ClampToEdgeNearest: {
glTexParameteri(target, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(target, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
glTexParameteri(target, GL_TEXTURE_WRAP_R, GL_CLAMP_TO_EDGE);
glTexParameteri(target, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
glTexParameteri(target, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
break;
}
default:
break;
}
}
class GLTextureS : public GraphicsDataNode<ITextureS> {
friend class GLDataFactory;
GLuint m_tex;
TextureClampMode m_clampMode = TextureClampMode::Invalid;
GLTextureS(const ObjToken<BaseGraphicsData>& parent, size_t width, size_t height, size_t mips, TextureFormat fmt,
TextureClampMode clampMode, GLint aniso, const void* data, size_t sz)
: GraphicsDataNode<ITextureS>(parent) {
const uint8_t* dataIt = static_cast<const uint8_t*>(data);
glGenTextures(1, &m_tex);
glBindTexture(GL_TEXTURE_2D, m_tex);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
if (mips > 1) {
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAX_LEVEL, mips - 1);
} else
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
if (GLEW_EXT_texture_filter_anisotropic)
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAX_ANISOTROPY_EXT, aniso);
SetClampMode(GL_TEXTURE_2D, clampMode);
GLenum intFormat, format;
int pxPitch;
bool compressed = false;
switch (fmt) {
case TextureFormat::RGBA8:
intFormat = GL_RGBA8;
format = GL_RGBA;
pxPitch = 4;
break;
case TextureFormat::I8:
intFormat = GL_R8;
format = GL_RED;
pxPitch = 1;
break;
case TextureFormat::I16:
intFormat = GL_R16;
format = GL_RED;
pxPitch = 2;
break;
case TextureFormat::DXT1:
intFormat = GL_COMPRESSED_RGBA_S3TC_DXT1_EXT;
compressed = true;
pxPitch = 2;
break;
case TextureFormat::DXT3:
intFormat = GL_COMPRESSED_RGBA_S3TC_DXT3_EXT;
compressed = true;
pxPitch = 1;
break;
default:
Log.report(logvisor::Fatal, "unsupported tex format");
}
if (compressed) {
for (size_t i = 0; i < mips; ++i) {
size_t dataSz = width * height / pxPitch;
glCompressedTexImage2D(GL_TEXTURE_2D, i, intFormat, width, height, 0, dataSz, dataIt);
dataIt += dataSz;
if (width > 1)
width /= 2;
if (height > 1)
height /= 2;
}
} else {
GLenum compType = intFormat == GL_R16 ? GL_UNSIGNED_SHORT : GL_UNSIGNED_BYTE;
for (size_t i = 0; i < mips; ++i) {
glTexImage2D(GL_TEXTURE_2D, i, intFormat, width, height, 0, format, compType, dataIt);
dataIt += width * height * pxPitch;
if (width > 1)
width /= 2;
if (height > 1)
height /= 2;
}
}
}
public:
~GLTextureS() { glDeleteTextures(1, &m_tex); }
void setClampMode(TextureClampMode mode) {
if (m_clampMode == mode)
return;
m_clampMode = mode;
glBindTexture(GL_TEXTURE_2D, m_tex);
SetClampMode(GL_TEXTURE_2D, mode);
}
void bind(size_t idx) const {
glActiveTexture(GL_TEXTURE0 + idx);
glBindTexture(GL_TEXTURE_2D, m_tex);
}
};
class GLTextureSA : public GraphicsDataNode<ITextureSA> {
friend class GLDataFactory;
GLuint m_tex;
TextureClampMode m_clampMode = TextureClampMode::Invalid;
GLTextureSA(const ObjToken<BaseGraphicsData>& parent, size_t width, size_t height, size_t layers, size_t mips,
TextureFormat fmt, TextureClampMode clampMode, GLint aniso, const void* data, size_t sz)
: GraphicsDataNode<ITextureSA>(parent) {
const uint8_t* dataIt = static_cast<const uint8_t*>(data);
glGenTextures(1, &m_tex);
glBindTexture(GL_TEXTURE_2D_ARRAY, m_tex);
glTexParameteri(GL_TEXTURE_2D_ARRAY, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
if (mips > 1) {
glTexParameteri(GL_TEXTURE_2D_ARRAY, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR);
glTexParameteri(GL_TEXTURE_2D_ARRAY, GL_TEXTURE_MAX_LEVEL, mips - 1);
} else
glTexParameteri(GL_TEXTURE_2D_ARRAY, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
if (GLEW_EXT_texture_filter_anisotropic)
glTexParameteri(GL_TEXTURE_2D_ARRAY, GL_TEXTURE_MAX_ANISOTROPY_EXT, aniso);
SetClampMode(GL_TEXTURE_2D_ARRAY, clampMode);
GLenum intFormat = 0, format = 0;
int pxPitch = 0;
switch (fmt) {
case TextureFormat::RGBA8:
intFormat = GL_RGBA8;
format = GL_RGBA;
pxPitch = 4;
break;
case TextureFormat::I8:
intFormat = GL_R8;
format = GL_RED;
pxPitch = 1;
break;
case TextureFormat::I16:
intFormat = GL_R16;
format = GL_RED;
pxPitch = 2;
break;
default:
Log.report(logvisor::Fatal, "unsupported tex format");
}
GLenum compType = intFormat == GL_R16 ? GL_UNSIGNED_SHORT : GL_UNSIGNED_BYTE;
for (size_t i = 0; i < mips; ++i) {
glTexImage3D(GL_TEXTURE_2D_ARRAY, i, intFormat, width, height, layers, 0, format, compType, dataIt);
dataIt += width * height * layers * pxPitch;
if (width > 1)
width /= 2;
if (height > 1)
height /= 2;
}
}
public:
~GLTextureSA() { glDeleteTextures(1, &m_tex); }
void setClampMode(TextureClampMode mode) {
if (m_clampMode == mode)
return;
m_clampMode = mode;
glBindTexture(GL_TEXTURE_2D_ARRAY, m_tex);
SetClampMode(GL_TEXTURE_2D_ARRAY, mode);
}
void bind(size_t idx) const {
glActiveTexture(GL_TEXTURE0 + idx);
glBindTexture(GL_TEXTURE_2D_ARRAY, m_tex);
}
};
class GLTextureD : public GraphicsDataNode<ITextureD> {
friend class GLDataFactory;
friend struct GLCommandQueue;
GLuint m_texs[3];
std::unique_ptr<uint8_t[]> m_cpuBuf;
size_t m_cpuSz = 0;
GLenum m_intFormat, m_format;
size_t m_width = 0;
size_t m_height = 0;
int m_validMask = 0;
TextureClampMode m_clampMode = TextureClampMode::Invalid;
GLTextureD(const ObjToken<BaseGraphicsData>& parent, size_t width, size_t height, TextureFormat fmt,
TextureClampMode clampMode)
: GraphicsDataNode<ITextureD>(parent), m_width(width), m_height(height) {
int pxPitch = 4;
switch (fmt) {
case TextureFormat::RGBA8:
m_intFormat = GL_RGBA8;
m_format = GL_RGBA;
pxPitch = 4;
break;
case TextureFormat::I8:
m_intFormat = GL_R8;
m_format = GL_RED;
pxPitch = 1;
break;
case TextureFormat::I16:
m_intFormat = GL_R16;
m_format = GL_RED;
pxPitch = 2;
break;
default:
Log.report(logvisor::Fatal, "unsupported tex format");
}
m_cpuSz = width * height * pxPitch;
m_cpuBuf.reset(new uint8_t[m_cpuSz]);
GLenum compType = m_intFormat == GL_R16 ? GL_UNSIGNED_SHORT : GL_UNSIGNED_BYTE;
glGenTextures(3, m_texs);
for (int i = 0; i < 3; ++i) {
glBindTexture(GL_TEXTURE_2D, m_texs[i]);
glTexImage2D(GL_TEXTURE_2D, 0, m_intFormat, width, height, 0, m_format, compType, nullptr);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
SetClampMode(GL_TEXTURE_2D, clampMode);
}
}
public:
~GLTextureD() { glDeleteTextures(3, m_texs); }
void update(int b) {
int slot = 1 << b;
if ((slot & m_validMask) == 0) {
glBindTexture(GL_TEXTURE_2D, m_texs[b]);
GLenum compType = m_intFormat == GL_R16 ? GL_UNSIGNED_SHORT : GL_UNSIGNED_BYTE;
glTexImage2D(GL_TEXTURE_2D, 0, m_intFormat, m_width, m_height, 0, m_format, compType, m_cpuBuf.get());
m_validMask |= slot;
}
}
void load(const void* data, size_t sz) {
size_t bufSz = std::min(sz, m_cpuSz);
memcpy(m_cpuBuf.get(), data, bufSz);
m_validMask = 0;
}
void* map(size_t sz) {
if (sz > m_cpuSz)
