boo/lib/graphicsdev/GL.cpp

1555 lines
51 KiB
C++

#include "boo/graphicsdev/GL.hpp"
#include "boo/graphicsdev/glew.h"
#include "boo/IGraphicsContext.hpp"
#include "Common.hpp"
#include <vector>
#include <thread>
#include <mutex>
#include <condition_variable>
#include <array>
#include <unordered_map>
#include <atomic>
#include "logvisor/logvisor.hpp"
#undef min
#undef max
namespace boo
{
static logvisor::Module Log("boo::GL");
ThreadLocalPtr<struct GLData> GLDataFactory::m_deferredData;
struct GLData : IGraphicsDataPriv<GLData>
{
std::vector<std::unique_ptr<class GLShaderPipeline>> m_SPs;
std::vector<std::unique_ptr<struct GLShaderDataBinding>> m_SBinds;
std::vector<std::unique_ptr<class GLGraphicsBufferS>> m_SBufs;
std::vector<std::unique_ptr<class GLGraphicsBufferD>> m_DBufs;
std::vector<std::unique_ptr<class GLTextureS>> m_STexs;
std::vector<std::unique_ptr<class GLTextureSA>> m_SATexs;
std::vector<std::unique_ptr<class GLTextureD>> m_DTexs;
std::vector<std::unique_ptr<class GLTextureR>> m_RTexs;
std::vector<std::unique_ptr<struct GLVertexFormat>> m_VFmts;
};
struct GLPool : IGraphicsBufferPool
{
std::unordered_map<class GLGraphicsBufferD*, std::unique_ptr<class GLGraphicsBufferD>> m_DBufs;
};
static const GLenum USE_TABLE[] =
{
GL_INVALID_ENUM,
GL_ARRAY_BUFFER,
GL_ELEMENT_ARRAY_BUFFER,
GL_UNIFORM_BUFFER
};
class GLGraphicsBufferS : public IGraphicsBufferS
{
friend class GLDataFactory;
friend struct GLCommandQueue;
GLuint m_buf;
GLenum m_target;
GLGraphicsBufferS(BufferUse use, const void* data, size_t sz)
{
m_target = USE_TABLE[int(use)];
glGenBuffers(1, &m_buf);
glBindBuffer(m_target, m_buf);
glBufferData(m_target, sz, data, GL_STATIC_DRAW);
}
public:
~GLGraphicsBufferS() {glDeleteBuffers(1, &m_buf);}
void bindVertex() const
{glBindBuffer(GL_ARRAY_BUFFER, m_buf);}
void bindIndex() const
{glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, m_buf);}
void bindUniform(size_t idx) const
{glBindBufferBase(GL_UNIFORM_BUFFER, idx, m_buf);}
void bindUniformRange(size_t idx, GLintptr off, GLsizeiptr size) const
{glBindBufferRange(GL_UNIFORM_BUFFER, idx, m_buf, off, size);}
};
class GLGraphicsBufferD : public IGraphicsBufferD
{
friend class GLDataFactory;
friend struct GLCommandQueue;
GLuint m_bufs[3];
GLenum m_target;
std::unique_ptr<uint8_t[]> m_cpuBuf;
size_t m_cpuSz = 0;
int m_validMask = 0;
GLGraphicsBufferD(BufferUse use, size_t sz)
: m_target(USE_TABLE[int(use)]), m_cpuBuf(new uint8_t[sz]), m_cpuSz(sz)
{
glGenBuffers(3, m_bufs);
for (int i=0 ; i<3 ; ++i)
{
glBindBuffer(m_target, m_bufs[i]);
glBufferData(m_target, m_cpuSz, nullptr, GL_STREAM_DRAW);
}
}
void update(int b);
public:
~GLGraphicsBufferD() {glDeleteBuffers(3, m_bufs);}
void load(const void* data, size_t sz);
void* map(size_t sz);
void unmap();
void bindVertex(int b);
void bindIndex(int b);
void bindUniform(size_t idx, int b);
void bindUniformRange(size_t idx, GLintptr off, GLsizeiptr size, int b);
};
IGraphicsBufferS*
GLDataFactory::Context::newStaticBuffer(BufferUse use, const void* data, size_t stride, size_t count)
{
GLGraphicsBufferS* retval = new GLGraphicsBufferS(use, data, stride * count);
m_deferredData->m_SBufs.emplace_back(retval);
return retval;
}
class GLTextureS : public ITextureS
{
friend class GLDataFactory;
GLuint m_tex;
GLTextureS(size_t width, size_t height, size_t mips,
TextureFormat fmt, const void* data, size_t sz)
{
const uint8_t* dataIt = static_cast<const uint8_t*>(data);
glGenTextures(1, &m_tex);
glBindTexture(GL_TEXTURE_2D, m_tex);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
if (mips > 1)
{
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAX_LEVEL, mips-1);
}
else
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
GLenum intFormat, format;
int pxPitch;
bool compressed = false;
switch (fmt)
{
case TextureFormat::RGBA8:
intFormat = GL_RGBA;
format = GL_RGBA;
pxPitch = 4;
break;
case TextureFormat::I8:
intFormat = GL_R8;
format = GL_RED;
pxPitch = 1;
break;
case TextureFormat::DXT1:
intFormat = GL_COMPRESSED_RGBA_S3TC_DXT1_EXT;
compressed = true;
break;
default:
Log.report(logvisor::Fatal, "unsupported tex format");
}
if (compressed)
{
for (size_t i=0 ; i<mips ; ++i)
{
size_t dataSz = width * height / 2;
glCompressedTexImage2D(GL_TEXTURE_2D, i, intFormat, width, height, 0, dataSz, dataIt);
dataIt += dataSz;
width /= 2;
height /= 2;
}
}
else
{
for (size_t i=0 ; i<mips ; ++i)
{
glTexImage2D(GL_TEXTURE_2D, i, intFormat, width, height, 0, format, GL_UNSIGNED_BYTE, dataIt);
dataIt += width * height * pxPitch;
width /= 2;
height /= 2;
}
}
}
public:
~GLTextureS() {glDeleteTextures(1, &m_tex);}
void bind(size_t idx) const
{
glActiveTexture(GL_TEXTURE0 + idx);
glBindTexture(GL_TEXTURE_2D, m_tex);
}
};
class GLTextureSA : public ITextureSA
{
friend class GLDataFactory;
GLuint m_tex;
GLTextureSA(size_t width, size_t height, size_t layers,
TextureFormat fmt, const void* data, size_t sz)
{
glGenTextures(1, &m_tex);
glBindTexture(GL_TEXTURE_2D_ARRAY, m_tex);
glTexParameteri(GL_TEXTURE_2D_ARRAY, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D_ARRAY, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
