boo/lib/graphicsdev/Metal.mm

2036 lines
76 KiB
Plaintext

#include "lib/mac/CocoaCommon.hpp"
#if BOO_HAS_METAL
#include "boo/IApplication.hpp"
#include "boo/IGraphicsContext.hpp"
#include "boo/graphicsdev/Metal.hpp"
#include "lib/graphicsdev/Common.hpp"
#include <unordered_map>
#include <unordered_set>
#include <vector>
#include <logvisor/logvisor.hpp>
#if !__has_feature(objc_arc)
#error ARC Required
#endif
#define MAX_UNIFORM_COUNT 8
#define MAX_TEXTURE_COUNT 8
static const char* GammaVS =
"#include <metal_stdlib>\n"
"using namespace metal;\n"
"struct VertData\n"
"{\n"
" float4 posIn [[ attribute(0) ]];\n"
" float4 uvIn [[ attribute(1) ]];\n"
"};\n"
"\n"
"struct VertToFrag\n"
"{\n"
" float4 pos [[ position ]];\n"
" float2 uv;\n"
"};\n"
"\n"
"vertex VertToFrag vmain(VertData v [[ stage_in ]])\n"
"{\n"
" VertToFrag vtf;\n"
" vtf.uv = v.uvIn.xy;\n"
" vtf.pos = v.posIn;\n"
" return vtf;\n"
"}\n";
static const char* GammaFS =
"#include <metal_stdlib>\n"
"using namespace metal;\n"
"struct VertToFrag\n"
"{\n"
" float4 pos [[ position ]];\n"
" float2 uv;\n"
"};\n"
"\n"
"fragment float4 fmain(VertToFrag vtf [[ stage_in ]],\n"
" sampler clampSamp [[ sampler(3) ]],\n"
" texture2d<float> screenTex [[ texture(0) ]],\n"
" texture2d<float> gammaLUT [[ texture(1) ]])\n"
"{\n"
" uint4 tex = uint4(saturate(screenTex.sample(clampSamp, vtf.uv)) * float4(65535.0));\n"
" float4 colorOut;\n"
" for (int i=0 ; i<3 ; ++i)\n"
" colorOut[i] = gammaLUT.read(uint2(tex[i] % 256, tex[i] / 256)).r;\n"
" return colorOut;\n"
"}\n";
namespace boo {
static logvisor::Module Log("boo::Metal");
struct MetalCommandQueue;
class MetalDataFactoryImpl;
class MetalDataFactoryImpl : public MetalDataFactory, public GraphicsDataFactoryHead {
friend struct MetalCommandQueue;
friend class MetalDataFactory::Context;
IGraphicsContext* m_parent;
struct MetalContext* m_ctx;
bool m_hasTessellation = false;
float m_gamma = 1.f;
ObjToken<IShaderPipeline> m_gammaShader;
ObjToken<ITextureD> m_gammaLUT;
ObjToken<IGraphicsBufferS> m_gammaVBO;
ObjToken<IShaderDataBinding> m_gammaBinding;
void SetupGammaResources();
public:
MetalDataFactoryImpl(IGraphicsContext* parent, MetalContext* ctx)
: m_parent(parent), m_ctx(ctx) {}
~MetalDataFactoryImpl() = default;
Platform platform() const { return Platform::Metal; }
const char* platformName() const { return "Metal"; }
void commitTransaction(const std::function<bool(IGraphicsDataFactory::Context& ctx)>&__BooTraceArgs);
ObjToken<IGraphicsBufferD> newPoolBuffer(BufferUse use, size_t stride, size_t count __BooTraceArgs);
void setDisplayGamma(float gamma) {
if (m_ctx->m_pixelFormat == MTLPixelFormatRGBA16Float)
m_gamma = gamma * 2.2f;
else
m_gamma = gamma;
if (m_gamma != 1.f)
UpdateGammaLUT(m_gammaLUT.get(), m_gamma);
}
bool isTessellationSupported(uint32_t& maxPatchSize) {
maxPatchSize = 32;
return m_hasTessellation;
}
void waitUntilShadersReady() {}
bool areShadersReady() { return true; }
};
#define MTL_STATIC MTLResourceCPUCacheModeWriteCombined|MTLResourceStorageModeManaged
#define MTL_DYNAMIC MTLResourceCPUCacheModeWriteCombined|MTLResourceStorageModeManaged
class MetalGraphicsBufferS : public GraphicsDataNode<IGraphicsBufferS> {
friend class MetalDataFactory;
friend struct MetalCommandQueue;
MetalGraphicsBufferS(const ObjToken<BaseGraphicsData>& parent, BufferUse use, MetalContext* ctx,
const void* data, size_t stride, size_t count)
: GraphicsDataNode<IGraphicsBufferS>(parent), m_stride(stride), m_count(count), m_sz(stride * count) {
m_buf = [ctx->m_dev newBufferWithBytes:data length:m_sz options:MTL_STATIC];
}
public:
size_t m_stride;
size_t m_count;
size_t m_sz;
id <MTLBuffer> m_buf;
~MetalGraphicsBufferS() = default;
};
template<class DataCls>
class MetalGraphicsBufferD : public GraphicsDataNode<IGraphicsBufferD, DataCls> {
friend class MetalDataFactory;
friend class MetalDataFactoryImpl;
friend struct MetalCommandQueue;
MetalCommandQueue* m_q;
std::unique_ptr<uint8_t[]> m_cpuBuf;
int m_validSlots = 0;
MetalGraphicsBufferD(const ObjToken<DataCls>& parent, MetalCommandQueue* q, BufferUse use,
MetalContext* ctx, size_t stride, size_t count)
: GraphicsDataNode<IGraphicsBufferD, DataCls>(parent), m_q(q), m_stride(stride),
m_count(count), m_sz(stride * count) {
m_cpuBuf.reset(new uint8_t[m_sz]);
m_bufs[0] = [ctx->m_dev newBufferWithLength:m_sz options:MTL_DYNAMIC];
m_bufs[1] = [ctx->m_dev newBufferWithLength:m_sz options:MTL_DYNAMIC];
}
public:
size_t m_stride;
size_t m_count;
size_t m_sz;
id <MTLBuffer> m_bufs[2];
MetalGraphicsBufferD() = default;
void update(int b) {
int slot = 1 << b;
if ((slot & m_validSlots) == 0) {
id <MTLBuffer> res = m_bufs[b];
memcpy(res.contents, m_cpuBuf.get(), m_sz);
[res didModifyRange:NSMakeRange(0, m_sz)];
m_validSlots |= slot;
}
}
void load(const void* data, size_t sz) {
size_t bufSz = std::min(sz, m_sz);
memcpy(m_cpuBuf.get(), data, bufSz);
m_validSlots = 0;
}
void* map(size_t sz) {
if (sz > m_sz)
return nullptr;
return m_cpuBuf.get();
}
void unmap() {
m_validSlots = 0;
}
};
class MetalTextureS : public GraphicsDataNode<ITextureS> {
friend class MetalDataFactory;
MetalTextureS(const ObjToken<BaseGraphicsData>& parent, MetalContext* ctx, size_t width, size_t height,
size_t mips, TextureFormat fmt, const void* data, size_t sz)
: GraphicsDataNode<ITextureS>(parent) {
MTLPixelFormat pfmt = MTLPixelFormatRGBA8Unorm;
NSUInteger ppitchNum = 4;
NSUInteger ppitchDenom = 1;
NSUInteger bytesPerRow = width * ppitchNum;
switch (fmt) {
case TextureFormat::I8:
pfmt = MTLPixelFormatR8Unorm;
ppitchNum = 1;
bytesPerRow = width * ppitchNum;
break;
case TextureFormat::I16:
pfmt = MTLPixelFormatR16Unorm;
ppitchNum = 2;
bytesPerRow = width * ppitchNum;
break;
case TextureFormat::DXT1:
pfmt = MTLPixelFormatBC1_RGBA;
ppitchNum = 1;
ppitchDenom = 2;
bytesPerRow = width * 8 / 4; // Metal wants this in blocks, not bytes
break;
case TextureFormat::DXT3:
pfmt = MTLPixelFormatBC2_RGBA;