return nullptr;
return m_cpuBuf.get();
}
void unmap() { m_validMask = 0; }
void setClampMode(TextureClampMode mode) {
if (m_clampMode == mode)
return;
m_clampMode = mode;
for (int i = 0; i < 3; ++i) {
glBindTexture(GL_TEXTURE_2D, m_texs[i]);
SetClampMode(GL_TEXTURE_2D, mode);
}
}
void bind(size_t idx, int b) {
glActiveTexture(GL_TEXTURE0 + idx);
glBindTexture(GL_TEXTURE_2D, m_texs[b]);
}
};
#define MAX_BIND_TEXS 4
class GLTextureR : public GraphicsDataNode<ITextureR> {
friend class GLDataFactory;
friend struct GLCommandQueue;
struct GLCommandQueue* m_q;
GLuint m_texs[2] = {};
GLuint m_bindTexs[2][MAX_BIND_TEXS] = {};
GLuint m_bindFBOs[2][MAX_BIND_TEXS] = {};
GLuint m_fbo = 0;
size_t m_width = 0;
size_t m_height = 0;
size_t m_samples = 0;
GLenum m_colorFormat;
size_t m_colorBindCount;
size_t m_depthBindCount;
GLTextureR(const ObjToken<BaseGraphicsData>& parent, GLCommandQueue* q, size_t width, size_t height, size_t samples,
GLenum colorFormat, TextureClampMode clampMode, size_t colorBindCount, size_t depthBindCount);
public:
~GLTextureR() {
glDeleteTextures(2, m_texs);
glDeleteTextures(MAX_BIND_TEXS * 2, m_bindTexs[0]);
if (m_samples > 1)
glDeleteFramebuffers(MAX_BIND_TEXS * 2, m_bindFBOs[0]);
glDeleteFramebuffers(1, &m_fbo);
}
void setClampMode(TextureClampMode mode) {
for (int i = 0; i < m_colorBindCount; ++i) {
glBindTexture(GL_TEXTURE_2D, m_bindTexs[0][i]);
SetClampMode(GL_TEXTURE_2D, mode);
}
for (int i = 0; i < m_depthBindCount; ++i) {
glBindTexture(GL_TEXTURE_2D, m_bindTexs[1][i]);
SetClampMode(GL_TEXTURE_2D, mode);
}
}
void bind(size_t idx, int bindIdx, bool depth) const {
glActiveTexture(GL_TEXTURE0 + idx);
glBindTexture(GL_TEXTURE_2D, m_bindTexs[depth][bindIdx]);
}
void resize(size_t width, size_t height) {
m_width = width;
m_height = height;
GLenum compType = m_colorFormat == GL_RGBA16 ? GL_UNSIGNED_SHORT : GL_UNSIGNED_BYTE;
if (m_samples > 1) {
glBindTexture(GL_TEXTURE_2D_MULTISAMPLE, m_texs[0]);
glTexImage2DMultisample(GL_TEXTURE_2D_MULTISAMPLE, m_samples, m_colorFormat, width, height, GL_FALSE);
glBindTexture(GL_TEXTURE_2D_MULTISAMPLE, m_texs[1]);
glTexImage2DMultisample(GL_TEXTURE_2D_MULTISAMPLE, m_samples, GL_DEPTH_COMPONENT32F, width, height, GL_FALSE);
} else {
glBindTexture(GL_TEXTURE_2D, m_texs[0]);
glTexImage2D(GL_TEXTURE_2D, 0, m_colorFormat, width, height, 0, GL_RGBA, compType, nullptr);
glBindTexture(GL_TEXTURE_2D, m_texs[1]);
glTexImage2D(GL_TEXTURE_2D, 0, GL_DEPTH_COMPONENT32F, width, height, 0, GL_DEPTH_COMPONENT, GL_UNSIGNED_INT,
nullptr);
glBindFramebuffer(GL_FRAMEBUFFER, m_fbo);
glDepthMask(GL_TRUE);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
}
for (int i = 0; i < MAX_BIND_TEXS; ++i) {
if (m_bindTexs[0][i]) {
glBindTexture(GL_TEXTURE_2D, m_bindTexs[0][i]);
glTexImage2D(GL_TEXTURE_2D, 0, m_colorFormat, width, height, 0, GL_RGBA, compType, nullptr);
}
}
for (int i = 0; i < MAX_BIND_TEXS; ++i) {
if (m_bindTexs[1][i]) {
glBindTexture(GL_TEXTURE_2D, m_bindTexs[1][i]);
glTexImage2D(GL_TEXTURE_2D, 0, GL_DEPTH_COMPONENT32F, width, height, 0, GL_DEPTH_COMPONENT, GL_UNSIGNED_INT,
nullptr);
}
}
}
};
class GLTextureCubeR : public GraphicsDataNode<ITextureCubeR> {
friend class GLDataFactory;
friend struct GLCommandQueue;
struct GLCommandQueue* m_q;
GLuint m_texs[2] = {};
GLuint m_fbos[6] = {};
size_t m_width = 0;
size_t m_mipCount = 0;
GLenum m_colorFormat;
GLTextureCubeR(const ObjToken<BaseGraphicsData>& parent, GLCommandQueue* q, size_t width, size_t mips, GLenum colorFormat);
public:
~GLTextureCubeR() {
glDeleteTextures(2, m_texs);
glDeleteFramebuffers(6, m_fbos);
}
void setClampMode(TextureClampMode mode) {}
void bind(size_t idx) const {
glActiveTexture(GL_TEXTURE0 + idx);
glBindTexture(GL_TEXTURE_CUBE_MAP, m_texs[0]);
}
void _allocateTextures() {
GLenum compType = m_colorFormat == GL_RGBA16 ? GL_UNSIGNED_SHORT : GL_UNSIGNED_BYTE;
glBindTexture(GL_TEXTURE_CUBE_MAP, m_texs[0]);
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MAX_LEVEL, m_mipCount - 1);
for (int f = 0; f < 6; ++f) {
size_t tmpWidth = m_width;
for (int m = 0; m < m_mipCount; ++m) {
glTexImage2D(GL_TEXTURE_CUBE_MAP_POSITIVE_X + f, m, m_colorFormat, tmpWidth, tmpWidth,
0, GL_RGBA, compType, nullptr);
tmpWidth >>= 1;
}
}
glBindTexture(GL_TEXTURE_CUBE_MAP, m_texs[1]);
for (int f = 0; f < 6; ++f)
glTexImage2D(GL_TEXTURE_CUBE_MAP_POSITIVE_X + f, 0, GL_DEPTH_COMPONENT32F, m_width, m_width, 0, GL_DEPTH_COMPONENT,
GL_UNSIGNED_INT, nullptr);
}
void resize(size_t width, size_t mips) {
m_width = width;
m_mipCount = mips;
_allocateTextures();
for (int f = 0; f < 6; ++f) {
glBindFramebuffer(GL_FRAMEBUFFER, m_fbos[f]);
glDepthMask(GL_TRUE);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
}
}
};
ObjToken<ITextureS> GLDataFactory::Context::newStaticTexture(size_t width, size_t height, size_t mips,
TextureFormat fmt, TextureClampMode clampMode,
const void* data, size_t sz) {
GLDataFactoryImpl& factory = static_cast<GLDataFactoryImpl&>(m_parent);
BOO_MSAN_NO_INTERCEPT
return {new GLTextureS(m_data, width, height, mips, fmt, clampMode, factory.m_glCtx->m_anisotropy, data, sz)};
}
ObjToken<ITextureSA> GLDataFactory::Context::newStaticArrayTexture(size_t width, size_t height, size_t layers,
size_t mips, TextureFormat fmt,
TextureClampMode clampMode, const void* data,
size_t sz) {
GLDataFactoryImpl& factory = static_cast<GLDataFactoryImpl&>(m_parent);
BOO_MSAN_NO_INTERCEPT
return {
new GLTextureSA(m_data, width, height, layers, mips, fmt, clampMode, factory.m_glCtx->m_anisotropy, data, sz)};
}
static const GLenum PRIMITIVE_TABLE[] = {GL_TRIANGLES, GL_TRIANGLE_STRIP, GL_PATCHES};
static const GLenum BLEND_FACTOR_TABLE[] = {GL_ZERO, GL_ONE,
GL_SRC_COLOR, GL_ONE_MINUS_SRC_COLOR,
GL_DST_COLOR, GL_ONE_MINUS_DST_COLOR,
GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA,
GL_DST_ALPHA, GL_ONE_MINUS_DST_ALPHA,
GL_SRC1_COLOR, GL_ONE_MINUS_SRC1_COLOR};
static const GLenum SHADER_STAGE_TABLE[] = {
0, GL_VERTEX_SHADER, GL_FRAGMENT_SHADER, GL_GEOMETRY_SHADER, GL_TESS_CONTROL_SHADER, GL_TESS_EVALUATION_SHADER};
class GLShaderStage : public GraphicsDataNode<IShaderStage> {
friend class GLDataFactory;
GLuint m_shad = 0;
std::vector<std::pair<std::string, int>> m_texNames;
std::vector<std::pair<std::string, int>> m_blockNames;
static constexpr EShLanguage ShaderTypes[] = {EShLangVertex, EShLangVertex, EShLangFragment,
EShLangGeometry, EShLangTessControl, EShLangTessEvaluation};
/* Use glslang's reflection API to pull out uniform indices from Vulkan
* version of shader. Aids in glGetUniformBlockIndex and glGetUniformLocation calls */
void BuildNameLists(const char* source, PipelineStage stage) {
EShLanguage lang = ShaderTypes[int(stage)];
const EShMessages messages = EShMessages(EShMsgSpvRules | EShMsgVulkanRules);
glslang::TShader shader(lang);
shader.setStrings(&source, 1);