if (fmt == TextureFormat::RGBA8)
glTexImage3D(GL_TEXTURE_2D_ARRAY, 0, GL_RGBA, width, height, layers, 0, GL_RGBA, GL_UNSIGNED_BYTE, data);
else if (fmt == TextureFormat::I8)
glTexImage3D(GL_TEXTURE_2D_ARRAY, 0, GL_R8, width, height, layers, 0, GL_RED, GL_UNSIGNED_BYTE, data);
}
public:
~GLTextureSA() {glDeleteTextures(1, &m_tex);}
void bind(size_t idx) const
{
glActiveTexture(GL_TEXTURE0 + idx);
glBindTexture(GL_TEXTURE_2D_ARRAY, m_tex);
}
};
class GLTextureD : public ITextureD
{
friend class GLDataFactory;
friend struct GLCommandQueue;
GLuint m_texs[3];
std::unique_ptr<uint8_t[]> m_cpuBuf;
size_t m_cpuSz = 0;
GLenum m_intFormat, m_format;
size_t m_width = 0;
size_t m_height = 0;
int m_validMask = 0;
GLTextureD(size_t width, size_t height, TextureFormat fmt);
void update(int b);
public:
~GLTextureD();
void load(const void* data, size_t sz);
void* map(size_t sz);
void unmap();
void bind(size_t idx, int b);
};
class GLTextureR : public ITextureR
{
friend class GLDataFactory;
friend struct GLCommandQueue;
struct GLCommandQueue* m_q;
GLuint m_texs[2] = {};
GLuint m_bindTexs[2] = {};
GLuint m_fbo = 0;
size_t m_width = 0;
size_t m_height = 0;
size_t m_samples = 0;
GLenum m_target;
GLTextureR(GLCommandQueue* q, size_t width, size_t height, size_t samples,
bool enableShaderColorBinding, bool enableShaderDepthBinding);
public:
~GLTextureR();
void bind(size_t idx) const
{
glActiveTexture(GL_TEXTURE0 + idx);
glBindTexture(m_target, m_bindTexs[0]);
}
void resize(size_t width, size_t height)
{
m_width = width;
m_height = height;
if (m_samples > 1)
{
glBindTexture(GL_TEXTURE_2D_MULTISAMPLE, m_texs[0]);
glTexImage2DMultisample(GL_TEXTURE_2D_MULTISAMPLE, m_samples, GL_RGBA, width, height, GL_FALSE);
glBindTexture(GL_TEXTURE_2D_MULTISAMPLE, m_texs[1]);
glTexImage2DMultisample(GL_TEXTURE_2D_MULTISAMPLE, m_samples, GL_DEPTH_COMPONENT24, width, height, GL_FALSE);
if (m_bindTexs[0])
{
glBindTexture(GL_TEXTURE_2D_MULTISAMPLE, m_bindTexs[0]);
glTexImage2DMultisample(GL_TEXTURE_2D_MULTISAMPLE, m_samples, GL_RGBA, width, height, GL_FALSE);
}
if (m_bindTexs[1])
{
glBindTexture(GL_TEXTURE_2D_MULTISAMPLE, m_bindTexs[1]);
glTexImage2DMultisample(GL_TEXTURE_2D_MULTISAMPLE, m_samples, GL_DEPTH_COMPONENT24, width, height, GL_FALSE);
}
}
else
{
glBindTexture(GL_TEXTURE_2D, m_texs[0]);
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, width, height, 0, GL_RGBA, GL_UNSIGNED_BYTE, nullptr);
glBindTexture(GL_TEXTURE_2D, m_texs[1]);
glTexImage2D(GL_TEXTURE_2D, 0, GL_DEPTH_COMPONENT24, width, height, 0, GL_DEPTH_COMPONENT, GL_UNSIGNED_INT, nullptr);
glBindFramebuffer(GL_FRAMEBUFFER, m_fbo);
glDepthMask(GL_TRUE);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
if (m_bindTexs[0])
{
glBindTexture(GL_TEXTURE_2D, m_bindTexs[0]);
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, width, height, 0, GL_RGBA, GL_UNSIGNED_BYTE, nullptr);
}
if (m_bindTexs[1])
{
glBindTexture(GL_TEXTURE_2D, m_bindTexs[1]);
glTexImage2D(GL_TEXTURE_2D, 0, GL_DEPTH_COMPONENT24, width, height, 0, GL_DEPTH_COMPONENT, GL_UNSIGNED_INT, nullptr);
}
}
}
};
ITextureS*
GLDataFactory::Context::newStaticTexture(size_t width, size_t height, size_t mips, TextureFormat fmt,
const void* data, size_t sz)
{
GLTextureS* retval = new GLTextureS(width, height, mips, fmt, data, sz);
m_deferredData->m_STexs.emplace_back(retval);
return retval;
}
ITextureSA*
GLDataFactory::Context::newStaticArrayTexture(size_t width, size_t height, size_t layers, TextureFormat fmt,
const void *data, size_t sz)
{
GLTextureSA* retval = new GLTextureSA(width, height, layers, fmt, data, sz);
m_deferredData->m_SATexs.emplace_back(retval);
return retval;
}
class GLShaderPipeline : public IShaderPipeline
{
friend class GLDataFactory;
friend struct GLCommandQueue;
friend struct GLShaderDataBinding;
GLuint m_vert = 0;
GLuint m_frag = 0;
GLuint m_prog = 0;
GLenum m_sfactor = GL_ONE;
GLenum m_dfactor = GL_ZERO;
GLenum m_drawPrim = GL_TRIANGLES;
bool m_depthTest = true;
bool m_depthWrite = true;
bool m_backfaceCulling = true;
std::vector<GLint> m_uniLocs;
bool initObjects()
{
m_vert = glCreateShader(GL_VERTEX_SHADER);
m_frag = glCreateShader(GL_FRAGMENT_SHADER);
m_prog = glCreateProgram();
if (!m_vert || !m_frag || !m_prog)
{
glDeleteShader(m_vert);
m_vert = 0;
glDeleteShader(m_frag);
m_frag = 0;
glDeleteProgram(m_prog);
m_prog = 0;
return false;
}
glAttachShader(m_prog, m_vert);
glAttachShader(m_prog, m_frag);
return true;
}
void clearObjects()
{
if (m_vert)
glDeleteShader(m_vert);
if (m_frag)
glDeleteShader(m_frag);
if (m_prog)
glDeleteProgram(m_prog);
}
GLShaderPipeline() = default;
public:
operator bool() const {return m_prog != 0;}
~GLShaderPipeline() {clearObjects();}
GLShaderPipeline& operator=(const GLShaderPipeline&) = delete;
GLShaderPipeline(const GLShaderPipeline&) = delete;
GLShaderPipeline& operator=(GLShaderPipeline&& other)
{
m_vert = other.m_vert;
other.m_vert = 0;
m_frag = other.m_frag;
other.m_frag = 0;
m_prog = other.m_prog;
other.m_prog = 0;
m_sfactor = other.m_sfactor;
m_dfactor = other.m_dfactor;
m_depthTest = other.m_depthTest;