ppitchNum = 1;
ppitchDenom = 1;
bytesPerRow = width * 16 / 4; // Metal wants this in blocks, not bytes
break;
case TextureFormat::DXT5:
pfmt = MTLPixelFormatBC3_RGBA;
ppitchNum = 1;
ppitchDenom = 1;
bytesPerRow = width * 16 / 4; // Metal wants this in blocks, not bytes
break;
case TextureFormat::BPTC:
pfmt = MTLPixelFormatBC7_RGBAUnorm;
ppitchNum = 1;
ppitchDenom = 1;
bytesPerRow = width * 16 / 4; // Metal wants this in blocks, not bytes
break;
default:
break;
}
@autoreleasepool {
MTLTextureDescriptor* desc =
[MTLTextureDescriptor texture2DDescriptorWithPixelFormat:pfmt
width:width height:height
mipmapped:(mips > 1) ? YES : NO];
desc.usage = MTLTextureUsageShaderRead;
desc.mipmapLevelCount = mips;
m_tex = [ctx->m_dev newTextureWithDescriptor:desc];
const uint8_t* dataIt = reinterpret_cast<const uint8_t*>(data);
for (size_t i = 0; i < mips; ++i) {
[m_tex replaceRegion:MTLRegionMake2D(0, 0, width, height)
mipmapLevel:i
withBytes:dataIt
bytesPerRow:bytesPerRow];
dataIt += width * height * ppitchNum / ppitchDenom;
if (width > 1) {
width /= 2;
bytesPerRow /= 2;
}
if (height > 1)
height /= 2;
}
}
}
public:
id <MTLTexture> m_tex;
~MetalTextureS() = default;
};
class MetalTextureSA : public GraphicsDataNode<ITextureSA> {
friend class MetalDataFactory;
MetalTextureSA(const ObjToken<BaseGraphicsData>& parent, MetalContext* ctx, size_t width,
size_t height, size_t layers, size_t mips,
TextureFormat fmt, const void* data, size_t sz)
: GraphicsDataNode<ITextureSA>(parent) {
MTLPixelFormat pfmt = MTLPixelFormatRGBA8Unorm;
NSUInteger ppitch = 4;
switch (fmt) {
case TextureFormat::I8:
pfmt = MTLPixelFormatR8Unorm;
ppitch = 1;
break;
case TextureFormat::I16:
pfmt = MTLPixelFormatR16Unorm;
ppitch = 2;
break;
default:
break;
}
@autoreleasepool {
MTLTextureDescriptor* desc =
[MTLTextureDescriptor texture2DDescriptorWithPixelFormat:pfmt
width:width height:height
mipmapped:(mips > 1) ? YES : NO];
desc.textureType = MTLTextureType2DArray;
desc.arrayLength = layers;
desc.mipmapLevelCount = mips;
desc.usage = MTLTextureUsageShaderRead;
m_tex = [ctx->m_dev newTextureWithDescriptor:desc];
const uint8_t* dataIt = reinterpret_cast<const uint8_t*>(data);
for (size_t i = 0; i < mips; ++i) {
for (size_t j = 0; j < layers; ++j) {
[m_tex replaceRegion:MTLRegionMake2D(0, 0, width, height)
mipmapLevel:i
slice:j
withBytes:dataIt
bytesPerRow:width * ppitch
bytesPerImage:width * height * ppitch];
dataIt += width * height * ppitch;
}
if (width > 1)
width /= 2;
if (height > 1)
height /= 2;
}
}
}
public:
id <MTLTexture> m_tex;
~MetalTextureSA() = default;
};
class MetalTextureD : public GraphicsDataNode<ITextureD> {
friend class MetalDataFactory;
friend struct MetalCommandQueue;
MetalCommandQueue* m_q;
size_t m_width = 0;
size_t m_height = 0;
std::unique_ptr<uint8_t[]> m_cpuBuf;
size_t m_cpuSz;
size_t m_pxPitch;
int m_validSlots = 0;
MetalTextureD(const ObjToken<BaseGraphicsData>& parent, MetalCommandQueue* q, MetalContext* ctx,
size_t width, size_t height, TextureFormat fmt)
: GraphicsDataNode<ITextureD>(parent), m_q(q), m_width(width), m_height(height) {
MTLPixelFormat format;
switch (fmt) {
case TextureFormat::RGBA8:
format = MTLPixelFormatRGBA8Unorm;
m_pxPitch = 4;
break;
case TextureFormat::I8:
format = MTLPixelFormatR8Unorm;
m_pxPitch = 1;
break;
case TextureFormat::I16:
format = MTLPixelFormatR16Unorm;
m_pxPitch = 2;
break;
default:
Log.report(logvisor::Fatal, FMT_STRING("unsupported tex format"));
return;
}
m_cpuSz = width * height * m_pxPitch;
m_cpuBuf.reset(new uint8_t[m_cpuSz]);
@autoreleasepool {
MTLTextureDescriptor* desc =
[MTLTextureDescriptor texture2DDescriptorWithPixelFormat:format
width:width height:height
mipmapped:NO];
desc.usage = MTLTextureUsageShaderRead;
m_texs[0] = [ctx->m_dev newTextureWithDescriptor:desc];
m_texs[1] = [ctx->m_dev newTextureWithDescriptor:desc];
}
}
public:
id <MTLTexture> m_texs[2];
~MetalTextureD() = default;
void update(int b) {
int slot = 1 << b;
if ((slot & m_validSlots) == 0) {
id <MTLTexture> res = m_texs[b];
[res replaceRegion:MTLRegionMake2D(0, 0, m_width, m_height)
mipmapLevel:0 withBytes:m_cpuBuf.get() bytesPerRow:m_width * m_pxPitch];
m_validSlots |= slot;
}
}
void load(const void* data, size_t sz) {
size_t bufSz = std::min(sz, m_cpuSz);
memcpy(m_cpuBuf.get(), data, bufSz);
m_validSlots = 0;
}
void* map(size_t sz) {
if (sz > m_cpuSz)
return nullptr;
return m_cpuBuf.get();
}
void unmap() {
m_validSlots = 0;
}
};
#define MAX_BIND_TEXS 4
class MetalTextureR : public GraphicsDataNode<ITextureR> {
friend class MetalDataFactory;
friend struct MetalCommandQueue;
size_t m_width = 0;
size_t m_height = 0;
size_t m_samples = 0;
size_t m_colorBindCount;
size_t m_depthBindCount;
void Setup(MetalContext* ctx) {
if (m_colorBindCount > MAX_BIND_TEXS)
Log.report(logvisor::Fatal, FMT_STRING("too many color bindings for render texture"));
if (m_depthBindCount > MAX_BIND_TEXS)
Log.report(logvisor::Fatal, FMT_STRING("too many depth bindings for render texture"));
@autoreleasepool {
MTLTextureDescriptor* desc =
[MTLTextureDescriptor texture2DDescriptorWithPixelFormat:ctx->m_pixelFormat
width:m_width height:m_height
mipmapped:NO];
desc.storageMode = MTLStorageModePrivate;
if (m_samples > 1) {
desc.textureType = MTLTextureType2DMultisample;
desc.sampleCount = m_samples;
desc.usage = MTLTextureUsageRenderTarget;
m_colorTex = [ctx->m_dev newTextureWithDescriptor:desc];
desc.pixelFormat = MTLPixelFormatDepth32Float;
m_depthTex = [ctx->m_dev newTextureWithDescriptor:desc];
} else {
desc.textureType = MTLTextureType2D;
desc.sampleCount = 1;
desc.usage = MTLTextureUsageRenderTarget;
m_colorTex = [ctx->m_dev newTextureWithDescriptor:desc];
desc.pixelFormat = MTLPixelFormatDepth32Float;
m_depthTex = [ctx->m_dev newTextureWithDescriptor:desc];
}
desc.textureType = MTLTextureType2D;
desc.sampleCount = 1;
desc.usage = MTLTextureUsageShaderRead;
if (m_colorBindCount) {