if (!shader.parse(&glslang::DefaultTBuiltInResource, 110, false, messages)) {
printf("%s\n", source);
Log.report(logvisor::Fatal, "unable to compile shader\n%s", shader.getInfoLog());
}
glslang::TProgram prog;
prog.addShader(&shader);
if (!prog.link(messages)) {
printf("%s\n", source);
Log.report(logvisor::Fatal, "unable to link shader program\n%s", prog.getInfoLog());
}
prog.buildReflection();
int count = prog.getNumLiveUniformVariables();
for (int i = 0; i < count; ++i) {
const glslang::TType* tp = prog.getUniformTType(i);
if (tp->getBasicType() != glslang::TBasicType::EbtSampler)
continue;
const auto& qual = tp->getQualifier();
if (!qual.hasBinding())
Log.report(logvisor::Fatal, "shader uniform %s does not have layout binding", prog.getUniformName(i));
m_texNames.emplace_back(std::make_pair(prog.getUniformName(i), qual.layoutBinding - BOO_GLSL_MAX_UNIFORM_COUNT));
}
count = prog.getNumLiveUniformBlocks();
m_blockNames.reserve(count);
for (int i = 0; i < count; ++i) {
const glslang::TType* tp = prog.getUniformBlockTType(i);
const auto& qual = tp->getQualifier();
if (!qual.hasBinding())
Log.report(logvisor::Fatal, "shader uniform %s does not have layout binding", prog.getUniformBlockName(i));
m_blockNames.emplace_back(std::make_pair(prog.getUniformBlockName(i), qual.layoutBinding));
}
}
GLShaderStage(const ObjToken<BaseGraphicsData>& parent, const char* source, PipelineStage stage)
: GraphicsDataNode<IShaderStage>(parent) {
BuildNameLists(source, stage);
m_shad = glCreateShader(SHADER_STAGE_TABLE[int(stage)]);
if (!m_shad) {
Log.report(logvisor::Fatal, "unable to create shader");
return;
}
glShaderSource(m_shad, 1, &source, nullptr);
glCompileShader(m_shad);
GLint status = GL_FALSE;
glGetShaderiv(m_shad, GL_COMPILE_STATUS, &status);
if (status != GL_TRUE) {
GLint logLen;
glGetShaderiv(m_shad, GL_INFO_LOG_LENGTH, &logLen);
std::unique_ptr<char[]> log(new char[logLen]);
glGetShaderInfoLog(m_shad, logLen, nullptr, log.get());
Log.report(logvisor::Fatal, "unable to compile source\n%s\n%s\n", log.get(), source);
return;
}
}
public:
~GLShaderStage() {
if (m_shad)
glDeleteShader(m_shad);
}
GLuint getShader() const { return m_shad; }
const std::vector<std::pair<std::string, int>>& getTexNames() const { return m_texNames; }
const std::vector<std::pair<std::string, int>>& getBlockNames() const { return m_blockNames; }
};
class GLShaderPipeline : public GraphicsDataNode<IShaderPipeline> {
protected:
friend class GLDataFactory;
friend struct GLCommandQueue;
friend struct GLShaderDataBinding;
mutable ObjToken<IShaderStage> m_vertex;
mutable ObjToken<IShaderStage> m_fragment;
mutable ObjToken<IShaderStage> m_geometry;
mutable ObjToken<IShaderStage> m_control;
mutable ObjToken<IShaderStage> m_evaluation;
std::vector<VertexElementDescriptor> m_elements;
size_t baseVert = 0;
size_t baseInst = 0;
mutable GLuint m_prog = 0;
GLenum m_sfactor = GL_ONE;
GLenum m_dfactor = GL_ZERO;
GLenum m_drawPrim = GL_TRIANGLES;
ZTest m_depthTest = ZTest::LEqual;
bool m_depthWrite = true;
bool m_colorWrite = true;
bool m_alphaWrite = true;
bool m_subtractBlend = false;
bool m_overwriteAlpha = false;
CullMode m_culling;
uint32_t m_patchSize = 0;
mutable GLint m_uniLocs[BOO_GLSL_MAX_UNIFORM_COUNT];
GLShaderPipeline(const ObjToken<BaseGraphicsData>& parent, ObjToken<IShaderStage> vertex,
ObjToken<IShaderStage> fragment, ObjToken<IShaderStage> geometry, ObjToken<IShaderStage> control,
ObjToken<IShaderStage> evaluation, const VertexFormatInfo& vtxFmt,
const AdditionalPipelineInfo& info)
: GraphicsDataNode<IShaderPipeline>(parent) {
std::fill(std::begin(m_uniLocs), std::end(m_uniLocs), -1);
if (info.srcFac == BlendFactor::Subtract || info.dstFac == BlendFactor::Subtract) {
m_sfactor = GL_SRC_ALPHA;
m_dfactor = GL_ONE;
m_subtractBlend = true;
} else {
m_sfactor = BLEND_FACTOR_TABLE[int(info.srcFac)];
m_dfactor = BLEND_FACTOR_TABLE[int(info.dstFac)];
m_subtractBlend = false;
}
m_depthTest = info.depthTest;
m_depthWrite = info.depthWrite;
m_colorWrite = info.colorWrite;
m_alphaWrite = info.alphaWrite;
m_overwriteAlpha = info.overwriteAlpha;
m_culling = info.culling;
m_drawPrim = PRIMITIVE_TABLE[int(info.prim)];
m_patchSize = info.patchSize;
m_vertex = vertex;
m_fragment = fragment;
m_geometry = geometry;
m_control = control;
m_evaluation = evaluation;
if (control && evaluation)
m_drawPrim = GL_PATCHES;
m_elements.reserve(vtxFmt.elementCount);
for (size_t i = 0; i < vtxFmt.elementCount; ++i)
m_elements.push_back(vtxFmt.elements[i]);
}
public:
~GLShaderPipeline() {
if (m_prog)
glDeleteProgram(m_prog);
}
GLuint bind() const {
if (!m_prog) {
m_prog = glCreateProgram();
if (!m_prog) {
Log.report(logvisor::Error, "unable to create shader program");
return 0;
}
if (m_vertex)
glAttachShader(m_prog, m_vertex.cast<GLShaderStage>()->getShader());
if (m_fragment)
glAttachShader(m_prog, m_fragment.cast<GLShaderStage>()->getShader());
if (m_geometry)
glAttachShader(m_prog, m_geometry.cast<GLShaderStage>()->getShader());
if (m_control)
glAttachShader(m_prog, m_control.cast<GLShaderStage>()->getShader());
if (m_evaluation)
glAttachShader(m_prog, m_evaluation.cast<GLShaderStage>()->getShader());
glLinkProgram(m_prog);
if (m_vertex)
glDetachShader(m_prog, m_vertex.cast<GLShaderStage>()->getShader());
if (m_fragment)
glDetachShader(m_prog, m_fragment.cast<GLShaderStage>()->getShader());
if (m_geometry)
glDetachShader(m_prog, m_geometry.cast<GLShaderStage>()->getShader());
if (m_control)
glDetachShader(m_prog, m_control.cast<GLShaderStage>()->getShader());
if (m_evaluation)
glDetachShader(m_prog, m_evaluation.cast<GLShaderStage>()->getShader());
GLint status = GL_FALSE;
glGetProgramiv(m_prog, GL_LINK_STATUS, &status);
if (status != GL_TRUE) {
GLint logLen;
glGetProgramiv(m_prog, GL_INFO_LOG_LENGTH, &logLen);
std::unique_ptr<char[]> log(new char[logLen]);
glGetProgramInfoLog(m_prog, logLen, nullptr, log.get());
Log.report(logvisor::Fatal, "unable to link shader program\n%s\n", log.get());
return 0;
}
glUseProgram(m_prog);
for (const auto& shader : {m_vertex, m_fragment, m_geometry, m_control, m_evaluation}) {
if (const GLShaderStage* stage = shader.cast<GLShaderStage>()) {
for (const auto& name : stage->getBlockNames()) {
GLint uniLoc = glGetUniformBlockIndex(m_prog, name.first.c_str());
// if (uniLoc < 0)
// Log.report(logvisor::Warning, "unable to find uniform block '%s'", uniformBlockNames[i]);
m_uniLocs[name.second] = uniLoc;
}
for (const auto& name : stage->getTexNames()) {
GLint texLoc = glGetUniformLocation(m_prog, name.first.c_str());
if (texLoc < 0) { /* Log.report(logvisor::Warning, "unable to find sampler variable '%s'", texNames[i]); */
} else
glUniform1i(texLoc, name.second);
}
}
}
m_vertex.reset();
m_fragment.reset();
m_geometry.reset();
m_control.reset();
m_evaluation.reset();
} else {
glUseProgram(m_prog);
}
if (m_dfactor != GL_ZERO) {
glEnable(GL_BLEND);