m_depthWrite = other.m_depthWrite;
m_backfaceCulling = other.m_backfaceCulling;
m_uniLocs = std::move(other.m_uniLocs);
m_drawPrim = other.m_drawPrim;
return *this;
}
GLShaderPipeline(GLShaderPipeline&& other) {*this = std::move(other);}
GLuint bind() const
{
glUseProgram(m_prog);
if (m_dfactor != GL_ZERO)
{
glEnable(GL_BLEND);
glBlendFunc(m_sfactor, m_dfactor);
}
else
glDisable(GL_BLEND);
if (m_depthTest)
glEnable(GL_DEPTH_TEST);
else
glDisable(GL_DEPTH_TEST);
glDepthMask(m_depthWrite);
glDepthFunc(GL_LEQUAL);
if (m_backfaceCulling)
glEnable(GL_CULL_FACE);
else
glDisable(GL_CULL_FACE);
return m_prog;
}
};
static const GLenum PRIMITIVE_TABLE[] =
{
GL_TRIANGLES,
GL_TRIANGLE_STRIP
};
static const GLenum BLEND_FACTOR_TABLE[] =
{
GL_ZERO,
GL_ONE,
GL_SRC_COLOR,
GL_ONE_MINUS_SRC_COLOR,
GL_DST_COLOR,
GL_ONE_MINUS_DST_COLOR,
GL_SRC_ALPHA,
GL_ONE_MINUS_SRC_ALPHA,
GL_DST_ALPHA,
GL_ONE_MINUS_DST_ALPHA,
GL_SRC1_COLOR,
GL_ONE_MINUS_SRC1_COLOR
};
IShaderPipeline* GLDataFactory::Context::newShaderPipeline
(const char* vertSource, const char* fragSource,
size_t texCount, const char** texNames,
size_t uniformBlockCount, const char** uniformBlockNames,
BlendFactor srcFac, BlendFactor dstFac, Primitive prim,
bool depthTest, bool depthWrite, bool backfaceCulling)
{
GLShaderPipeline shader;
if (!shader.initObjects())
{
Log.report(logvisor::Error, "unable to create shader objects\n");
return nullptr;
}
shader.m_sfactor = BLEND_FACTOR_TABLE[int(srcFac)];
shader.m_dfactor = BLEND_FACTOR_TABLE[int(dstFac)];
shader.m_depthTest = depthTest;
shader.m_depthWrite = depthWrite;
shader.m_backfaceCulling = backfaceCulling;
shader.m_drawPrim = PRIMITIVE_TABLE[int(prim)];
glShaderSource(shader.m_vert, 1, &vertSource, nullptr);
glCompileShader(shader.m_vert);
GLint status;
glGetShaderiv(shader.m_vert, GL_COMPILE_STATUS, &status);
if (status != GL_TRUE)
{
GLint logLen;
glGetShaderiv(shader.m_vert, GL_INFO_LOG_LENGTH, &logLen);
char* log = (char*)malloc(logLen);
glGetShaderInfoLog(shader.m_vert, logLen, nullptr, log);
Log.report(logvisor::Error, "unable to compile vert source\n%s\n%s\n", log, vertSource);
free(log);
return nullptr;
}
glShaderSource(shader.m_frag, 1, &fragSource, nullptr);
glCompileShader(shader.m_frag);
glGetShaderiv(shader.m_frag, GL_COMPILE_STATUS, &status);
if (status != GL_TRUE)
{
GLint logLen;
glGetShaderiv(shader.m_frag, GL_INFO_LOG_LENGTH, &logLen);
char* log = (char*)malloc(logLen);
glGetShaderInfoLog(shader.m_frag, logLen, nullptr, log);
Log.report(logvisor::Error, "unable to compile frag source\n%s\n%s\n", log, fragSource);
free(log);
return nullptr;
}
glLinkProgram(shader.m_prog);
glGetProgramiv(shader.m_prog, GL_LINK_STATUS, &status);
if (status != GL_TRUE)
{
GLint logLen;
glGetProgramiv(shader.m_prog, GL_INFO_LOG_LENGTH, &logLen);
char* log = (char*)malloc(logLen);
glGetProgramInfoLog(shader.m_prog, logLen, nullptr, log);
Log.report(logvisor::Error, "unable to link shader program\n%s\n", log);
free(log);
return nullptr;
}
glUseProgram(shader.m_prog);
if (uniformBlockCount)
{
shader.m_uniLocs.reserve(uniformBlockCount);
for (size_t i=0 ; i<uniformBlockCount ; ++i)
{
GLint uniLoc = glGetUniformBlockIndex(shader.m_prog, uniformBlockNames[i]);
//if (uniLoc < 0)
// Log.report(logvisor::Warning, "unable to find uniform block '%s'", uniformBlockNames[i]);
shader.m_uniLocs.push_back(uniLoc);
}
}
if (texCount && texNames)
{
for (int i=0 ; i<texCount ; ++i)
{
GLint texLoc = glGetUniformLocation(shader.m_prog, texNames[i]);
if (texLoc < 0)
{ /* Log.report(logvisor::Warning, "unable to find sampler variable '%s'", texNames[i]); */ }
else
glUniform1i(texLoc, i);
}
}
GLShaderPipeline* retval = new GLShaderPipeline(std::move(shader));
m_deferredData->m_SPs.emplace_back(retval);
return retval;
}
struct GLVertexFormat : IVertexFormat
{
GLCommandQueue* m_q;
GLuint m_vao[3] = {};
size_t m_elementCount;
GLuint m_baseVert, m_baseInst;
std::unique_ptr<VertexElementDescriptor[]> m_elements;
GLVertexFormat(GLCommandQueue* q, size_t elementCount,
const VertexElementDescriptor* elements,
size_t baseVert, size_t baseInst);
~GLVertexFormat();
void bind(int idx) const {glBindVertexArray(m_vao[idx]);}
};
struct GLShaderDataBinding : IShaderDataBindingPriv<GLData>
{
const GLShaderPipeline* m_pipeline;
const GLVertexFormat* m_vtxFormat;
size_t m_ubufCount;
std::unique_ptr<IGraphicsBuffer*[]> m_ubufs;
std::vector<std::pair<size_t,size_t>> m_ubufOffs;
size_t m_texCount;
std::unique_ptr<ITexture*[]> m_texs;
GLShaderDataBinding(GLData* d,
IShaderPipeline* pipeline,
IVertexFormat* vtxFormat,
size_t ubufCount, IGraphicsBuffer** ubufs,
const size_t* ubufOffs, const size_t* ubufSizes,
size_t texCount, ITexture** texs)
: IShaderDataBindingPriv(d),
m_pipeline(static_cast<GLShaderPipeline*>(pipeline)),
m_vtxFormat(static_cast<GLVertexFormat*>(vtxFormat)),
m_ubufCount(ubufCount),
m_ubufs(new IGraphicsBuffer*[ubufCount]),
m_texCount(texCount),
m_texs(new ITexture*[texCount])
{
if (ubufOffs && ubufSizes)
{
m_ubufOffs.reserve(ubufCount);
for (size_t i=0 ; i<ubufCount ; ++i)
{
#ifndef NDEBUG
if (ubufOffs[i] % 256)