desc.pixelFormat = ctx->m_pixelFormat;
for (int i = 0; i < m_colorBindCount; ++i) {
m_colorBindTex[i] = [ctx->m_dev newTextureWithDescriptor:desc];
if (m_samples > 1) {
m_blitColor[i] = [MTLRenderPassDescriptor renderPassDescriptor];
m_blitColor[i].colorAttachments[0].texture = m_colorTex;
m_blitColor[i].colorAttachments[0].loadAction = MTLLoadActionLoad;
m_blitColor[i].colorAttachments[0].storeAction = MTLStoreActionMultisampleResolve;
m_blitColor[i].colorAttachments[0].resolveTexture = m_colorBindTex[i];
}
}
}
if (m_depthBindCount) {
desc.pixelFormat = MTLPixelFormatDepth32Float;
for (int i = 0; i < m_depthBindCount; ++i) {
m_depthBindTex[i] = [ctx->m_dev newTextureWithDescriptor:desc];
if (m_samples > 1) {
m_blitDepth[i] = [MTLRenderPassDescriptor renderPassDescriptor];
m_blitDepth[i].depthAttachment.texture = m_colorTex;
m_blitDepth[i].depthAttachment.loadAction = MTLLoadActionLoad;
m_blitDepth[i].depthAttachment.storeAction = MTLStoreActionMultisampleResolve;
m_blitDepth[i].depthAttachment.resolveTexture = m_depthBindTex[i];
}
}
}
{
m_passDesc = [MTLRenderPassDescriptor renderPassDescriptor];
m_passDesc.colorAttachments[0].texture = m_colorTex;
m_passDesc.colorAttachments[0].loadAction = MTLLoadActionLoad;
m_passDesc.colorAttachments[0].storeAction = MTLStoreActionStore;
m_passDesc.depthAttachment.texture = m_depthTex;
m_passDesc.depthAttachment.loadAction = MTLLoadActionLoad;
m_passDesc.depthAttachment.storeAction = MTLStoreActionStore;
m_passDesc.depthAttachment.clearDepth = 0.f;
}
{
m_clearDepthPassDesc = [MTLRenderPassDescriptor renderPassDescriptor];
m_clearDepthPassDesc.colorAttachments[0].texture = m_colorTex;
m_clearDepthPassDesc.colorAttachments[0].loadAction = MTLLoadActionLoad;
m_clearDepthPassDesc.colorAttachments[0].storeAction = MTLStoreActionStore;
m_clearDepthPassDesc.depthAttachment.texture = m_depthTex;
m_clearDepthPassDesc.depthAttachment.loadAction = MTLLoadActionClear;
m_clearDepthPassDesc.depthAttachment.storeAction = MTLStoreActionStore;
m_clearDepthPassDesc.depthAttachment.clearDepth = 0.f;
}
{
m_clearColorPassDesc = [MTLRenderPassDescriptor renderPassDescriptor];
m_clearColorPassDesc.colorAttachments[0].texture = m_colorTex;
m_clearColorPassDesc.colorAttachments[0].loadAction = MTLLoadActionClear;
m_clearColorPassDesc.colorAttachments[0].storeAction = MTLStoreActionStore;
m_clearDepthPassDesc.colorAttachments[0].clearColor = MTLClearColorMake(0.0, 0.0, 0.0, 0.0);
m_clearColorPassDesc.depthAttachment.texture = m_depthTex;
m_clearColorPassDesc.depthAttachment.loadAction = MTLLoadActionLoad;
m_clearColorPassDesc.depthAttachment.storeAction = MTLStoreActionStore;
m_clearColorPassDesc.depthAttachment.clearDepth = 0.f;
}
{
m_clearBothPassDesc = [MTLRenderPassDescriptor renderPassDescriptor];
m_clearBothPassDesc.colorAttachments[0].texture = m_colorTex;
m_clearBothPassDesc.colorAttachments[0].loadAction = MTLLoadActionClear;
m_clearBothPassDesc.colorAttachments[0].storeAction = MTLStoreActionStore;
m_clearBothPassDesc.colorAttachments[0].clearColor = MTLClearColorMake(0.0, 0.0, 0.0, 0.0);
m_clearBothPassDesc.depthAttachment.texture = m_depthTex;
m_clearBothPassDesc.depthAttachment.loadAction = MTLLoadActionClear;
m_clearBothPassDesc.depthAttachment.storeAction = MTLStoreActionStore;
m_clearBothPassDesc.depthAttachment.clearDepth = 0.f;
}
}
}
MetalTextureR(const ObjToken<BaseGraphicsData>& parent, MetalContext* ctx, size_t width, size_t height,
size_t samples, size_t colorBindCount, size_t depthBindCount)
: GraphicsDataNode<ITextureR>(parent), m_width(width), m_height(height), m_samples(samples),
m_colorBindCount(colorBindCount),
m_depthBindCount(depthBindCount) {
if (samples == 0) m_samples = 1;
Setup(ctx);
}
public:
size_t samples() const { return m_samples; }
id <MTLTexture> m_colorTex;
id <MTLTexture> m_depthTex;
id <MTLTexture> m_colorBindTex[MAX_BIND_TEXS] = {};
id <MTLTexture> m_depthBindTex[MAX_BIND_TEXS] = {};
MTLRenderPassDescriptor* m_passDesc;
MTLRenderPassDescriptor* m_clearDepthPassDesc;
MTLRenderPassDescriptor* m_clearColorPassDesc;
MTLRenderPassDescriptor* m_clearBothPassDesc;
MTLRenderPassDescriptor* m_blitColor[MAX_BIND_TEXS] = {};
MTLRenderPassDescriptor* m_blitDepth[MAX_BIND_TEXS] = {};
~MetalTextureR() = default;
void resize(MetalContext* ctx, size_t width, size_t height) {
if (width < 1)
width = 1;
if (height < 1)
height = 1;
m_width = width;
m_height = height;
Setup(ctx);
}
};
class MetalTextureCubeR : public GraphicsDataNode<ITextureCubeR> {
friend class MetalDataFactory;
friend struct MetalCommandQueue;
size_t m_width = 0;
size_t m_numMips = 0;
void Setup(MetalContext* ctx) {
@autoreleasepool {
MTLTextureDescriptor* desc =
[MTLTextureDescriptor texture2DDescriptorWithPixelFormat:ctx->m_pixelFormat
width:m_width height:m_width
mipmapped:NO];
desc.storageMode = MTLStorageModePrivate;
desc.textureType = MTLTextureTypeCube;
desc.sampleCount = 1;
desc.mipmapLevelCount = m_numMips;
desc.usage = MTLTextureUsageRenderTarget | MTLTextureUsageShaderRead;
m_colorTex = [ctx->m_dev newTextureWithDescriptor:desc];
desc.mipmapLevelCount = 1;
desc.pixelFormat = MTLPixelFormatDepth32Float;
desc.usage = MTLTextureUsageRenderTarget;
m_depthTex = [ctx->m_dev newTextureWithDescriptor:desc];
for (NSUInteger i = 0; i < 6; ++i) {
m_passDesc[i] = [MTLRenderPassDescriptor renderPassDescriptor];
m_passDesc[i].colorAttachments[0].texture = m_colorTex;
m_passDesc[i].colorAttachments[0].slice = i;
m_passDesc[i].colorAttachments[0].loadAction = MTLLoadActionLoad;
m_passDesc[i].colorAttachments[0].storeAction = MTLStoreActionStore;
m_passDesc[i].depthAttachment.texture = m_depthTex;
m_passDesc[i].depthAttachment.slice = i;
m_passDesc[i].depthAttachment.loadAction = MTLLoadActionLoad;
m_passDesc[i].depthAttachment.storeAction = MTLStoreActionStore;
m_passDesc[i].depthAttachment.clearDepth = 0.f;
}
for (NSUInteger i = 0; i < 6; ++i) {