if (m_overwriteAlpha)
glBlendFuncSeparate(m_sfactor, m_dfactor, GL_ONE, GL_ZERO);
else
glBlendFuncSeparate(m_sfactor, m_dfactor, m_sfactor, m_dfactor);
if (m_subtractBlend)
glBlendEquationSeparate(GL_FUNC_REVERSE_SUBTRACT, m_overwriteAlpha ? GL_FUNC_ADD : GL_FUNC_REVERSE_SUBTRACT);
else
glBlendEquation(GL_FUNC_ADD);
} else
glDisable(GL_BLEND);
if (m_depthTest != ZTest::None) {
glEnable(GL_DEPTH_TEST);
switch (m_depthTest) {
case ZTest::LEqual:
default:
glDepthFunc(GL_LEQUAL);
break;
case ZTest::Greater:
glDepthFunc(GL_GREATER);
break;
case ZTest::GEqual:
glDepthFunc(GL_GEQUAL);
break;
case ZTest::Equal:
glDepthFunc(GL_EQUAL);
break;
}
} else
glDisable(GL_DEPTH_TEST);
glDepthMask(m_depthWrite);
glColorMask(m_colorWrite, m_colorWrite, m_colorWrite, m_alphaWrite);
if (m_culling != CullMode::None) {
glEnable(GL_CULL_FACE);
glCullFace(m_culling == CullMode::Backface ? GL_BACK : GL_FRONT);
} else
glDisable(GL_CULL_FACE);
if (m_patchSize)
glPatchParameteri(GL_PATCH_VERTICES, m_patchSize);
return m_prog;
}
};
ObjToken<IShaderStage> GLDataFactory::Context::newShaderStage(const uint8_t* data, size_t size, PipelineStage stage) {
GLDataFactoryImpl& factory = static_cast<GLDataFactoryImpl&>(m_parent);
if (stage == PipelineStage::Control || stage == PipelineStage::Evaluation) {
if (!factory.m_hasTessellation)
Log.report(logvisor::Fatal, "Device does not support tessellation shaders");
}
BOO_MSAN_NO_INTERCEPT
return {new GLShaderStage(m_data, (char*)data, stage)};
}
ObjToken<IShaderPipeline> GLDataFactory::Context::newShaderPipeline(
ObjToken<IShaderStage> vertex, ObjToken<IShaderStage> fragment, ObjToken<IShaderStage> geometry,
ObjToken<IShaderStage> control, ObjToken<IShaderStage> evaluation, const VertexFormatInfo& vtxFmt,
const AdditionalPipelineInfo& additionalInfo) {
GLDataFactoryImpl& factory = static_cast<GLDataFactoryImpl&>(m_parent);
if (control || evaluation) {
if (!factory.m_hasTessellation)
Log.report(logvisor::Fatal, "Device does not support tessellation shaders");
if (additionalInfo.patchSize > factory.m_maxPatchSize)
Log.report(logvisor::Fatal, "Device supports %d patch vertices, %d requested", int(factory.m_maxPatchSize),
int(additionalInfo.patchSize));
}
BOO_MSAN_NO_INTERCEPT
return {new GLShaderPipeline(m_data, vertex, fragment, geometry, control, evaluation, vtxFmt, additionalInfo)};
}
struct GLShaderDataBinding : GraphicsDataNode<IShaderDataBinding> {
ObjToken<IShaderPipeline> m_pipeline;
ObjToken<IGraphicsBuffer> m_vbo;
ObjToken<IGraphicsBuffer> m_instVbo;
ObjToken<IGraphicsBuffer> m_ibo;
std::vector<ObjToken<IGraphicsBuffer>> m_ubufs;
std::vector<std::pair<size_t, size_t>> m_ubufOffs;
struct BoundTex {
ObjToken<ITexture> tex;
int idx;
bool depth;
};
std::vector<BoundTex> m_texs;
size_t m_baseVert;
size_t m_baseInst;
std::array<GLuint, 3> m_vao = {};
GLCommandQueue* m_q;
GLShaderDataBinding(const ObjToken<BaseGraphicsData>& d, const ObjToken<IShaderPipeline>& pipeline,
const ObjToken<IGraphicsBuffer>& vbo, const ObjToken<IGraphicsBuffer>& instVbo,
const ObjToken<IGraphicsBuffer>& ibo, size_t ubufCount, const ObjToken<IGraphicsBuffer>* ubufs,
const size_t* ubufOffs, const size_t* ubufSizes, size_t texCount, const ObjToken<ITexture>* texs,
const int* bindTexIdx, const bool* depthBind, size_t baseVert, size_t baseInst,
GLCommandQueue* q);
~GLShaderDataBinding();
void bind(int b) const {
GLShaderPipeline& pipeline = *m_pipeline.cast<GLShaderPipeline>();
GLuint prog = pipeline.bind();
glBindVertexArray(m_vao[b]);
if (m_ubufOffs.size()) {
for (size_t i = 0; i < m_ubufs.size(); ++i) {
GLint loc = pipeline.m_uniLocs[i];
if (loc < 0)
continue;
IGraphicsBuffer* ubuf = m_ubufs[i].get();
const std::pair<size_t, size_t>& offset = m_ubufOffs[i];
if (ubuf->dynamic())
static_cast<GLGraphicsBufferD<BaseGraphicsData>*>(ubuf)->bindUniformRange(i, offset.first, offset.second, b);
else
static_cast<GLGraphicsBufferS*>(ubuf)->bindUniformRange(i, offset.first, offset.second);
glUniformBlockBinding(prog, loc, i);
}
} else {
for (size_t i = 0; i < m_ubufs.size(); ++i) {
GLint loc = pipeline.m_uniLocs[i];
if (loc < 0)
continue;
IGraphicsBuffer* ubuf = m_ubufs[i].get();
if (ubuf->dynamic())
static_cast<GLGraphicsBufferD<BaseGraphicsData>*>(ubuf)->bindUniform(i, b);
else
static_cast<GLGraphicsBufferS*>(ubuf)->bindUniform(i);
glUniformBlockBinding(prog, loc, i);
}
}
for (size_t i = 0; i < m_texs.size(); ++i) {
const BoundTex& tex = m_texs[i];
if (tex.tex) {
switch (tex.tex->type()) {
case TextureType::Dynamic:
tex.tex.cast<GLTextureD>()->bind(i, b);
break;
case TextureType::Static:
tex.tex.cast<GLTextureS>()->bind(i);
break;
case TextureType::StaticArray:
tex.tex.cast<GLTextureSA>()->bind(i);
break;
case TextureType::Render:
tex.tex.cast<GLTextureR>()->bind(i, tex.idx, tex.depth);
break;
case TextureType::CubeRender:
tex.tex.cast<GLTextureCubeR>()->bind(i);
break;
default:
break;
}
}
}
}
};
GLDataFactory::Context::Context(GLDataFactory& parent __BooTraceArgs)
: m_parent(parent), m_data(new BaseGraphicsData(static_cast<GLDataFactoryImpl&>(parent) __BooTraceArgsUse)) {}
GLDataFactory::Context::~Context() {}
void GLDataFactoryImpl::commitTransaction(const FactoryCommitFunc& trans __BooTraceArgs) {
GLDataFactory::Context ctx(*this __BooTraceArgsUse);
if (!trans(ctx))
return;
/* Let's go ahead and flush to ensure our data gets to the GPU
While this isn't strictly required, some drivers might behave
differently */
// glFlush();
}
ObjToken<IGraphicsBufferD> GLDataFactoryImpl::newPoolBuffer(BufferUse use, size_t stride, size_t count __BooTraceArgs) {
BOO_MSAN_NO_INTERCEPT
ObjToken<BaseGraphicsPool> pool(new BaseGraphicsPool(*this __BooTraceArgsUse));
return {new GLGraphicsBufferD<BaseGraphicsPool>(pool, use, stride * count)};
}
static const GLint SEMANTIC_COUNT_TABLE[] = {0, 3, 4, 3, 4, 4, 4, 2, 4, 4, 4};
static const size_t SEMANTIC_SIZE_TABLE[] = {0, 12, 16, 12, 16, 16, 4, 8, 16, 16, 16};
static const GLenum SEMANTIC_TYPE_TABLE[] = {GL_INVALID_ENUM, GL_FLOAT, GL_FLOAT, GL_FLOAT, GL_FLOAT, GL_FLOAT,
GL_UNSIGNED_BYTE, GL_FLOAT, GL_FLOAT, GL_FLOAT, GL_FLOAT};
struct GLCommandQueue : IGraphicsCommandQueue {
Platform platform() const { return IGraphicsDataFactory::Platform::OpenGL; }
const SystemChar* platformName() const { return _SYS_STR("OpenGL"); }
IGraphicsContext* m_parent = nullptr;
GLContext* m_glCtx = nullptr;
std::mutex m_mt;
std::condition_variable m_cv;
std::mutex m_initmt;
std::condition_variable m_initcv;
std::recursive_mutex m_fmtMt;
std::thread m_thr;
struct Command {
enum class Op {
SetShaderDataBinding,
SetRenderTarget,
SetCubeRenderTarget,
SetViewport,
SetScissor,
SetClearColor,
ClearTarget,
Draw,
DrawIndexed,
DrawInstances,
DrawInstancesIndexed,
ResolveBindTexture,
GenerateMips,
Present
} m_op;
union {
struct {
SWindowRect rect;
float znear, zfar;
} viewport;
float rgba[4];