Log.report(logvisor::Fatal, "non-256-byte-aligned uniform-offset %d provided to newShaderDataBinding", int(i));
#endif
m_ubufOffs.emplace_back(ubufOffs[i], (ubufSizes[i] + 255) & ~255);
}
}
for (size_t i=0 ; i<ubufCount ; ++i)
{
#ifndef NDEBUG
if (!ubufs[i])
Log.report(logvisor::Fatal, "null uniform-buffer %d provided to newShaderDataBinding", int(i));
#endif
m_ubufs[i] = ubufs[i];
}
for (size_t i=0 ; i<texCount ; ++i)
m_texs[i] = texs[i];
}
void bind(int b) const
{
GLuint prog = m_pipeline->bind();
m_vtxFormat->bind(b);
if (m_ubufOffs.size())
{
for (size_t i=0 ; i<m_ubufCount && i<m_pipeline->m_uniLocs.size() ; ++i)
{
GLint loc = m_pipeline->m_uniLocs[i];
if (loc < 0)
continue;
IGraphicsBuffer* ubuf = m_ubufs[i];
const std::pair<size_t,size_t>& offset = m_ubufOffs[i];
if (ubuf->dynamic())
static_cast<GLGraphicsBufferD*>(ubuf)->bindUniformRange(i, offset.first, offset.second, b);
else
static_cast<GLGraphicsBufferS*>(ubuf)->bindUniformRange(i, offset.first, offset.second);
glUniformBlockBinding(prog, loc, i);
}
}
else
{
for (size_t i=0 ; i<m_ubufCount && i<m_pipeline->m_uniLocs.size() ; ++i)
{
GLint loc = m_pipeline->m_uniLocs[i];
if (loc < 0)
continue;
IGraphicsBuffer* ubuf = m_ubufs[i];
if (ubuf->dynamic())
static_cast<GLGraphicsBufferD*>(ubuf)->bindUniform(i, b);
else
static_cast<GLGraphicsBufferS*>(ubuf)->bindUniform(i);
glUniformBlockBinding(prog, loc, i);
}
}
for (size_t i=0 ; i<m_texCount ; ++i)
{
ITexture* tex = m_texs[i];
if (tex)
{
switch (tex->type())
{
case TextureType::Dynamic:
static_cast<GLTextureD*>(tex)->bind(i, b);
break;
case TextureType::Static:
static_cast<GLTextureS*>(tex)->bind(i);
break;
case TextureType::StaticArray:
static_cast<GLTextureSA*>(tex)->bind(i);
break;
case TextureType::Render:
static_cast<GLTextureR*>(tex)->bind(i);
break;
default: break;
}
}
}
}
};
IShaderDataBinding*
GLDataFactory::Context::newShaderDataBinding(IShaderPipeline* pipeline,
IVertexFormat* vtxFormat,
IGraphicsBuffer*, IGraphicsBuffer*, IGraphicsBuffer*,
size_t ubufCount, IGraphicsBuffer** ubufs, const PipelineStage* ubufStages,
const size_t* ubufOffs, const size_t* ubufSizes,
size_t texCount, ITexture** texs, size_t baseVert, size_t baseInst)
{
GLShaderDataBinding* retval =
new GLShaderDataBinding(m_deferredData.get(), pipeline, vtxFormat, ubufCount, ubufs,
ubufOffs, ubufSizes, texCount, texs);
m_deferredData->m_SBinds.emplace_back(retval);
return retval;
}
GLDataFactory::GLDataFactory(IGraphicsContext* parent, uint32_t drawSamples)
: m_parent(parent), m_drawSamples(drawSamples) {}
GraphicsDataToken GLDataFactory::commitTransaction(const FactoryCommitFunc& trans)
{
if (m_deferredData.get())
Log.report(logvisor::Fatal, "nested commitTransaction usage detected");
m_deferredData.reset(new GLData());
GLDataFactory::Context ctx(*this);
if (!trans(ctx))
{
delete m_deferredData.get();
m_deferredData.reset();
return GraphicsDataToken(this, nullptr);
}
std::unique_lock<std::mutex> lk(m_committedMutex);
GLData* retval = m_deferredData.get();
m_deferredData.reset();
m_committedData.insert(retval);
lk.unlock();
/* Let's go ahead and flush to ensure our data gets to the GPU
While this isn't strictly required, some drivers might behave
differently */
glFlush();
return GraphicsDataToken(this, retval);
}
GraphicsBufferPoolToken GLDataFactory::newBufferPool()
{
std::unique_lock<std::mutex> lk(m_committedMutex);
GLPool* retval = new GLPool;
m_committedPools.insert(retval);
return GraphicsBufferPoolToken(this, retval);
}
void GLDataFactory::destroyData(IGraphicsData* d)
{
std::unique_lock<std::mutex> lk(m_committedMutex);
GLData* data = static_cast<GLData*>(d);
m_committedData.erase(data);
data->decrement();
}
void GLDataFactory::destroyAllData()
{
std::unique_lock<std::mutex> lk(m_committedMutex);
for (GLData* data : m_committedData)
data->decrement();
for (IGraphicsBufferPool* pool : m_committedPools)
delete static_cast<GLPool*>(pool);
m_committedData.clear();
m_committedPools.clear();
}
void GLDataFactory::destroyPool(IGraphicsBufferPool* p)
{
std::unique_lock<std::mutex> lk(m_committedMutex);
GLPool* pool = static_cast<GLPool*>(p);
m_committedPools.erase(pool);
delete pool;
}
IGraphicsBufferD* GLDataFactory::newPoolBuffer(IGraphicsBufferPool* p, BufferUse use,
size_t stride, size_t count)
{
GLPool* pool = static_cast<GLPool*>(p);
GLGraphicsBufferD* retval = new GLGraphicsBufferD(use, stride * count);
pool->m_DBufs.emplace(std::make_pair(retval, std::unique_ptr<GLGraphicsBufferD>(retval)));
return retval;
}
void GLDataFactory::deletePoolBuffer(IGraphicsBufferPool *p, IGraphicsBufferD *buf)
{
GLPool* pool = static_cast<GLPool*>(p);
pool->m_DBufs.erase(static_cast<GLGraphicsBufferD*>(buf));
}
static const GLint SEMANTIC_COUNT_TABLE[] =
{
0,
3,
4,
3,
4,
4,
4,
2,
4,
4,
4
};
static const size_t SEMANTIC_SIZE_TABLE[] =
{
0,
12,
16,
12,
16,
16,
4,
8,
16,
16,
16
};
static const GLenum SEMANTIC_TYPE_TABLE[] =
{
GL_INVALID_ENUM,
GL_FLOAT,
GL_FLOAT,
GL_FLOAT,
GL_FLOAT,
GL_FLOAT,
GL_UNSIGNED_BYTE,
GL_FLOAT,
GL_FLOAT,
GL_FLOAT,
GL_FLOAT
};
struct GLCommandQueue : IGraphicsCommandQueue
{