m_clearDepthPassDesc[i] = [MTLRenderPassDescriptor renderPassDescriptor];
m_clearDepthPassDesc[i].colorAttachments[0].texture = m_colorTex;
m_clearDepthPassDesc[i].colorAttachments[0].slice = i;
m_clearDepthPassDesc[i].colorAttachments[0].loadAction = MTLLoadActionLoad;
m_clearDepthPassDesc[i].colorAttachments[0].storeAction = MTLStoreActionStore;
m_clearDepthPassDesc[i].depthAttachment.texture = m_depthTex;
m_clearDepthPassDesc[i].depthAttachment.slice = i;
m_clearDepthPassDesc[i].depthAttachment.loadAction = MTLLoadActionClear;
m_clearDepthPassDesc[i].depthAttachment.storeAction = MTLStoreActionStore;
m_clearDepthPassDesc[i].depthAttachment.clearDepth = 0.f;
}
for (NSUInteger i = 0; i < 6; ++i) {
m_clearColorPassDesc[i] = [MTLRenderPassDescriptor renderPassDescriptor];
m_clearColorPassDesc[i].colorAttachments[0].texture = m_colorTex;
m_clearColorPassDesc[i].colorAttachments[0].slice = i;
m_clearColorPassDesc[i].colorAttachments[0].loadAction = MTLLoadActionClear;
m_clearColorPassDesc[i].colorAttachments[0].storeAction = MTLStoreActionStore;
m_clearColorPassDesc[i].colorAttachments[0].clearColor = MTLClearColorMake(0.0, 0.0, 0.0, 0.0);
m_clearColorPassDesc[i].depthAttachment.texture = m_depthTex;
m_clearColorPassDesc[i].depthAttachment.slice = i;
m_clearColorPassDesc[i].depthAttachment.loadAction = MTLLoadActionLoad;
m_clearColorPassDesc[i].depthAttachment.storeAction = MTLStoreActionStore;
m_clearColorPassDesc[i].depthAttachment.clearDepth = 0.f;
}
for (NSUInteger i = 0; i < 6; ++i) {
m_clearBothPassDesc[i] = [MTLRenderPassDescriptor renderPassDescriptor];
m_clearBothPassDesc[i].colorAttachments[0].texture = m_colorTex;
m_clearBothPassDesc[i].colorAttachments[0].slice = i;
m_clearBothPassDesc[i].colorAttachments[0].loadAction = MTLLoadActionClear;
m_clearBothPassDesc[i].colorAttachments[0].storeAction = MTLStoreActionStore;
m_clearBothPassDesc[i].colorAttachments[0].clearColor = MTLClearColorMake(0.0, 0.0, 0.0, 0.0);
m_clearBothPassDesc[i].depthAttachment.texture = m_depthTex;
m_clearBothPassDesc[i].depthAttachment.slice = i;
m_clearBothPassDesc[i].depthAttachment.loadAction = MTLLoadActionClear;
m_clearBothPassDesc[i].depthAttachment.storeAction = MTLStoreActionStore;
m_clearBothPassDesc[i].depthAttachment.clearDepth = 0.f;
}
}
}
MetalTextureCubeR(const ObjToken<BaseGraphicsData>& parent, MetalContext* ctx, size_t width, size_t mips)
: GraphicsDataNode<ITextureCubeR>(parent), m_width(width), m_numMips(mips) {
Setup(ctx);
}
public:
id <MTLTexture> m_colorTex;
id <MTLTexture> m_depthTex;
MTLRenderPassDescriptor* m_passDesc[6];
MTLRenderPassDescriptor* m_clearDepthPassDesc[6];
MTLRenderPassDescriptor* m_clearColorPassDesc[6];
MTLRenderPassDescriptor* m_clearBothPassDesc[6];
~MetalTextureCubeR() = default;
void resize(MetalContext* ctx, size_t width, size_t mips) {
if (width < 1)
width = 1;
m_width = width;
m_numMips = mips;
Setup(ctx);
}
};
static const size_t SEMANTIC_SIZE_TABLE[] =
{
0,
12,
16,
12,
16,
16,
4,
8,
16,
16,
16,
8,
};
static const MTLVertexFormat SEMANTIC_TYPE_TABLE[] =
{
MTLVertexFormatInvalid,
MTLVertexFormatFloat3,
MTLVertexFormatFloat4,
MTLVertexFormatFloat3,
MTLVertexFormatFloat4,
MTLVertexFormatFloat4,
MTLVertexFormatUChar4,
MTLVertexFormatFloat2,
MTLVertexFormatFloat4,
MTLVertexFormatFloat4,
MTLVertexFormatFloat4,
MTLVertexFormatFloat2,
};
struct MetalVertexFormat {
size_t m_elementCount;
MTLVertexDescriptor* m_vdesc;
size_t m_stride = 0;
size_t m_instStride = 0;
MetalVertexFormat(size_t elementCount, const VertexElementDescriptor* elements)
: m_elementCount(elementCount) {
for (size_t i = 0; i < elementCount; ++i) {
const VertexElementDescriptor* elemin = &elements[i];
int semantic = int(elemin->semantic & VertexSemantic::SemanticMask);
if ((elemin->semantic & VertexSemantic::Instanced) != VertexSemantic::None)
m_instStride += SEMANTIC_SIZE_TABLE[semantic];
else
m_stride += SEMANTIC_SIZE_TABLE[semantic];
}
m_vdesc = [MTLVertexDescriptor vertexDescriptor];
MTLVertexBufferLayoutDescriptor* layoutDesc = m_vdesc.layouts[0];
layoutDesc.stride = m_stride;
layoutDesc.stepFunction = MTLVertexStepFunctionPerVertex;
layoutDesc.stepRate = 1;
layoutDesc = m_vdesc.layouts[1];
layoutDesc.stride = m_instStride;
layoutDesc.stepFunction = MTLVertexStepFunctionPerInstance;
layoutDesc.stepRate = 1;
size_t offset = 0;
size_t instOffset = 0;
for (size_t i = 0; i < elementCount; ++i) {
const VertexElementDescriptor* elemin = &elements[i];
MTLVertexAttributeDescriptor* attrDesc = m_vdesc.attributes[i];
int semantic = int(elemin->semantic & VertexSemantic::SemanticMask);
if ((elemin->semantic & VertexSemantic::Instanced) != VertexSemantic::None) {
attrDesc.offset = instOffset;
attrDesc.bufferIndex = 1;
instOffset += SEMANTIC_SIZE_TABLE[semantic];
} else {
attrDesc.offset = offset;
attrDesc.bufferIndex = 0;
offset += SEMANTIC_SIZE_TABLE[semantic];
}
attrDesc.format = SEMANTIC_TYPE_TABLE[semantic];
}
}
MTLStageInputOutputDescriptor* makeTessellationComputeLayout() const {
MTLStageInputOutputDescriptor* ret = [MTLStageInputOutputDescriptor stageInputOutputDescriptor];
MTLBufferLayoutDescriptor* layoutDesc = ret.layouts[0];
layoutDesc.stride = m_stride;
layoutDesc.stepFunction = MTLStepFunctionThreadPositionInGridX;
layoutDesc.stepRate = 1;
for (size_t i = 0; i < m_elementCount; ++i) {
MTLVertexAttributeDescriptor* origAttrDesc = m_vdesc.attributes[i];
MTLAttributeDescriptor* attrDesc = ret.attributes[i];
attrDesc.format = MTLAttributeFormat(origAttrDesc.format);
attrDesc.offset = origAttrDesc.offset;
attrDesc.bufferIndex = origAttrDesc.bufferIndex;
}
return ret;
}
MTLVertexDescriptor* makeTessellationVertexLayout() const {
MTLVertexDescriptor* ret = [MTLVertexDescriptor vertexDescriptor];
MTLVertexBufferLayoutDescriptor* layoutDesc = ret.layouts[0];
layoutDesc.stride = m_stride;
layoutDesc.stepFunction = MTLVertexStepFunctionPerPatch;
layoutDesc.stepRate = 1;
for (size_t i = 0; i < m_elementCount; ++i) {