GLbitfield flags;
struct {
size_t start;
size_t count;
size_t instCount;
size_t startInst;
};
};
ObjToken<IShaderDataBinding> binding;
ObjToken<ITexture> target;
ObjToken<ITextureR> source;
ObjToken<ITextureR> resolveTex;
int bindIdx;
bool resolveColor : 1;
bool resolveDepth : 1;
bool clearDepth : 1;
Command(Op op) : m_op(op) {}
Command(const Command&) = delete;
Command& operator=(const Command&) = delete;
Command(Command&&) = default;
Command& operator=(Command&&) = default;
};
std::vector<Command> m_cmdBufs[3];
int m_fillBuf = 0;
int m_completeBuf = 0;
int m_drawBuf = 0;
bool m_running = true;
struct RenderTextureResize {
ObjToken<ITextureR> tex;
size_t width;
size_t height;
};
struct CubeRenderTextureResize {
ObjToken<ITextureCubeR> tex;
size_t width, mips;
};
/* These members are locked for multithreaded access */
std::vector<RenderTextureResize> m_pendingResizes;
std::vector<CubeRenderTextureResize> m_pendingCubeResizes;
std::vector<std::function<void(void)>> m_pendingPosts1;
std::vector<std::function<void(void)>> m_pendingPosts2;
std::vector<ObjToken<IShaderDataBinding>> m_pendingFmtAdds;
std::vector<std::array<GLuint, 3>> m_pendingFmtDels;
std::vector<ObjToken<ITextureR>> m_pendingFboAdds;
std::vector<ObjToken<ITextureCubeR>> m_pendingCubeFboAdds;
static void ConfigureVertexFormat(GLShaderDataBinding* fmt) {
glGenVertexArrays(3, fmt->m_vao.data());
size_t stride = 0;
size_t instStride = 0;
auto pipeline = fmt->m_pipeline.cast<GLShaderPipeline>();
for (size_t i = 0; i < pipeline->m_elements.size(); ++i) {
const VertexElementDescriptor& desc = pipeline->m_elements[i];
if (True(desc.semantic & VertexSemantic::Instanced))
instStride += SEMANTIC_SIZE_TABLE[int(desc.semantic & VertexSemantic::SemanticMask)];
else
stride += SEMANTIC_SIZE_TABLE[int(desc.semantic & VertexSemantic::SemanticMask)];
}
for (int b = 0; b < 3; ++b) {
size_t offset = fmt->m_baseVert * stride;
size_t instOffset = fmt->m_baseInst * instStride;
glBindVertexArray(fmt->m_vao[b]);
IGraphicsBuffer* lastVBO = nullptr;
IGraphicsBuffer* lastEBO = nullptr;
for (size_t i = 0; i < pipeline->m_elements.size(); ++i) {
const VertexElementDescriptor& desc = pipeline->m_elements[i];
IGraphicsBuffer* vbo = True(desc.semantic & VertexSemantic::Instanced)
? fmt->m_instVbo.get()
: fmt->m_vbo.get();
IGraphicsBuffer* ebo = fmt->m_ibo.get();
if (vbo != lastVBO) {
lastVBO = vbo;
if (lastVBO->dynamic())
static_cast<GLGraphicsBufferD<BaseGraphicsData>*>(lastVBO)->bindVertex(b);
else
static_cast<GLGraphicsBufferS*>(lastVBO)->bindVertex();
}
if (ebo != lastEBO) {
lastEBO = ebo;
if (lastEBO->dynamic())
static_cast<GLGraphicsBufferD<BaseGraphicsData>*>(lastEBO)->bindIndex(b);
else
static_cast<GLGraphicsBufferS*>(lastEBO)->bindIndex();
}
glEnableVertexAttribArray(i);
int maskedSem = int(desc.semantic & VertexSemantic::SemanticMask);
if (True(desc.semantic & VertexSemantic::Instanced)) {
glVertexAttribPointer(i, SEMANTIC_COUNT_TABLE[maskedSem], SEMANTIC_TYPE_TABLE[maskedSem], GL_TRUE, instStride,
(void*)instOffset);
glVertexAttribDivisor(i, 1);
instOffset += SEMANTIC_SIZE_TABLE[maskedSem];
} else {
glVertexAttribPointer(i, SEMANTIC_COUNT_TABLE[maskedSem], SEMANTIC_TYPE_TABLE[maskedSem], GL_TRUE, stride,
(void*)offset);
offset += SEMANTIC_SIZE_TABLE[maskedSem];
}
}
}
}
static void ConfigureFBO(GLTextureR* tex) {
glGenFramebuffers(1, &tex->m_fbo);
glBindFramebuffer(GL_FRAMEBUFFER, tex->m_fbo);
GLenum target = tex->m_samples > 1 ? GL_TEXTURE_2D_MULTISAMPLE : GL_TEXTURE_2D;
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, target, tex->m_texs[0], 0);
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, target, tex->m_texs[1], 0);
if (tex->m_samples > 1) {
if (tex->m_colorBindCount) {
glGenFramebuffers(tex->m_colorBindCount, tex->m_bindFBOs[0]);
for (int i = 0; i < tex->m_colorBindCount; ++i) {
glBindFramebuffer(GL_FRAMEBUFFER, tex->m_bindFBOs[0][i]);
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, tex->m_bindTexs[0][i], 0);
}
}
if (tex->m_depthBindCount) {
glGenFramebuffers(tex->m_depthBindCount, tex->m_bindFBOs[1]);
for (int i = 0; i < tex->m_depthBindCount; ++i) {
glBindFramebuffer(GL_FRAMEBUFFER, tex->m_bindFBOs[1][i]);
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_TEXTURE_2D, tex->m_bindTexs[1][i], 0);
}
}
}
}
static void ConfigureFBO(GLTextureCubeR* tex) {
glGenFramebuffers(6, tex->m_fbos);
for (int i = 0; i < 6; ++i) {
glBindFramebuffer(GL_FRAMEBUFFER, tex->m_fbos[i]);
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_CUBE_MAP_POSITIVE_X + i, tex->m_texs[0], 0);
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_TEXTURE_CUBE_MAP_POSITIVE_X + i, tex->m_texs[1], 0);
}
}
static void RenderingWorker(GLCommandQueue* self) {
BOO_MSAN_NO_INTERCEPT
#if _WIN32
std::string thrName = WCSTMBS(APP->getFriendlyName().data()) + " Render";
#else
std::string thrName = std::string(APP->getFriendlyName()) + " Render";
#endif
logvisor::RegisterThreadName(thrName.c_str());
GLDataFactoryImpl* dataFactory = static_cast<GLDataFactoryImpl*>(self->m_parent->getDataFactory());
{
std::unique_lock<std::mutex> lk(self->m_initmt);
self->m_parent->makeCurrent();
const GLubyte* version = glGetString(GL_VERSION);
Log.report(logvisor::Info, "OpenGL Version: %s", version);
self->m_parent->postInit();
glClearColor(0.f, 0.f, 0.f, 0.f);
if (GLEW_EXT_texture_filter_anisotropic) {
GLint maxAniso = 0;
glGetIntegerv(GL_MAX_TEXTURE_MAX_ANISOTROPY_EXT, &maxAniso);
self->m_glCtx->m_anisotropy = std::min(uint32_t(maxAniso), self->m_glCtx->m_anisotropy);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAX_ANISOTROPY_EXT, maxAniso);
}
GLint maxSamples = 0;
glGetIntegerv(GL_MAX_SAMPLES, &maxSamples);
self->m_glCtx->m_sampleCount =
flp2(std::min(uint32_t(maxSamples), std::max(uint32_t(1), self->m_glCtx->m_sampleCount)) - 1);
glEnable(GL_PRIMITIVE_RESTART);
glPrimitiveRestartIndex(0xffffffff);
dataFactory->SetupGammaResources();
}
self->m_initcv.notify_one();
while (self->m_running) {
std::vector<std::function<void(void)>> posts;
{
std::unique_lock<std::mutex> lk(self->m_mt);
self->m_cv.wait(lk);
if (!self->m_running)
break;
self->m_drawBuf = self->m_completeBuf;
glBindFramebuffer(GL_FRAMEBUFFER, 0);
if (self->m_pendingFboAdds.size()) {
for (ObjToken<ITextureR>& tex : self->m_pendingFboAdds)
ConfigureFBO(tex.cast<GLTextureR>());
self->m_pendingFboAdds.clear();
}
if (self->m_pendingCubeFboAdds.size()) {
for (ObjToken<ITextureCubeR>& tex : self->m_pendingCubeFboAdds)
ConfigureFBO(tex.cast<GLTextureCubeR>());
self->m_pendingCubeFboAdds.clear();
}
if (self->m_pendingResizes.size()) {
for (const RenderTextureResize& resize : self->m_pendingResizes)
resize.tex.cast<GLTextureR>()->resize(resize.width, resize.height);
self->m_pendingResizes.clear();
}
if (self->m_pendingCubeResizes.size()) {
for (const CubeRenderTextureResize& resize : self->m_pendingCubeResizes)