Platform platform() const {return IGraphicsDataFactory::Platform::OpenGL;}
const SystemChar* platformName() const {return _S("OpenGL");}
IGraphicsContext* m_parent = nullptr;
struct Command
{
enum class Op
{
SetShaderDataBinding,
SetRenderTarget,
SetViewport,
SetScissor,
SetClearColor,
ClearTarget,
Draw,
DrawIndexed,
DrawInstances,
DrawInstancesIndexed,
ResolveBindTexture,
Present
} m_op;
union
{
const IShaderDataBinding* binding;
const ITextureR* target;
const ITextureR* source;
struct
{
SWindowRect rect;
float znear, zfar;
} viewport;
float rgba[4];
GLbitfield flags;
struct
{
size_t start;
size_t count;
size_t instCount;
};
};
IShaderDataBindingPriv<GLData>::Token resToken;
const ITextureR* resolveTex;
bool resolveColor : 1;
bool resolveDepth : 1;
Command(Op op) : m_op(op) {}
Command(const Command&) = delete;
Command& operator=(const Command&) = delete;
Command(Command&&) = default;
Command& operator=(Command&&) = default;
};
std::vector<Command> m_cmdBufs[3];
size_t m_fillBuf = 0;
size_t m_completeBuf = 0;
size_t m_drawBuf = 0;
bool m_running = true;
std::mutex m_mt;
std::condition_variable m_cv;
std::mutex m_initmt;
std::condition_variable m_initcv;
std::unique_lock<std::mutex> m_initlk;
std::thread m_thr;
struct RenderTextureResize
{
GLTextureR* tex;
size_t width;
size_t height;
};
/* These members are locked for multithreaded access */
std::vector<RenderTextureResize> m_pendingResizes;
std::vector<std::function<void(void)>> m_pendingPosts1;
std::vector<std::function<void(void)>> m_pendingPosts2;
std::vector<GLVertexFormat*> m_pendingFmtAdds;
std::vector<std::array<GLuint, 3>> m_pendingFmtDels;
std::vector<GLTextureR*> m_pendingFboAdds;
std::vector<GLuint> m_pendingFboDels;
static void ConfigureVertexFormat(GLVertexFormat* fmt)
{
glGenVertexArrays(3, fmt->m_vao);
size_t stride = 0;
size_t instStride = 0;
for (size_t i=0 ; i<fmt->m_elementCount ; ++i)
{
const VertexElementDescriptor* desc = &fmt->m_elements[i];
if ((desc->semantic & VertexSemantic::Instanced) != VertexSemantic::None)
instStride += SEMANTIC_SIZE_TABLE[int(desc->semantic & VertexSemantic::SemanticMask)];
else
stride += SEMANTIC_SIZE_TABLE[int(desc->semantic & VertexSemantic::SemanticMask)];
}
for (int b=0 ; b<3 ; ++b)
{
size_t offset = fmt->m_baseVert * stride;
size_t instOffset = fmt->m_baseInst * instStride;
glBindVertexArray(fmt->m_vao[b]);
IGraphicsBuffer* lastVBO = nullptr;
IGraphicsBuffer* lastEBO = nullptr;
for (size_t i=0 ; i<fmt->m_elementCount ; ++i)
{
const VertexElementDescriptor* desc = &fmt->m_elements[i];
if (desc->vertBuffer != lastVBO)
{
lastVBO = desc->vertBuffer;
if (lastVBO->dynamic())
static_cast<GLGraphicsBufferD*>(lastVBO)->bindVertex(b);
else
static_cast<GLGraphicsBufferS*>(lastVBO)->bindVertex();
}
if (desc->indexBuffer != lastEBO)
{
lastEBO = desc->indexBuffer;
if (lastEBO->dynamic())
static_cast<GLGraphicsBufferD*>(lastEBO)->bindIndex(b);
else
static_cast<GLGraphicsBufferS*>(lastEBO)->bindIndex();
}
glEnableVertexAttribArray(i);
int maskedSem = int(desc->semantic & VertexSemantic::SemanticMask);
if ((desc->semantic & VertexSemantic::Instanced) != VertexSemantic::None)
{
glVertexAttribPointer(i, SEMANTIC_COUNT_TABLE[maskedSem],
SEMANTIC_TYPE_TABLE[maskedSem], GL_TRUE, instStride, (void*)instOffset);
glVertexAttribDivisor(i, 1);
instOffset += SEMANTIC_SIZE_TABLE[maskedSem];
}
else
{
glVertexAttribPointer(i, SEMANTIC_COUNT_TABLE[maskedSem],
SEMANTIC_TYPE_TABLE[maskedSem], GL_TRUE, stride, (void*)offset);
offset += SEMANTIC_SIZE_TABLE[maskedSem];
}
}
}
}
static void ConfigureFBO(GLTextureR* tex)
{
glGenFramebuffers(1, &tex->m_fbo);
glBindFramebuffer(GL_FRAMEBUFFER, tex->m_fbo);
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, tex->m_texs[0], 0);
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_TEXTURE_2D, tex->m_texs[1], 0);
}
static void RenderingWorker(GLCommandQueue* self)
{
{
std::unique_lock<std::mutex> lk(self->m_initmt);
self->m_parent->makeCurrent();
if (glewInit() != GLEW_OK)
Log.report(logvisor::Fatal, "unable to init glew");
const GLubyte* version = glGetString(GL_VERSION);
Log.report(logvisor::Info, "OpenGL Version: %s", version);
self->m_parent->postInit();
}
self->m_initcv.notify_one();
while (self->m_running)
{
std::vector<std::function<void(void)>> posts;
{
std::unique_lock<std::mutex> lk(self->m_mt);
self->m_cv.wait(lk);
if (!self->m_running)
break;
self->m_drawBuf = self->m_completeBuf;
glBindFramebuffer(GL_FRAMEBUFFER, 0);
if (self->m_pendingFboAdds.size())
{
for (GLTextureR* tex : self->m_pendingFboAdds)
ConfigureFBO(tex);
self->m_pendingFboAdds.clear();
}
if (self->m_pendingResizes.size())
{
for (const RenderTextureResize& resize : self->m_pendingResizes)
resize.tex->resize(resize.width, resize.height);
self->m_pendingResizes.clear();
}
if (self->m_pendingFmtAdds.size())
{
for (GLVertexFormat* fmt : self->m_pendingFmtAdds)
if (fmt) ConfigureVertexFormat(fmt);
self->m_pendingFmtAdds.clear();
}
if (self->m_pendingFmtDels.size())
{
for (const auto& fmt : self->m_pendingFmtDels)
glDeleteVertexArrays(3, fmt.data());
self->m_pendingFmtDels.clear();
}
if (self->m_pendingFboDels.size())