MTLVertexAttributeDescriptor* origAttrDesc = m_vdesc.attributes[i];
MTLVertexAttributeDescriptor* attrDesc = ret.attributes[i];
attrDesc.format = origAttrDesc.format;
attrDesc.offset = origAttrDesc.offset;
attrDesc.bufferIndex = origAttrDesc.bufferIndex;
}
return ret;
}
};
static const MTLBlendFactor BLEND_FACTOR_TABLE[] =
{
MTLBlendFactorZero,
MTLBlendFactorOne,
MTLBlendFactorSourceColor,
MTLBlendFactorOneMinusSourceColor,
MTLBlendFactorDestinationColor,
MTLBlendFactorOneMinusDestinationColor,
MTLBlendFactorSourceAlpha,
MTLBlendFactorOneMinusSourceAlpha,
MTLBlendFactorDestinationAlpha,
MTLBlendFactorOneMinusDestinationAlpha,
#if __MAC_OS_X_VERSION_MAX_ALLOWED >= 101200
MTLBlendFactorSource1Color,
MTLBlendFactorOneMinusSource1Color,
#else
MTLBlendFactorSourceColor,
MTLBlendFactorOneMinusSourceColor,
#endif
};
static const MTLPrimitiveType PRIMITIVE_TABLE[] =
{
MTLPrimitiveTypeTriangle,
MTLPrimitiveTypeTriangleStrip,
MTLPrimitiveTypePoint /* Actually patches */
};
#define COLOR_WRITE_MASK (MTLColorWriteMaskRed | MTLColorWriteMaskGreen | MTLColorWriteMaskBlue)
class MetalShaderStage : public GraphicsDataNode<IShaderStage> {
friend class MetalDataFactory;
id <MTLFunction> m_shader;
MetalShaderStage(const boo::ObjToken<BaseGraphicsData>& parent, MetalContext* ctx,
const uint8_t* data, size_t size, PipelineStage stage)
: GraphicsDataNode<IShaderStage>(parent) {
NSError* err = nullptr;
id <MTLLibrary> shaderLib;
if (data[0] == 1) {
dispatch_data_t d = dispatch_data_create(data + 1, size - 1, nullptr, nullptr);
shaderLib = [ctx->m_dev newLibraryWithData:d error:&err];
} else {
MTLCompileOptions* compOpts = [MTLCompileOptions new];
compOpts.languageVersion = MTLLanguageVersion1_2;
shaderLib = [ctx->m_dev newLibraryWithSource:@((const char*) (data + 1))
options:compOpts
error:&err];
if (!shaderLib) {
fmt::print(FMT_STRING("{}\n"), data + 1);
}
}
if (!shaderLib) {
Log.report(logvisor::Fatal, FMT_STRING("error creating library: {}"), [[err localizedDescription] UTF8String]);
}
NSString* funcName;
switch (stage) {
case PipelineStage::Vertex:
default:
funcName = @"vmain";
break;
case PipelineStage::Fragment:
funcName = @"fmain";
break;
case PipelineStage::Geometry:
funcName = @"gmain";
break;
case PipelineStage::Control:
funcName = @"cmain";
break;
case PipelineStage::Evaluation:
funcName = @"emain";
break;
}
m_shader = [shaderLib newFunctionWithName:funcName];
}
public:
id <MTLFunction> shader() const { return m_shader; }
};
class MetalShaderPipeline : public GraphicsDataNode<IShaderPipeline> {
protected:
friend class MetalDataFactory;
friend struct MetalCommandQueue;
friend struct MetalShaderDataBinding;
MTLCullMode m_cullMode = MTLCullModeNone;
MTLPrimitiveType m_drawPrim;
uint32_t m_patchSize;
MetalShaderPipeline(const boo::ObjToken<BaseGraphicsData>& parent)
: GraphicsDataNode<IShaderPipeline>(parent) {}
virtual void setupExtraStages(MetalContext* ctx, MTLRenderPipelineDescriptor* desc,
ObjToken<IShaderStage> compute, const MetalVertexFormat& cVtxFmt) {}
virtual void draw(MetalCommandQueue& q, size_t start, size_t count);
virtual void drawIndexed(MetalCommandQueue& q, size_t start, size_t count, size_t baseVertex);
virtual void drawInstances(MetalCommandQueue& q, size_t start, size_t count, size_t instCount, size_t startInst);
virtual void
drawInstancesIndexed(MetalCommandQueue& q, size_t start, size_t count, size_t instCount, size_t startInst);
void setup(MetalContext* ctx,
NSUInteger targetSamples,
ObjToken<IShaderStage> vertex,
ObjToken<IShaderStage> fragment,
ObjToken<IShaderStage> compute,
const VertexFormatInfo& vtxFmt,
const AdditionalPipelineInfo& info) {
m_drawPrim = PRIMITIVE_TABLE[int(info.prim)];
m_patchSize = info.patchSize;
switch (info.culling) {
case CullMode::None:
default:
m_cullMode = MTLCullModeNone;
break;
case CullMode::Backface:
m_cullMode = MTLCullModeBack;
break;
case CullMode::Frontface:
m_cullMode = MTLCullModeFront;
break;
}
MTLRenderPipelineDescriptor* desc = [MTLRenderPipelineDescriptor new];
desc.vertexFunction = vertex.cast<MetalShaderStage>()->shader();
desc.fragmentFunction = fragment.cast<MetalShaderStage>()->shader();
MetalVertexFormat cVtxFmt(vtxFmt.elementCount, vtxFmt.elements);
desc.vertexDescriptor = cVtxFmt.m_vdesc;
setupExtraStages(ctx, desc, compute, cVtxFmt);
desc.sampleCount = targetSamples;
desc.colorAttachments[0].pixelFormat = ctx->m_pixelFormat;
desc.colorAttachments[0].writeMask = (info.colorWrite ? COLOR_WRITE_MASK : 0) |
(info.alphaWrite ? MTLColorWriteMaskAlpha : 0);
desc.colorAttachments[0].blendingEnabled = info.dstFac != BlendFactor::Zero;
if (info.srcFac == BlendFactor::Subtract || info.dstFac == BlendFactor::Subtract) {
desc.colorAttachments[0].sourceRGBBlendFactor = MTLBlendFactorSourceAlpha;
desc.colorAttachments[0].destinationRGBBlendFactor = MTLBlendFactorOne;
desc.colorAttachments[0].rgbBlendOperation = MTLBlendOperationReverseSubtract;
if (info.overwriteAlpha) {
desc.colorAttachments[0].sourceAlphaBlendFactor = MTLBlendFactorOne;
desc.colorAttachments[0].destinationAlphaBlendFactor = MTLBlendFactorZero;
desc.colorAttachments[0].alphaBlendOperation = MTLBlendOperationAdd;
} else {
desc.colorAttachments[0].sourceAlphaBlendFactor = MTLBlendFactorSourceAlpha;
desc.colorAttachments[0].destinationAlphaBlendFactor = MTLBlendFactorOne;
desc.colorAttachments[0].alphaBlendOperation = MTLBlendOperationReverseSubtract;
}
} else {
desc.colorAttachments[0].sourceRGBBlendFactor = BLEND_FACTOR_TABLE[int(info.srcFac)];
desc.colorAttachments[0].destinationRGBBlendFactor = BLEND_FACTOR_TABLE[int(info.dstFac)];
desc.colorAttachments[0].rgbBlendOperation = MTLBlendOperationAdd;
if (info.overwriteAlpha) {
desc.colorAttachments[0].sourceAlphaBlendFactor = MTLBlendFactorOne;
desc.colorAttachments[0].destinationAlphaBlendFactor = MTLBlendFactorZero;
} else {
desc.colorAttachments[0].sourceAlphaBlendFactor = BLEND_FACTOR_TABLE[int(info.srcFac)];