resize.tex.cast<GLTextureCubeR>()->resize(resize.width, resize.mips);
self->m_pendingCubeResizes.clear();
}
{
std::lock_guard<std::recursive_mutex> fmtLk(self->m_fmtMt);
if (self->m_pendingFmtAdds.size()) {
for (ObjToken<IShaderDataBinding>& fmt : self->m_pendingFmtAdds)
ConfigureVertexFormat(fmt.cast<GLShaderDataBinding>());
self->m_pendingFmtAdds.clear();
}
if (self->m_pendingFmtDels.size()) {
for (const auto& v : self->m_pendingFmtDels)
glDeleteVertexArrays(3, v.data());
self->m_pendingFmtDels.clear();
}
}
if (self->m_pendingPosts2.size())
posts.swap(self->m_pendingPosts2);
}
std::vector<Command>& cmds = self->m_cmdBufs[self->m_drawBuf];
GLenum currentPrim = GL_TRIANGLES;
GLuint curFBO = 0;
for (const Command& cmd : cmds) {
switch (cmd.m_op) {
case Command::Op::SetShaderDataBinding: {
const GLShaderDataBinding* binding = cmd.binding.cast<GLShaderDataBinding>();
binding->bind(self->m_drawBuf);
currentPrim = binding->m_pipeline.cast<GLShaderPipeline>()->m_drawPrim;
break;
}
case Command::Op::SetRenderTarget: {
const GLTextureR* tex = cmd.target.cast<GLTextureR>();
curFBO = tex ? tex->m_fbo : 0;
glBindFramebuffer(GL_FRAMEBUFFER, curFBO);
break;
}
case Command::Op::SetCubeRenderTarget: {
const GLTextureCubeR* tex = cmd.target.cast<GLTextureCubeR>();
curFBO = tex ? tex->m_fbos[cmd.bindIdx] : 0;
glBindFramebuffer(GL_FRAMEBUFFER, curFBO);
break;
}
case Command::Op::SetViewport:
glViewport(cmd.viewport.rect.location[0], cmd.viewport.rect.location[1], cmd.viewport.rect.size[0],
cmd.viewport.rect.size[1]);
glDepthRange(cmd.viewport.znear, cmd.viewport.zfar);
break;
case Command::Op::SetScissor:
if (cmd.viewport.rect.size[0] == 0 && cmd.viewport.rect.size[1] == 0)
glDisable(GL_SCISSOR_TEST);
else {
glEnable(GL_SCISSOR_TEST);
glScissor(cmd.viewport.rect.location[0], cmd.viewport.rect.location[1], cmd.viewport.rect.size[0],
cmd.viewport.rect.size[1]);
}
break;
case Command::Op::SetClearColor:
glClearColor(cmd.rgba[0], cmd.rgba[1], cmd.rgba[2], cmd.rgba[3]);
break;
case Command::Op::ClearTarget:
if (cmd.flags & GL_COLOR_BUFFER_BIT)
glColorMask(GL_TRUE, GL_TRUE, GL_TRUE, GL_TRUE);
if (cmd.flags & GL_DEPTH_BUFFER_BIT)
glDepthMask(GL_TRUE);
glClear(cmd.flags);
break;
case Command::Op::Draw:
glDrawArrays(currentPrim, cmd.start, cmd.count);
break;
case Command::Op::DrawIndexed:
glDrawElements(currentPrim, cmd.count, GL_UNSIGNED_INT, reinterpret_cast<void*>(cmd.start * 4));
break;
case Command::Op::DrawInstances:
if (cmd.startInst)
glDrawArraysInstancedBaseInstance(currentPrim, cmd.start, cmd.count, cmd.instCount, cmd.startInst);
else
glDrawArraysInstanced(currentPrim, cmd.start, cmd.count, cmd.instCount);
break;
case Command::Op::DrawInstancesIndexed:
if (cmd.startInst)
glDrawElementsInstancedBaseInstance(currentPrim, cmd.count, GL_UNSIGNED_INT,
reinterpret_cast<void*>(cmd.start * 4), cmd.instCount, cmd.startInst);
else
glDrawElementsInstanced(currentPrim, cmd.count, GL_UNSIGNED_INT, reinterpret_cast<void*>(cmd.start * 4),
cmd.instCount);
break;
case Command::Op::ResolveBindTexture: {
const SWindowRect& rect = cmd.viewport.rect;
const GLTextureR* tex = cmd.resolveTex.cast<GLTextureR>();
glBindFramebuffer(GL_READ_FRAMEBUFFER, tex->m_fbo);
if (tex->m_samples <= 1) {
glActiveTexture(GL_TEXTURE9);
if (cmd.resolveColor && tex->m_bindTexs[0][cmd.bindIdx]) {
glBindTexture(GL_TEXTURE_2D, tex->m_bindTexs[0][cmd.bindIdx]);
glCopyTexSubImage2D(GL_TEXTURE_2D, 0, rect.location[0], rect.location[1], rect.location[0],
rect.location[1], rect.size[0], rect.size[1]);
}
if (cmd.resolveDepth && tex->m_bindTexs[1][cmd.bindIdx]) {
glBindTexture(GL_TEXTURE_2D, tex->m_bindTexs[1][cmd.bindIdx]);
glCopyTexSubImage2D(GL_TEXTURE_2D, 0, rect.location[0], rect.location[1], rect.location[0],
rect.location[1], rect.size[0], rect.size[1]);
}
} else {
if (cmd.resolveColor && tex->m_bindTexs[0][cmd.bindIdx]) {
glBindFramebuffer(GL_DRAW_FRAMEBUFFER, tex->m_bindFBOs[0][cmd.bindIdx]);
glBlitFramebuffer(rect.location[0], rect.location[1], rect.location[0] + rect.size[0],
rect.location[1] + rect.size[1], rect.location[0], rect.location[1],
rect.location[0] + rect.size[0], rect.location[1] + rect.size[1], GL_COLOR_BUFFER_BIT,
GL_NEAREST);
}
if (cmd.resolveDepth && tex->m_bindTexs[1][cmd.bindIdx]) {
glBindFramebuffer(GL_DRAW_FRAMEBUFFER, tex->m_bindFBOs[1][cmd.bindIdx]);
glBlitFramebuffer(rect.location[0], rect.location[1], rect.location[0] + rect.size[0],
rect.location[1] + rect.size[1], rect.location[0], rect.location[1],
rect.location[0] + rect.size[0], rect.location[1] + rect.size[1], GL_DEPTH_BUFFER_BIT,
GL_NEAREST);
}
}
if (cmd.clearDepth) {
glBindFramebuffer(GL_DRAW_FRAMEBUFFER, tex->m_fbo);
glDepthMask(GL_TRUE);
glClear(GL_DEPTH_BUFFER_BIT);
}
glBindFramebuffer(GL_FRAMEBUFFER, curFBO);
break;
}
case Command::Op::GenerateMips: {
if (const GLTextureCubeR* tex = cmd.target.cast<GLTextureCubeR>()) {
glBindTexture(GL_TEXTURE_CUBE_MAP, tex->m_texs[0]);
glGenerateMipmap(GL_TEXTURE_CUBE_MAP);
}
break;
}
case Command::Op::Present: {
if (const GLTextureR* tex = cmd.source.cast<GLTextureR>()) {
#ifndef NDEBUG
if (!tex->m_colorBindCount)
Log.report(logvisor::Fatal, "texture provided to resolveDisplay() must have at least 1 color binding");
#endif
if (dataFactory->m_gamma != 1.f) {
glBindFramebuffer(GL_READ_FRAMEBUFFER, tex->m_fbo);
if (tex->m_samples <= 1) {
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, tex->m_texs[0]);
} else {
glBindFramebuffer(GL_DRAW_FRAMEBUFFER, tex->m_bindFBOs[0][0]);
glBlitFramebuffer(0, 0, tex->m_width, tex->m_height, 0, 0, tex->m_width, tex->m_height,
GL_COLOR_BUFFER_BIT, GL_NEAREST);
tex->bind(0, 0, false);
}
glBindFramebuffer(GL_DRAW_FRAMEBUFFER, 0);
dataFactory->m_gammaBinding.cast<GLShaderDataBinding>()->bind(self->m_drawBuf);
glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
} else {
glBindFramebuffer(GL_READ_FRAMEBUFFER, tex->m_fbo);
glBindFramebuffer(GL_DRAW_FRAMEBUFFER, 0);
glBlitFramebuffer(0, 0, tex->m_width, tex->m_height, 0, 0, tex->m_width, tex->m_height,
GL_COLOR_BUFFER_BIT, GL_NEAREST);
#if 1
/* First cubemap dump */
int offset = 0;
int voffset = 0;
for (BaseGraphicsData& data : *dataFactory->m_dataHead) {
if (GLTextureCubeR* cube = static_cast<GLTextureCubeR*>(data.getHead<ITextureCubeR>())) {
for (int i = 0; i < 6; ++i) {
glBindFramebuffer(GL_READ_FRAMEBUFFER, cube->m_fbos[i]);
glBlitFramebuffer(0, 0, cube->m_width, cube->m_width, offset, voffset,
cube->m_width + offset, cube->m_width + voffset,
GL_COLOR_BUFFER_BIT, GL_NEAREST);
offset += cube->m_width;
if (i == 2) {
offset = 0;
voffset += cube->m_width;
}
}
break;
}
}
#endif
}
}
self->m_parent->present();
break;
}
default:
break;
}
}
for (auto& p : posts)
p();
cmds.clear();
}
dataFactory->DestroyGammaResources();
std::lock_guard<std::recursive_mutex> fmtLk(self->m_fmtMt);
if (self->m_pendingFmtDels.size()) {