{
for (GLuint fbo : self->m_pendingFboDels)
glDeleteFramebuffers(1, &fbo);
self->m_pendingFboDels.clear();
}
if (self->m_pendingPosts2.size())
posts.swap(self->m_pendingPosts2);
}
std::vector<Command>& cmds = self->m_cmdBufs[self->m_drawBuf];
GLenum currentPrim = GL_TRIANGLES;
for (const Command& cmd : cmds)
{
switch (cmd.m_op)
{
case Command::Op::SetShaderDataBinding:
{
const GLShaderDataBinding* binding = static_cast<const GLShaderDataBinding*>(cmd.binding);
binding->bind(self->m_drawBuf);
currentPrim = binding->m_pipeline->m_drawPrim;
break;
}
case Command::Op::SetRenderTarget:
{
const GLTextureR* tex = static_cast<const GLTextureR*>(cmd.target);
if (!tex)
glBindFramebuffer(GL_FRAMEBUFFER, 0);
else
glBindFramebuffer(GL_FRAMEBUFFER, tex->m_fbo);
break;
}
case Command::Op::SetViewport:
glViewport(cmd.viewport.rect.location[0], cmd.viewport.rect.location[1],
cmd.viewport.rect.size[0], cmd.viewport.rect.size[1]);
glDepthRange(cmd.viewport.znear, cmd.viewport.zfar);
break;
case Command::Op::SetScissor:
if (cmd.viewport.rect.size[0] == 0 && cmd.viewport.rect.size[1] == 0)
glDisable(GL_SCISSOR_TEST);
else
{
glEnable(GL_SCISSOR_TEST);
glScissor(cmd.viewport.rect.location[0], cmd.viewport.rect.location[1],
cmd.viewport.rect.size[0], cmd.viewport.rect.size[1]);
}
break;
case Command::Op::SetClearColor:
glClearColor(cmd.rgba[0], cmd.rgba[1], cmd.rgba[2], cmd.rgba[3]);
break;
case Command::Op::ClearTarget:
if (cmd.flags & GL_DEPTH_BUFFER_BIT)
glDepthMask(GL_TRUE);
glClear(cmd.flags);
break;
case Command::Op::Draw:
glDrawArrays(currentPrim, cmd.start, cmd.count);
break;
case Command::Op::DrawIndexed:
glDrawElements(currentPrim, cmd.count, GL_UNSIGNED_INT,
reinterpret_cast<void*>(cmd.start * 4));
break;
case Command::Op::DrawInstances:
glDrawArraysInstanced(currentPrim, cmd.start, cmd.count, cmd.instCount);
break;
case Command::Op::DrawInstancesIndexed:
glDrawElementsInstanced(currentPrim, cmd.count, GL_UNSIGNED_INT,
reinterpret_cast<void*>(cmd.start * 4), cmd.instCount);
break;
case Command::Op::ResolveBindTexture:
{
const GLTextureR* tex = static_cast<const GLTextureR*>(cmd.resolveTex);
GLenum target = (tex->m_samples > 1) ? GL_TEXTURE_2D_MULTISAMPLE : GL_TEXTURE_2D;
glBindFramebuffer(GL_READ_FRAMEBUFFER, tex->m_fbo);
glActiveTexture(GL_TEXTURE9);
if (cmd.resolveColor && tex->m_bindTexs[0])
{
glBindTexture(target, tex->m_bindTexs[0]);
glCopyTexSubImage2D(target, 0, cmd.viewport.rect.location[0], cmd.viewport.rect.location[1],
cmd.viewport.rect.location[0], cmd.viewport.rect.location[1],
cmd.viewport.rect.size[0], cmd.viewport.rect.size[1]);
}
if (cmd.resolveDepth && tex->m_bindTexs[1])
{
glBindTexture(target, tex->m_bindTexs[1]);
glCopyTexSubImage2D(target, 0, cmd.viewport.rect.location[0], cmd.viewport.rect.location[1],
cmd.viewport.rect.location[0], cmd.viewport.rect.location[1],
cmd.viewport.rect.size[0], cmd.viewport.rect.size[1]);
}
break;
}
case Command::Op::Present:
{
const GLTextureR* tex = static_cast<const GLTextureR*>(cmd.source);
if (tex)
{
glBindFramebuffer(GL_READ_FRAMEBUFFER, tex->m_fbo);
glBindFramebuffer(GL_DRAW_FRAMEBUFFER, 0);
glBlitFramebuffer(0, 0, tex->m_width, tex->m_height, 0, 0,
tex->m_width, tex->m_height, GL_COLOR_BUFFER_BIT, GL_NEAREST);
}
self->m_parent->present();
break;
}
default: break;
}
}
cmds.clear();
for (auto& p : posts)
p();
}
}
GLCommandQueue(IGraphicsContext* parent)
: m_parent(parent),
m_initlk(m_initmt),
m_thr(RenderingWorker, this)
{
m_initcv.wait(m_initlk);
m_initlk.unlock();
}
void stopRenderer()
{
m_running = false;
m_cv.notify_one();
m_thr.join();
}
~GLCommandQueue()
{
if (m_running) stopRenderer();
}
void setShaderDataBinding(IShaderDataBinding* binding)
{
std::vector<Command>& cmds = m_cmdBufs[m_fillBuf];
cmds.emplace_back(Command::Op::SetShaderDataBinding);
cmds.back().binding = binding;
cmds.back().resToken = static_cast<IShaderDataBindingPriv<GLData>*>(binding)->lock();
}
void setRenderTarget(ITextureR* target)
{
std::vector<Command>& cmds = m_cmdBufs[m_fillBuf];
cmds.emplace_back(Command::Op::SetRenderTarget);
cmds.back().target = target;
}
void setViewport(const SWindowRect& rect, float znear, float zfar)
{
std::vector<Command>& cmds = m_cmdBufs[m_fillBuf];
cmds.emplace_back(Command::Op::SetViewport);
cmds.back().viewport.rect = rect;
cmds.back().viewport.znear = znear;
cmds.back().viewport.zfar = zfar;
}
void setScissor(const SWindowRect& rect)
{
std::vector<Command>& cmds = m_cmdBufs[m_fillBuf];
cmds.emplace_back(Command::Op::SetScissor);
cmds.back().viewport.rect = rect;
}
void resizeRenderTexture(ITextureR* tex, size_t width, size_t height)
{
std::unique_lock<std::mutex> lk(m_mt);
GLTextureR* texgl = static_cast<GLTextureR*>(tex);
m_pendingResizes.push_back({texgl, width, height});
}
void schedulePostFrameHandler(std::function<void(void)>&& func)
{
m_pendingPosts1.push_back(std::move(func));
}
void setClearColor(const float rgba[4])
{
std::vector<Command>& cmds = m_cmdBufs[m_fillBuf];
cmds.emplace_back(Command::Op::SetClearColor);
cmds.back().rgba[0] = rgba[0];
cmds.back().rgba[1] = rgba[1];
cmds.back().rgba[2] = rgba[2];