desc.colorAttachments[0].destinationAlphaBlendFactor = BLEND_FACTOR_TABLE[int(info.dstFac)];
}
desc.colorAttachments[0].alphaBlendOperation = MTLBlendOperationAdd;
}
desc.depthAttachmentPixelFormat = info.depthAttachment ? MTLPixelFormatDepth32Float : MTLPixelFormatInvalid;
desc.inputPrimitiveTopology = MTLPrimitiveTopologyClassTriangle;
NSError* err = nullptr;
m_state = [ctx->m_dev newRenderPipelineStateWithDescriptor:desc error:&err];
if (err) {
Log.report(logvisor::Fatal, FMT_STRING("error making shader pipeline: {}"),
[[err localizedDescription] UTF8String]);
}
MTLDepthStencilDescriptor* dsDesc = [MTLDepthStencilDescriptor new];
switch (info.depthTest) {
case ZTest::None:
default:
dsDesc.depthCompareFunction = MTLCompareFunctionAlways;
break;
case ZTest::LEqual:
dsDesc.depthCompareFunction = MTLCompareFunctionGreaterEqual;
break;
case ZTest::Greater:
dsDesc.depthCompareFunction = MTLCompareFunctionLess;
break;
case ZTest::GEqual:
dsDesc.depthCompareFunction = MTLCompareFunctionLessEqual;
break;
case ZTest::Equal:
dsDesc.depthCompareFunction = MTLCompareFunctionEqual;
break;
}
dsDesc.depthWriteEnabled = info.depthWrite;
m_dsState = [ctx->m_dev newDepthStencilStateWithDescriptor:dsDesc];
}
public:
id <MTLRenderPipelineState> m_state;
id <MTLDepthStencilState> m_dsState;
~MetalShaderPipeline() = default;
MetalShaderPipeline& operator=(const MetalShaderPipeline&) = delete;
MetalShaderPipeline(const MetalShaderPipeline&) = delete;
void bind(id <MTLRenderCommandEncoder> enc) {
[enc setRenderPipelineState:m_state];
[enc setDepthStencilState:m_dsState];
[enc setCullMode:m_cullMode];
}
bool isReady() const { return true; }
};
class MetalTessellationShaderPipeline : public MetalShaderPipeline {
friend class MetalDataFactory;
friend struct MetalCommandQueue;
friend struct MetalShaderDataBinding;
MetalTessellationShaderPipeline(const ObjToken<BaseGraphicsData>& parent)
: MetalShaderPipeline(parent) {}
void setupExtraStages(MetalContext* ctx, MTLRenderPipelineDescriptor* desc,
ObjToken<IShaderStage> compute, const MetalVertexFormat& cVtxFmt) {
desc.maxTessellationFactor = 16;
desc.tessellationFactorScaleEnabled = NO;
desc.tessellationFactorFormat = MTLTessellationFactorFormatHalf;
desc.tessellationControlPointIndexType = MTLTessellationControlPointIndexTypeNone;
desc.tessellationFactorStepFunction = MTLTessellationFactorStepFunctionPerPatch;
desc.tessellationOutputWindingOrder = MTLWindingClockwise;
desc.tessellationPartitionMode = MTLTessellationPartitionModeInteger;
desc.vertexDescriptor = cVtxFmt.makeTessellationVertexLayout();
MTLComputePipelineDescriptor* compDesc = [MTLComputePipelineDescriptor new];
compDesc.computeFunction = compute.cast<MetalShaderStage>()->shader();
compDesc.stageInputDescriptor = cVtxFmt.makeTessellationComputeLayout();
NSError* err = nullptr;
m_computeState = [ctx->m_dev newComputePipelineStateWithDescriptor:compDesc options:MTLPipelineOptionNone
reflection:nil error:&err];
if (err) {
Log.report(logvisor::Fatal, FMT_STRING("error making compute pipeline: {}"),
[[err localizedDescription] UTF8String]);
}
}
void draw(MetalCommandQueue& q, size_t start, size_t count);
void drawIndexed(MetalCommandQueue& q, size_t start, size_t count, size_t baseVertex);
void drawInstances(MetalCommandQueue& q, size_t start, size_t count, size_t instCount, size_t startInst);
void drawInstancesIndexed(MetalCommandQueue& q, size_t start, size_t count, size_t instCount, size_t startInst);
public:
id <MTLComputePipelineState> m_computeState;
~MetalTessellationShaderPipeline() = default;
bool isReady() const { return true; }
};
static id <MTLBuffer> GetBufferGPUResource(const ObjToken<IGraphicsBuffer>& buf, int idx) {
if (buf->dynamic()) {
const MetalGraphicsBufferD <BaseGraphicsData>* cbuf = buf.cast < MetalGraphicsBufferD < BaseGraphicsData >> ();
return cbuf->m_bufs[idx];
} else {
const MetalGraphicsBufferS* cbuf = buf.cast<MetalGraphicsBufferS>();
return cbuf->m_buf;
}
}
static id <MTLTexture> GetTextureGPUResource(const ObjToken<ITexture>& tex, int idx, int bindIdx, bool depth) {
switch (tex->type()) {
case TextureType::Dynamic: {
const MetalTextureD* ctex = tex.cast<MetalTextureD>();
return ctex->m_texs[idx];
}
case TextureType::Static: {
const MetalTextureS* ctex = tex.cast<MetalTextureS>();
return ctex->m_tex;
}
case TextureType::StaticArray: {
const MetalTextureSA* ctex = tex.cast<MetalTextureSA>();
return ctex->m_tex;
}
case TextureType::Render: {
const MetalTextureR* ctex = tex.cast<MetalTextureR>();
return depth ? ctex->m_depthBindTex[bindIdx] : ctex->m_colorBindTex[bindIdx];
}
case TextureType::CubeRender: {
const MetalTextureCubeR* ctex = tex.cast<MetalTextureCubeR>();
return ctex->m_colorTex;
}
default:
break;
}
return nullptr;
}
struct MetalShaderDataBinding : GraphicsDataNode<IShaderDataBinding> {
ObjToken<IShaderPipeline> m_pipeline;
ObjToken<IGraphicsBuffer> m_vbuf;
ObjToken<IGraphicsBuffer> m_instVbo;
ObjToken<IGraphicsBuffer> m_ibuf;
std::vector<ObjToken<IGraphicsBuffer>> m_ubufs;
std::vector<size_t> m_ubufOffs;
std::vector<bool> m_fubufs;
struct BoundTex {
ObjToken<ITexture> tex;
int idx;
bool depth;
};
std::vector<BoundTex> m_texs;
size_t m_baseVert;
size_t m_baseInst;
MetalShaderDataBinding(const ObjToken<BaseGraphicsData>& d,
MetalContext* ctx,
const ObjToken<IShaderPipeline>& pipeline,
const ObjToken<IGraphicsBuffer>& vbuf,
const ObjToken<IGraphicsBuffer>& instVbo,
const ObjToken<IGraphicsBuffer>& ibuf,
size_t ubufCount, const ObjToken<IGraphicsBuffer>* ubufs, const PipelineStage* ubufStages,
const size_t* ubufOffs, const size_t* ubufSizes,
size_t texCount, const ObjToken<ITexture>* texs,
const int* texBindIdxs, const bool* depthBind,
size_t baseVert, size_t baseInst)
: GraphicsDataNode<IShaderDataBinding>(d),
m_pipeline(pipeline),
m_vbuf(vbuf),
m_instVbo(instVbo),
m_ibuf(ibuf),
m_baseVert(baseVert),
m_baseInst(baseInst) {
if (ubufCount && ubufStages) {