for (const auto& v : self->m_pendingFmtDels)
glDeleteVertexArrays(3, v.data());
self->m_pendingFmtDels.clear();
}
}
GLCommandQueue(IGraphicsContext* parent, GLContext* glCtx) : m_parent(parent), m_glCtx(glCtx) {}
void startRenderer() {
std::unique_lock<std::mutex> lk(m_initmt);
m_thr = std::thread(RenderingWorker, this);
m_initcv.wait(lk);
}
void stopRenderer() {
if (m_running) {
m_running = false;
m_cv.notify_one();
if (m_thr.joinable())
m_thr.join();
for (int i = 0; i < 3; ++i)
m_cmdBufs[i].clear();
}
}
~GLCommandQueue() { stopRenderer(); }
void setShaderDataBinding(const ObjToken<IShaderDataBinding>& binding) {
std::vector<Command>& cmds = m_cmdBufs[m_fillBuf];
cmds.emplace_back(Command::Op::SetShaderDataBinding);
cmds.back().binding = binding;
}
void setRenderTarget(const ObjToken<ITextureR>& target) {
std::vector<Command>& cmds = m_cmdBufs[m_fillBuf];
cmds.emplace_back(Command::Op::SetRenderTarget);
cmds.back().target = target.get();
}
void setRenderTarget(const ObjToken<ITextureCubeR>& target, int face) {
std::vector<Command>& cmds = m_cmdBufs[m_fillBuf];
cmds.emplace_back(Command::Op::SetCubeRenderTarget);
cmds.back().target = target.get();
cmds.back().bindIdx = face;
}
void setViewport(const SWindowRect& rect, float znear, float zfar) {
std::vector<Command>& cmds = m_cmdBufs[m_fillBuf];
cmds.emplace_back(Command::Op::SetViewport);
cmds.back().viewport.rect = rect;
cmds.back().viewport.znear = znear;
cmds.back().viewport.zfar = zfar;
}
void setScissor(const SWindowRect& rect) {
std::vector<Command>& cmds = m_cmdBufs[m_fillBuf];
cmds.emplace_back(Command::Op::SetScissor);
cmds.back().viewport.rect = rect;
}
void resizeRenderTexture(const ObjToken<ITextureR>& tex, size_t width, size_t height) {
std::unique_lock<std::mutex> lk(m_mt);
GLTextureR* texgl = tex.cast<GLTextureR>();
m_pendingResizes.push_back({texgl, width, height});
}
void resizeRenderTexture(const ObjToken<ITextureCubeR>& tex, size_t width, size_t mips) {
std::unique_lock<std::mutex> lk(m_mt);
GLTextureCubeR* texgl = tex.cast<GLTextureCubeR>();
m_pendingCubeResizes.push_back({texgl, width, mips});
}
void generateMipmaps(const ObjToken<ITextureCubeR>& tex) {
std::vector<Command>& cmds = m_cmdBufs[m_fillBuf];
cmds.emplace_back(Command::Op::GenerateMips);
cmds.back().target = tex.get();
}
void schedulePostFrameHandler(std::function<void(void)>&& func) { m_pendingPosts1.push_back(std::move(func)); }
void setClearColor(const float rgba[4]) {
std::vector<Command>& cmds = m_cmdBufs[m_fillBuf];
cmds.emplace_back(Command::Op::SetClearColor);
cmds.back().rgba[0] = rgba[0];
cmds.back().rgba[1] = rgba[1];
cmds.back().rgba[2] = rgba[2];
cmds.back().rgba[3] = rgba[3];
}
void clearTarget(bool render = true, bool depth = true) {
std::vector<Command>& cmds = m_cmdBufs[m_fillBuf];
cmds.emplace_back(Command::Op::ClearTarget);
cmds.back().flags = 0;
if (render)
cmds.back().flags |= GL_COLOR_BUFFER_BIT;
if (depth)
cmds.back().flags |= GL_DEPTH_BUFFER_BIT;
}
void draw(size_t start, size_t count) {
std::vector<Command>& cmds = m_cmdBufs[m_fillBuf];
cmds.emplace_back(Command::Op::Draw);
cmds.back().start = start;
cmds.back().count = count;
}
void drawIndexed(size_t start, size_t count) {
std::vector<Command>& cmds = m_cmdBufs[m_fillBuf];
cmds.emplace_back(Command::Op::DrawIndexed);
cmds.back().start = start;
cmds.back().count = count;
}
void drawInstances(size_t start, size_t count, size_t instCount, size_t startInst) {
std::vector<Command>& cmds = m_cmdBufs[m_fillBuf];
cmds.emplace_back(Command::Op::DrawInstances);
cmds.back().start = start;
cmds.back().count = count;
cmds.back().instCount = instCount;
cmds.back().startInst = startInst;
}
void drawInstancesIndexed(size_t start, size_t count, size_t instCount, size_t startInst) {
std::vector<Command>& cmds = m_cmdBufs[m_fillBuf];
cmds.emplace_back(Command::Op::DrawInstancesIndexed);
cmds.back().start = start;
cmds.back().count = count;
cmds.back().instCount = instCount;
cmds.back().startInst = startInst;
}
void resolveBindTexture(const ObjToken<ITextureR>& texture, const SWindowRect& rect, bool tlOrigin, int bindIdx,
bool color, bool depth, bool clearDepth) {
GLTextureR* tex = texture.cast<GLTextureR>();
std::vector<Command>& cmds = m_cmdBufs[m_fillBuf];
cmds.emplace_back(Command::Op::ResolveBindTexture);
cmds.back().resolveTex = texture;
cmds.back().bindIdx = bindIdx;
cmds.back().resolveColor = color;
cmds.back().resolveDepth = depth;
cmds.back().clearDepth = clearDepth;
SWindowRect intersectRect = rect.intersect(SWindowRect(0, 0, tex->m_width, tex->m_height));
SWindowRect& targetRect = cmds.back().viewport.rect;
targetRect.location[0] = intersectRect.location[0];
if (tlOrigin)
targetRect.location[1] = tex->m_height - intersectRect.location[1] - intersectRect.size[1];
else
targetRect.location[1] = intersectRect.location[1];
targetRect.size[0] = intersectRect.size[0];
targetRect.size[1] = intersectRect.size[1];
}
void resolveDisplay(const ObjToken<ITextureR>& source) {
std::vector<Command>& cmds = m_cmdBufs[m_fillBuf];
cmds.emplace_back(Command::Op::Present);
cmds.back().source = source;
}
void addVertexFormat(const ObjToken<IShaderDataBinding>& fmt) {
std::unique_lock<std::recursive_mutex> lk(m_fmtMt);
m_pendingFmtAdds.push_back(fmt);
}
void delVertexFormat(GLShaderDataBinding* fmt) {
std::unique_lock<std::recursive_mutex> lk(m_fmtMt);
m_pendingFmtDels.push_back(fmt->m_vao);
}
void addFBO(const ObjToken<ITextureR>& tex) {
std::unique_lock<std::mutex> lk(m_mt);
m_pendingFboAdds.push_back(tex);
}
void addFBO(const ObjToken<ITextureCubeR>& tex) {
std::unique_lock<std::mutex> lk(m_mt);
m_pendingCubeFboAdds.push_back(tex);
}
void execute() {
BOO_MSAN_NO_INTERCEPT
std::unique_lock<std::mutex> lk(m_mt);
m_completeBuf = m_fillBuf;
for (int i = 0; i < 3; ++i) {
if (i == m_completeBuf || i == m_drawBuf)
continue;
m_fillBuf = i;
break;
}
/* Update dynamic data here */
GLDataFactoryImpl* gfxF = static_cast<GLDataFactoryImpl*>(m_parent->getDataFactory());
std::unique_lock<std::recursive_mutex> datalk(gfxF->m_dataMutex);
if (gfxF->m_dataHead) {
for (BaseGraphicsData& d : *gfxF->m_dataHead) {
if (d.m_DBufs)
for (IGraphicsBufferD& b : *d.m_DBufs)
static_cast<GLGraphicsBufferD<BaseGraphicsData>&>(b).update(m_completeBuf);
if (d.m_DTexs)
for (ITextureD& t : *d.m_DTexs)
static_cast<GLTextureD&>(t).update(m_completeBuf);
}
}
if (gfxF->m_poolHead) {
for (BaseGraphicsPool& p : *gfxF->m_poolHead) {
if (p.m_DBufs)
for (IGraphicsBufferD& b : *p.m_DBufs)
static_cast<GLGraphicsBufferD<BaseGraphicsData>&>(b).update(m_completeBuf);
}
}
datalk.unlock();
glFlush();
for (auto& p : m_pendingPosts1)
m_pendingPosts2.push_back(std::move(p));
m_pendingPosts1.clear();
lk.unlock();
m_cv.notify_one();
m_cmdBufs[m_fillBuf].clear();
}
};
ObjToken<IGraphicsBufferD> GLDataFactory::Context::newDynamicBuffer(BufferUse use, size_t stride, size_t count) {