cmds.back().rgba[3] = rgba[3];
}
void clearTarget(bool render=true, bool depth=true)
{
std::vector<Command>& cmds = m_cmdBufs[m_fillBuf];
cmds.emplace_back(Command::Op::ClearTarget);
cmds.back().flags = 0;
if (render)
cmds.back().flags |= GL_COLOR_BUFFER_BIT;
if (depth)
cmds.back().flags |= GL_DEPTH_BUFFER_BIT;
}
void draw(size_t start, size_t count)
{
std::vector<Command>& cmds = m_cmdBufs[m_fillBuf];
cmds.emplace_back(Command::Op::Draw);
cmds.back().start = start;
cmds.back().count = count;
}
void drawIndexed(size_t start, size_t count)
{
std::vector<Command>& cmds = m_cmdBufs[m_fillBuf];
cmds.emplace_back(Command::Op::DrawIndexed);
cmds.back().start = start;
cmds.back().count = count;
}
void drawInstances(size_t start, size_t count, size_t instCount)
{
std::vector<Command>& cmds = m_cmdBufs[m_fillBuf];
cmds.emplace_back(Command::Op::DrawInstances);
cmds.back().start = start;
cmds.back().count = count;
cmds.back().instCount = instCount;
}
void drawInstancesIndexed(size_t start, size_t count, size_t instCount)
{
std::vector<Command>& cmds = m_cmdBufs[m_fillBuf];
cmds.emplace_back(Command::Op::DrawInstancesIndexed);
cmds.back().start = start;
cmds.back().count = count;
cmds.back().instCount = instCount;
}
void resolveBindTexture(ITextureR* texture, const SWindowRect& rect, bool tlOrigin, bool color, bool depth)
{
GLTextureR* tex = static_cast<GLTextureR*>(texture);
std::vector<Command>& cmds = m_cmdBufs[m_fillBuf];
cmds.emplace_back(Command::Op::ResolveBindTexture);
cmds.back().resolveTex = texture;
cmds.back().resolveColor = color;
cmds.back().resolveDepth = depth;
SWindowRect intersectRect = rect.intersect(SWindowRect(0, 0, tex->m_width, tex->m_height));
SWindowRect& targetRect = cmds.back().viewport.rect;
targetRect.location[0] = intersectRect.location[0];
if (tlOrigin)
targetRect.location[1] = tex->m_height - intersectRect.location[1] - intersectRect.size[1];
else
targetRect.location[1] = intersectRect.location[1];
targetRect.size[0] = intersectRect.size[0];
targetRect.size[1] = intersectRect.size[1];
}
void resolveDisplay(ITextureR* source)
{
std::vector<Command>& cmds = m_cmdBufs[m_fillBuf];
cmds.emplace_back(Command::Op::Present);
cmds.back().source = source;
}
void addVertexFormat(GLVertexFormat* fmt)
{
std::unique_lock<std::mutex> lk(m_mt);
m_pendingFmtAdds.push_back(fmt);
}
void delVertexFormat(GLVertexFormat* fmt)
{
std::unique_lock<std::mutex> lk(m_mt);
bool foundAdd = false;
for (GLVertexFormat*& afmt : m_pendingFmtAdds)
if (afmt == fmt)
{
foundAdd = true;
afmt = nullptr;
break;
}
if (!foundAdd)
m_pendingFmtDels.push_back({fmt->m_vao[0], fmt->m_vao[1], fmt->m_vao[2]});
}
void addFBO(GLTextureR* tex)
{
std::unique_lock<std::mutex> lk(m_mt);
m_pendingFboAdds.push_back(tex);
}
void delFBO(GLTextureR* tex)
{
std::unique_lock<std::mutex> lk(m_mt);
m_pendingFboDels.push_back(tex->m_fbo);
}
void execute()
{
std::unique_lock<std::mutex> lk(m_mt);
m_completeBuf = m_fillBuf;
for (size_t i=0 ; i<3 ; ++i)
{
if (i == m_completeBuf || i == m_drawBuf)
continue;
m_fillBuf = i;
break;
}
/* Update dynamic data here */
GLDataFactory* gfxF = static_cast<GLDataFactory*>(m_parent->getDataFactory());
std::unique_lock<std::mutex> datalk(gfxF->m_committedMutex);
for (GLData* d : gfxF->m_committedData)
{
for (std::unique_ptr<GLGraphicsBufferD>& b : d->m_DBufs)
b->update(m_completeBuf);
for (std::unique_ptr<GLTextureD>& t : d->m_DTexs)
t->update(m_completeBuf);
}
for (GLPool* p : gfxF->m_committedPools)
{
for (auto& b : p->m_DBufs)
b.second->update(m_completeBuf);
}
datalk.unlock();
glFlush();
for (auto& p : m_pendingPosts1)
m_pendingPosts2.push_back(std::move(p));
m_pendingPosts1.clear();
lk.unlock();
m_cv.notify_one();
m_cmdBufs[m_fillBuf].clear();
}
};
void GLGraphicsBufferD::update(int b)
{
int slot = 1 << b;
if ((slot & m_validMask) == 0)
{
glBindBuffer(m_target, m_bufs[b]);
glBufferSubData(m_target, 0, m_cpuSz, m_cpuBuf.get());
m_validMask |= slot;
}
}
void GLGraphicsBufferD::load(const void* data, size_t sz)
{
size_t bufSz = std::min(sz, m_cpuSz);
memcpy(m_cpuBuf.get(), data, bufSz);
m_validMask = 0;
}
void* GLGraphicsBufferD::map(size_t sz)
{
if (sz < m_cpuSz)
return nullptr;
return m_cpuBuf.get();
}
void GLGraphicsBufferD::unmap()
{
m_validMask = 0;
}
void GLGraphicsBufferD::bindVertex(int b)
{glBindBuffer(GL_ARRAY_BUFFER, m_bufs[b]);}
void GLGraphicsBufferD::bindIndex(int b)
{glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, m_bufs[b]);}
void GLGraphicsBufferD::bindUniform(size_t idx, int b)
{glBindBufferBase(GL_UNIFORM_BUFFER, idx, m_bufs[b]);}
void GLGraphicsBufferD::bindUniformRange(size_t idx, GLintptr off, GLsizeiptr size, int b)
{glBindBufferRange(GL_UNIFORM_BUFFER, idx, m_bufs[b], off, size);}
IGraphicsBufferD*
GLDataFactory::Context::newDynamicBuffer(BufferUse use, size_t stride, size_t count)
{
GLGraphicsBufferD* retval = new GLGraphicsBufferD(use, stride * count);
m_deferredData->m_DBufs.emplace_back(retval);
return retval;
}
GLTextureD::GLTextureD(size_t width, size_t height, TextureFormat fmt)
: m_width(width), m_height(height)
{
int pxPitch = 4;