m_fubufs.reserve(ubufCount);
for (size_t i = 0; i < ubufCount; ++i)
m_fubufs.push_back(ubufStages[i] == PipelineStage::Fragment);
}
if (ubufCount && ubufOffs && ubufSizes) {
m_ubufOffs.reserve(ubufCount);
for (size_t i = 0; i < ubufCount; ++i) {
#ifndef NDEBUG
if (ubufOffs[i] % 256) {
Log.report(logvisor::Fatal, FMT_STRING("non-256-byte-aligned uniform-offset {} provided to newShaderDataBinding"),
i);
}
#endif
m_ubufOffs.push_back(ubufOffs[i]);
}
}
m_ubufs.reserve(ubufCount);
for (size_t i = 0; i < ubufCount; ++i) {
#ifndef NDEBUG
if (!ubufs[i]) {
Log.report(logvisor::Fatal, FMT_STRING("null uniform-buffer {} provided to newShaderDataBinding"), i);
}
#endif
m_ubufs.push_back(ubufs[i]);
}
m_texs.reserve(texCount);
for (size_t i = 0; i < texCount; ++i) {
m_texs.push_back({texs[i], texBindIdxs ? texBindIdxs[i] : 0, depthBind ? depthBind[i] : false});
}
}
void bind(id <MTLRenderCommandEncoder> enc, int b) {
m_pipeline.cast<MetalShaderPipeline>()->bind(enc);
if (m_vbuf) {
id <MTLBuffer> buf = GetBufferGPUResource(m_vbuf, b);
[enc setVertexBuffer:buf offset:0 atIndex:0];
}
if (m_instVbo) {
id <MTLBuffer> buf = GetBufferGPUResource(m_instVbo, b);
[enc setVertexBuffer:buf offset:0 atIndex:1];
}
if (m_ubufOffs.size())
for (size_t i = 0; i < m_ubufs.size(); ++i) {
if (m_fubufs.size() && m_fubufs[i])
[enc setFragmentBuffer:GetBufferGPUResource(m_ubufs[i], b) offset:m_ubufOffs[i] atIndex:i + 2];
else
[enc setVertexBuffer:GetBufferGPUResource(m_ubufs[i], b) offset:m_ubufOffs[i] atIndex:i + 2];
}
else
for (size_t i = 0; i < m_ubufs.size(); ++i) {
if (m_fubufs.size() && m_fubufs[i])
[enc setFragmentBuffer:GetBufferGPUResource(m_ubufs[i], b) offset:0 atIndex:i + 2];
else
[enc setVertexBuffer:GetBufferGPUResource(m_ubufs[i], b) offset:0 atIndex:i + 2];
}
for (size_t i = 0; i < m_texs.size(); ++i)
if (m_texs[i].tex) {
[enc setFragmentTexture:GetTextureGPUResource(m_texs[i].tex, b, m_texs[i].idx, m_texs[i].depth) atIndex:i];
[enc setVertexTexture:GetTextureGPUResource(m_texs[i].tex, b, m_texs[i].idx, m_texs[i].depth) atIndex:i];
}
}
void bindCompute(id <MTLComputeCommandEncoder> enc, int b) {
if (m_vbuf) {
id <MTLBuffer> buf = GetBufferGPUResource(m_vbuf, b);
[enc setBuffer:buf offset:0 atIndex:0];
}
if (m_instVbo) {
id <MTLBuffer> buf = GetBufferGPUResource(m_instVbo, b);
[enc setBuffer:buf offset:0 atIndex:1];
}
}
};
struct MetalCommandQueue : IGraphicsCommandQueue {
Platform platform() const { return IGraphicsDataFactory::Platform::Metal; }
const char* platformName() const { return "Metal"; }
MetalContext* m_ctx;
IWindow* m_parentWindow;
IGraphicsContext* m_parent;
id <MTLCommandBuffer> m_cmdBuf;
id <MTLRenderCommandEncoder> m_enc;
id <MTLSamplerState> m_samplers[5];
bool m_running = true;
int m_fillBuf = 0;
int m_drawBuf = 0;
MetalCommandQueue(MetalContext* ctx, IWindow* parentWindow, IGraphicsContext* parent)
: m_ctx(ctx), m_parentWindow(parentWindow), m_parent(parent) {
@autoreleasepool {
m_cmdBuf = [ctx->m_q commandBuffer];
MTLSamplerDescriptor* sampDesc = [MTLSamplerDescriptor new];
sampDesc.rAddressMode = MTLSamplerAddressModeRepeat;
sampDesc.sAddressMode = MTLSamplerAddressModeRepeat;
sampDesc.tAddressMode = MTLSamplerAddressModeRepeat;
sampDesc.minFilter = MTLSamplerMinMagFilterLinear;
sampDesc.magFilter = MTLSamplerMinMagFilterLinear;
sampDesc.mipFilter = MTLSamplerMipFilterLinear;
sampDesc.maxAnisotropy = ctx->m_anisotropy;
sampDesc.borderColor = MTLSamplerBorderColorOpaqueWhite;
m_samplers[0] = [ctx->m_dev newSamplerStateWithDescriptor:sampDesc];
sampDesc.rAddressMode = MTLSamplerAddressModeClampToBorderColor;
sampDesc.sAddressMode = MTLSamplerAddressModeClampToBorderColor;
sampDesc.tAddressMode = MTLSamplerAddressModeClampToBorderColor;
m_samplers[1] = [ctx->m_dev newSamplerStateWithDescriptor:sampDesc];
sampDesc.rAddressMode = MTLSamplerAddressModeClampToBorderColor;
sampDesc.sAddressMode = MTLSamplerAddressModeClampToBorderColor;
sampDesc.tAddressMode = MTLSamplerAddressModeClampToBorderColor;
sampDesc.borderColor = MTLSamplerBorderColorOpaqueBlack;
m_samplers[2] = [ctx->m_dev newSamplerStateWithDescriptor:sampDesc];
sampDesc.rAddressMode = MTLSamplerAddressModeClampToEdge;
sampDesc.sAddressMode = MTLSamplerAddressModeClampToEdge;
sampDesc.tAddressMode = MTLSamplerAddressModeClampToEdge;
m_samplers[3] = [ctx->m_dev newSamplerStateWithDescriptor:sampDesc];
sampDesc.rAddressMode = MTLSamplerAddressModeClampToEdge;
sampDesc.sAddressMode = MTLSamplerAddressModeClampToEdge;
sampDesc.tAddressMode = MTLSamplerAddressModeClampToEdge;
sampDesc.minFilter = MTLSamplerMinMagFilterNearest;
sampDesc.magFilter = MTLSamplerMinMagFilterNearest;
m_samplers[4] = [ctx->m_dev newSamplerStateWithDescriptor:sampDesc];
}
}
void startRenderer() {
static_cast<MetalDataFactoryImpl*>(m_parent->getDataFactory())->SetupGammaResources();
}
void stopRenderer() {
m_running = false;
if (m_inProgress && m_cmdBuf.status != MTLCommandBufferStatusNotEnqueued)
[m_cmdBuf waitUntilCompleted];
}
~MetalCommandQueue() {
if (m_running) stopRenderer();
}
MetalShaderDataBinding* m_boundData = nullptr;
void _setShaderDataBinding(MetalShaderDataBinding* cbind) {
cbind->bind(m_enc, m_fillBuf);
m_boundData = cbind;
[m_enc setFragmentSamplerStates:m_samplers withRange:NSMakeRange(0, 5)];
[m_enc setVertexSamplerStates:m_samplers withRange:NSMakeRange(0, 5)];
}
void setShaderDataBinding(const ObjToken<IShaderDataBinding>& binding) {
@autoreleasepool {
MetalShaderDataBinding* cbind = binding.cast<MetalShaderDataBinding>();
_setShaderDataBinding(cbind);
}
}
ObjToken<ITexture> m_boundTarget;
void _setRenderTarget(const ObjToken<ITextureR>& target, bool clearColor, bool clearDepth) {
@autoreleasepool {
MetalTextureR* ctarget = target.cast<MetalTextureR>();
[m_enc endEncoding];
if (clearColor && clearDepth)
m_enc = [m_cmdBuf renderCommandEncoderWithDescriptor:ctarget->m_clearBothPassDesc];
else if (clearColor)