BOO_MSAN_NO_INTERCEPT
return {new GLGraphicsBufferD<BaseGraphicsData>(m_data, use, stride * count)};
}
ObjToken<ITextureD> GLDataFactory::Context::newDynamicTexture(size_t width, size_t height, TextureFormat fmt,
TextureClampMode clampMode) {
BOO_MSAN_NO_INTERCEPT
return {new GLTextureD(m_data, width, height, fmt, clampMode)};
}
GLTextureR::GLTextureR(const ObjToken<BaseGraphicsData>& parent, GLCommandQueue* q, size_t width, size_t height,
size_t samples, GLenum colorFormat, TextureClampMode clampMode, size_t colorBindingCount,
size_t depthBindingCount)
: GraphicsDataNode<ITextureR>(parent)
, m_q(q)
, m_width(width)
, m_height(height)
, m_samples(samples)
, m_colorFormat(colorFormat)
, m_colorBindCount(colorBindingCount)
, m_depthBindCount(depthBindingCount) {
glGenTextures(2, m_texs);
if (colorBindingCount) {
if (colorBindingCount > MAX_BIND_TEXS)
Log.report(logvisor::Fatal, "too many color bindings for render texture");
glGenTextures(colorBindingCount, m_bindTexs[0]);
}
if (depthBindingCount) {
if (depthBindingCount > MAX_BIND_TEXS)
Log.report(logvisor::Fatal, "too many depth bindings for render texture");
glGenTextures(depthBindingCount, m_bindTexs[1]);
}
GLenum compType = colorFormat == GL_RGBA16 ? GL_UNSIGNED_SHORT : GL_UNSIGNED_BYTE;
if (samples > 1) {
glBindTexture(GL_TEXTURE_2D_MULTISAMPLE, m_texs[0]);
glTexImage2DMultisample(GL_TEXTURE_2D_MULTISAMPLE, samples, colorFormat, width, height, GL_FALSE);
glBindTexture(GL_TEXTURE_2D_MULTISAMPLE, m_texs[1]);
glTexImage2DMultisample(GL_TEXTURE_2D_MULTISAMPLE, samples, GL_DEPTH_COMPONENT32F, width, height, GL_FALSE);
} else {
glBindTexture(GL_TEXTURE_2D, m_texs[0]);
glTexImage2D(GL_TEXTURE_2D, 0, colorFormat, width, height, 0, GL_RGBA, compType, nullptr);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
glBindTexture(GL_TEXTURE_2D, m_texs[1]);
glTexImage2D(GL_TEXTURE_2D, 0, GL_DEPTH_COMPONENT32F, width, height, 0, GL_DEPTH_COMPONENT, GL_UNSIGNED_INT,
nullptr);
}
for (int i = 0; i < colorBindingCount; ++i) {
glBindTexture(GL_TEXTURE_2D, m_bindTexs[0][i]);
glTexImage2D(GL_TEXTURE_2D, 0, colorFormat, width, height, 0, GL_RGBA, compType, nullptr);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
SetClampMode(GL_TEXTURE_2D, clampMode);
}
for (int i = 0; i < depthBindingCount; ++i) {
glBindTexture(GL_TEXTURE_2D, m_bindTexs[1][i]);
glTexImage2D(GL_TEXTURE_2D, 0, GL_DEPTH_COMPONENT32F, width, height, 0, GL_DEPTH_COMPONENT, GL_UNSIGNED_INT,
nullptr);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
SetClampMode(GL_TEXTURE_2D, clampMode);
}
m_q->addFBO(this);
}
ObjToken<ITextureR> GLDataFactory::Context::newRenderTexture(size_t width, size_t height, TextureClampMode clampMode,
size_t colorBindingCount, size_t depthBindingCount) {
GLDataFactoryImpl& factory = static_cast<GLDataFactoryImpl&>(m_parent);
GLCommandQueue* q = static_cast<GLCommandQueue*>(factory.m_parent->getCommandQueue());
BOO_MSAN_NO_INTERCEPT
ObjToken<ITextureR> retval(new GLTextureR(m_data, q, width, height, factory.m_glCtx->m_sampleCount,
factory.m_glCtx->m_deepColor ? GL_RGBA16 : GL_RGBA8, clampMode,
colorBindingCount, depthBindingCount));
q->resizeRenderTexture(retval, width, height);
return retval;
}
GLTextureCubeR::GLTextureCubeR(const ObjToken<BaseGraphicsData>& parent, GLCommandQueue* q, size_t width, size_t mips, GLenum colorFormat)
: GraphicsDataNode<ITextureCubeR>(parent)
, m_q(q)
, m_width(width)
, m_mipCount(mips)
, m_colorFormat(colorFormat) {
glGenTextures(2, m_texs);
_allocateTextures();
glBindTexture(GL_TEXTURE_CUBE_MAP, m_texs[0]);
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR);
m_q->addFBO(this);
}
ObjToken<ITextureCubeR> GLDataFactory::Context::newCubeRenderTexture(size_t width, size_t mips) {
GLDataFactoryImpl& factory = static_cast<GLDataFactoryImpl&>(m_parent);
GLCommandQueue* q = static_cast<GLCommandQueue*>(factory.m_parent->getCommandQueue());
BOO_MSAN_NO_INTERCEPT
ObjToken<ITextureCubeR> retval(new GLTextureCubeR(m_data, q, width, mips,
factory.m_glCtx->m_deepColor ? GL_RGBA16 : GL_RGBA8));
return retval;
}
ObjToken<IShaderDataBinding> GLDataFactory::Context::newShaderDataBinding(
const ObjToken<IShaderPipeline>& pipeline, const ObjToken<IGraphicsBuffer>& vbo,
const ObjToken<IGraphicsBuffer>& instVbo, const ObjToken<IGraphicsBuffer>& ibo, size_t ubufCount,
const ObjToken<IGraphicsBuffer>* ubufs, const PipelineStage* ubufStages, const size_t* ubufOffs,
const size_t* ubufSizes, size_t texCount, const ObjToken<ITexture>* texs, const int* texBindIdx,
const bool* depthBind, size_t baseVert, size_t baseInst) {
GLDataFactoryImpl& factory = static_cast<GLDataFactoryImpl&>(m_parent);
GLCommandQueue* q = static_cast<GLCommandQueue*>(factory.m_parent->getCommandQueue());
BOO_MSAN_NO_INTERCEPT
ObjToken<GLShaderDataBinding> ret = {new GLShaderDataBinding(m_data, pipeline, vbo, instVbo, ibo, ubufCount, ubufs,
ubufOffs, ubufSizes, texCount, texs, texBindIdx,
depthBind, baseVert, baseInst, q)};
return ret.get();
}
GLShaderDataBinding::
GLShaderDataBinding(const ObjToken<BaseGraphicsData>& d, const ObjToken<IShaderPipeline>& pipeline,
const ObjToken<IGraphicsBuffer>& vbo, const ObjToken<IGraphicsBuffer>& instVbo,
const ObjToken<IGraphicsBuffer>& ibo, size_t ubufCount, const ObjToken<IGraphicsBuffer>* ubufs,
const size_t* ubufOffs, const size_t* ubufSizes, size_t texCount, const ObjToken<ITexture>* texs,
const int* bindTexIdx, const bool* depthBind, size_t baseVert, size_t baseInst,
GLCommandQueue* q)
: GraphicsDataNode<IShaderDataBinding>(d)
, m_pipeline(pipeline)
, m_vbo(vbo)
, m_instVbo(instVbo)
, m_ibo(ibo)
, m_baseVert(baseVert)
, m_baseInst(baseInst)
, m_q(q) {
if (ubufOffs && ubufSizes) {
m_ubufOffs.reserve(ubufCount);
for (size_t i = 0; i < ubufCount; ++i) {
#ifndef NDEBUG
if (ubufOffs[i] % 256)
Log.report(logvisor::Fatal, "non-256-byte-aligned uniform-offset %d provided to newShaderDataBinding",
int(i));
#endif
m_ubufOffs.emplace_back(ubufOffs[i], (ubufSizes[i] + 255) & ~255);
}
}
m_ubufs.reserve(ubufCount);
for (size_t i = 0; i < ubufCount; ++i) {
#ifndef NDEBUG
if (!ubufs[i])
Log.report(logvisor::Fatal, "null uniform-buffer %d provided to newShaderDataBinding", int(i));
#endif
m_ubufs.push_back(ubufs[i]);
}
m_texs.reserve(texCount);
for (size_t i = 0; i < texCount; ++i) {
m_texs.push_back({texs[i], bindTexIdx ? bindTexIdx[i] : 0, depthBind ? depthBind[i] : false});
}
q->addVertexFormat(this);
}
GLShaderDataBinding::~GLShaderDataBinding() {
m_q->delVertexFormat(this);
}
std::unique_ptr<IGraphicsCommandQueue> _NewGLCommandQueue(IGraphicsContext* parent, GLContext* glCtx) {
return std::make_unique<GLCommandQueue>(parent, glCtx);
}
std::unique_ptr<IGraphicsDataFactory> _NewGLDataFactory(IGraphicsContext* parent, GLContext* glCtx) {
return std::make_unique<GLDataFactoryImpl>(parent, glCtx);
}
} // namespace boo