switch (fmt)
{
case TextureFormat::RGBA8:
m_intFormat = GL_RGBA;
m_format = GL_RGBA;
pxPitch = 4;
break;
case TextureFormat::I8:
m_intFormat = GL_R8;
m_format = GL_RED;
pxPitch = 1;
break;
default:
Log.report(logvisor::Fatal, "unsupported tex format");
}
m_cpuSz = width * height * pxPitch;
m_cpuBuf.reset(new uint8_t[m_cpuSz]);
glGenTextures(3, m_texs);
for (int i=0 ; i<3 ; ++i)
{
glBindTexture(GL_TEXTURE_2D, m_texs[i]);
glTexImage2D(GL_TEXTURE_2D, 0, m_intFormat, width, height, 0, m_format, GL_UNSIGNED_BYTE, nullptr);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
}
}
GLTextureD::~GLTextureD() {glDeleteTextures(3, m_texs);}
void GLTextureD::update(int b)
{
int slot = 1 << b;
if ((slot & m_validMask) == 0)
{
glBindTexture(GL_TEXTURE_2D, m_texs[b]);
glTexImage2D(GL_TEXTURE_2D, 0, m_intFormat, m_width, m_height, 0, m_format, GL_UNSIGNED_BYTE, m_cpuBuf.get());
m_validMask |= slot;
}
}
void GLTextureD::load(const void* data, size_t sz)
{
size_t bufSz = std::min(sz, m_cpuSz);
memcpy(m_cpuBuf.get(), data, bufSz);
m_validMask = 0;
}
void* GLTextureD::map(size_t sz)
{
if (sz > m_cpuSz)
return nullptr;
return m_cpuBuf.get();
}
void GLTextureD::unmap()
{
m_validMask = 0;
}
void GLTextureD::bind(size_t idx, int b)
{
glActiveTexture(GL_TEXTURE0 + idx);
glBindTexture(GL_TEXTURE_2D, m_texs[b]);
}
ITextureD*
GLDataFactory::Context::newDynamicTexture(size_t width, size_t height, TextureFormat fmt)
{
GLTextureD* retval = new GLTextureD(width, height, fmt);
m_deferredData->m_DTexs.emplace_back(retval);
return retval;
}
GLTextureR::GLTextureR(GLCommandQueue* q, size_t width, size_t height, size_t samples,
bool enableShaderColorBinding, bool enableShaderDepthBinding)
: m_q(q), m_width(width), m_height(height), m_samples(samples)
{
glGenTextures(2, m_texs);
if (enableShaderColorBinding)
glGenTextures(1, &m_bindTexs[0]);
if (enableShaderDepthBinding)
glGenTextures(1, &m_bindTexs[1]);
if (samples > 1)
{
m_target = GL_TEXTURE_2D_MULTISAMPLE;
glBindTexture(GL_TEXTURE_2D_MULTISAMPLE, m_texs[0]);
glTexImage2DMultisample(GL_TEXTURE_2D_MULTISAMPLE, samples, GL_RGBA, width, height, GL_FALSE);
glBindTexture(GL_TEXTURE_2D_MULTISAMPLE, m_texs[1]);
glTexImage2DMultisample(GL_TEXTURE_2D_MULTISAMPLE, samples, GL_DEPTH_COMPONENT24, width, height, GL_FALSE);
if (enableShaderColorBinding)
{
glBindTexture(GL_TEXTURE_2D_MULTISAMPLE, m_bindTexs[0]);
glTexImage2DMultisample(GL_TEXTURE_2D_MULTISAMPLE, samples, GL_RGBA, width, height, GL_FALSE);
}
if (enableShaderDepthBinding)
{
glBindTexture(GL_TEXTURE_2D_MULTISAMPLE, m_bindTexs[1]);
glTexImage2DMultisample(GL_TEXTURE_2D_MULTISAMPLE, samples, GL_DEPTH_COMPONENT24, width, height, GL_FALSE);
}
}
else
{
m_target = GL_TEXTURE_2D;
glBindTexture(GL_TEXTURE_2D, m_texs[0]);
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, width, height, 0, GL_RGBA, GL_UNSIGNED_BYTE, nullptr);
glBindTexture(GL_TEXTURE_2D, m_texs[1]);
glTexImage2D(GL_TEXTURE_2D, 0, GL_DEPTH_COMPONENT24, width, height, 0, GL_DEPTH_COMPONENT, GL_UNSIGNED_INT, nullptr);
if (enableShaderColorBinding)
{
glBindTexture(GL_TEXTURE_2D, m_bindTexs[0]);
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, width, height, 0, GL_RGBA, GL_UNSIGNED_BYTE, nullptr);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
}
if (enableShaderDepthBinding)
{
glBindTexture(GL_TEXTURE_2D, m_bindTexs[1]);
glTexImage2D(GL_TEXTURE_2D, 0, GL_DEPTH_COMPONENT24, width, height, 0, GL_DEPTH_COMPONENT, GL_UNSIGNED_INT, nullptr);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
}
}
m_q->addFBO(this);
}
GLTextureR::~GLTextureR()
{
glDeleteTextures(2, m_texs);
glDeleteTextures(2, m_bindTexs);
m_q->delFBO(this);
}
ITextureR*
GLDataFactory::Context::newRenderTexture(size_t width, size_t height,
bool enableShaderColorBinding, bool enableShaderDepthBinding)
{
GLCommandQueue* q = static_cast<GLCommandQueue*>(m_parent.m_parent->getCommandQueue());
GLTextureR* retval = new GLTextureR(q, width, height, m_parent.m_drawSamples,
enableShaderColorBinding, enableShaderDepthBinding);
q->resizeRenderTexture(retval, width, height);
m_deferredData->m_RTexs.emplace_back(retval);
return retval;
}
GLVertexFormat::GLVertexFormat(GLCommandQueue* q, size_t elementCount,
const VertexElementDescriptor* elements,
size_t baseVert, size_t baseInst)
: m_q(q),
m_elementCount(elementCount),
m_elements(new VertexElementDescriptor[elementCount]),
m_baseVert(baseVert), m_baseInst(baseInst)
{
for (size_t i=0 ; i<elementCount ; ++i)
m_elements[i] = elements[i];
m_q->addVertexFormat(this);
}
GLVertexFormat::~GLVertexFormat() {m_q->delVertexFormat(this);}
IVertexFormat* GLDataFactory::Context::newVertexFormat
(size_t elementCount, const VertexElementDescriptor* elements,
size_t baseVert, size_t baseInst)
{
GLCommandQueue* q = static_cast<GLCommandQueue*>(m_parent.m_parent->getCommandQueue());
GLVertexFormat* retval = new struct GLVertexFormat(q, elementCount, elements, baseVert, baseInst);
m_deferredData->m_VFmts.emplace_back(retval);
return retval;
}
IGraphicsCommandQueue* _NewGLCommandQueue(IGraphicsContext* parent)
{
return new struct GLCommandQueue(parent);
}
}