m_enc = [m_cmdBuf renderCommandEncoderWithDescriptor:ctarget->m_clearColorPassDesc];
else if (clearDepth)
m_enc = [m_cmdBuf renderCommandEncoderWithDescriptor:ctarget->m_clearDepthPassDesc];
else
m_enc = [m_cmdBuf renderCommandEncoderWithDescriptor:ctarget->m_passDesc];
[m_enc setFrontFacingWinding:MTLWindingCounterClockwise];
if (ctarget == m_boundTarget.get()) {
if (m_boundVp.width || m_boundVp.height)
[m_enc setViewport:m_boundVp];
if (m_boundScissor.width || m_boundScissor.height)
[m_enc setScissorRect:m_boundScissor];
} else
m_boundTarget = target.get();
}
}
void setRenderTarget(const ObjToken<ITextureR>& target) {
_setRenderTarget(target, false, false);
}
static constexpr int CubeFaceRemap[] = {0, 1, 3, 2, 4, 5};
int m_boundFace = 0;
void _setRenderTarget(const ObjToken<ITextureCubeR>& target, int face, bool clearColor, bool clearDepth) {
m_boundFace = face;
@autoreleasepool {
face = CubeFaceRemap[face];
MetalTextureCubeR* ctarget = target.cast<MetalTextureCubeR>();
[m_enc endEncoding];
if (clearColor && clearDepth)
m_enc = [m_cmdBuf renderCommandEncoderWithDescriptor:ctarget->m_clearBothPassDesc[face]];
else if (clearColor)
m_enc = [m_cmdBuf renderCommandEncoderWithDescriptor:ctarget->m_clearColorPassDesc[face]];
else if (clearDepth)
m_enc = [m_cmdBuf renderCommandEncoderWithDescriptor:ctarget->m_clearDepthPassDesc[face]];
else
m_enc = [m_cmdBuf renderCommandEncoderWithDescriptor:ctarget->m_passDesc[face]];
[m_enc setFrontFacingWinding:MTLWindingCounterClockwise];
if (ctarget == m_boundTarget.get()) {
if (m_boundVp.width || m_boundVp.height)
[m_enc setViewport:m_boundVp];
if (m_boundScissor.width || m_boundScissor.height)
[m_enc setScissorRect:m_boundScissor];
} else
m_boundTarget = target.get();
}
}
void setRenderTarget(const ObjToken<ITextureCubeR>& target, int face) {
_setRenderTarget(target, face, false, false);
}
MTLViewport m_boundVp = {};
void setViewport(const SWindowRect& rect, float znear, float zfar) {
m_boundVp = MTLViewport{double(rect.location[0]), double(rect.location[1]),
double(rect.size[0]), double(rect.size[1]), 1.f - zfar, 1.f - znear};
[m_enc setViewport:m_boundVp];
}
MTLScissorRect m_boundScissor = {};
void setScissor(const SWindowRect& rect) {
if (m_boundTarget) {
switch (m_boundTarget->type()) {
case TextureType::Render: {
MetalTextureR* ctarget = m_boundTarget.cast<MetalTextureR>();
SWindowRect intersectRect = rect.intersect(SWindowRect(0, 0, ctarget->m_width, ctarget->m_height));
m_boundScissor = MTLScissorRect{NSUInteger(intersectRect.location[0]),
NSUInteger(ctarget->m_height - intersectRect.location[1] - intersectRect.size[1]),
NSUInteger(intersectRect.size[0]), NSUInteger(intersectRect.size[1])};
break;
}
case TextureType::CubeRender: {
MetalTextureCubeR* ctarget = m_boundTarget.cast<MetalTextureCubeR>();
SWindowRect intersectRect = rect.intersect(SWindowRect(0, 0, ctarget->m_width, ctarget->m_width));
m_boundScissor = MTLScissorRect{NSUInteger(intersectRect.location[0]),
NSUInteger(ctarget->m_width - intersectRect.location[1] - intersectRect.size[1]),
NSUInteger(intersectRect.size[0]), NSUInteger(intersectRect.size[1])};
break;
}
default: break;
}
[m_enc setScissorRect:m_boundScissor];
}
}
std::unordered_map<MetalTextureR*, std::pair<size_t, size_t>> m_texResizes;
void resizeRenderTexture(const ObjToken<ITextureR>& tex, size_t width, size_t height) {
MetalTextureR* ctex = tex.cast<MetalTextureR>();
m_texResizes[ctex] = std::make_pair(width, height);
}
std::unordered_map<MetalTextureCubeR*, std::pair<size_t, size_t>> m_texCubeResizes;
void resizeRenderTexture(const ObjToken<ITextureCubeR>& tex, size_t width, size_t mips) {
MetalTextureCubeR* ctex = tex.cast<MetalTextureCubeR>();
m_texCubeResizes[ctex] = std::make_pair(width, mips);
}
void generateMipmaps(const ObjToken<ITextureCubeR>& tex) {
@autoreleasepool {
[m_enc endEncoding];
m_enc = nil;
m_boundTarget.reset();
MetalTextureCubeR* ctex = tex.cast<MetalTextureCubeR>();
id <MTLBlitCommandEncoder> blitEnc = [m_cmdBuf blitCommandEncoder];
[blitEnc generateMipmapsForTexture:ctex->m_colorTex];
[blitEnc endEncoding];
}
}
void schedulePostFrameHandler(std::function<void(void)>&& func) {
func();
}
void flushBufferUpdates() {}
float m_clearColor[4] = {0.f, 0.f, 0.f, 0.f};
void setClearColor(const float rgba[4]) {
m_clearColor[0] = rgba[0];
m_clearColor[1] = rgba[1];
m_clearColor[2] = rgba[2];
m_clearColor[3] = rgba[3];
}
void _autoSetRenderTarget(bool render, bool depth) {
switch (m_boundTarget->type()) {
case TextureType::Render:
_setRenderTarget(m_boundTarget.cast<ITextureR>(), render, depth); break;
case TextureType::CubeRender:
_setRenderTarget(m_boundTarget.cast<ITextureCubeR>(), m_boundFace, render, depth); break;
default: break;
}
}
void clearTarget(bool render = true, bool depth = true) {
if (!m_boundTarget)
return;
_autoSetRenderTarget(render, depth);
}
void draw(size_t start, size_t count) {
m_boundData->m_pipeline.cast<MetalShaderPipeline>()->draw(*this, start, count);
}
void drawIndexed(size_t start, size_t count, size_t baseVertex) {
m_boundData->m_pipeline.cast<MetalShaderPipeline>()->drawIndexed(*this, start, count, baseVertex);
}
void drawInstances(size_t start, size_t count, size_t instCount, size_t startInst) {
m_boundData->m_pipeline.cast<MetalShaderPipeline>()->drawInstances(*this, start, count, instCount, startInst);
}
void drawInstancesIndexed(size_t start, size_t count, size_t instCount, size_t startInst) {
m_boundData->m_pipeline.cast<MetalShaderPipeline>()->drawInstancesIndexed(*this, start, count, instCount,
startInst);
}
void _resolveBindTexture(MetalTextureR* tex, const SWindowRect& rect, bool tlOrigin,
int bindIdx, bool color, bool depth) {
if (tex->samples() > 1) {
if (color && tex->m_colorBindTex[bindIdx])
[[m_cmdBuf renderCommandEncoderWithDescriptor:tex->m_blitColor[bindIdx]] endEncoding];
if (depth && tex->m_depthBindTex[bindIdx])
[[m_cmdBuf renderCommandEncoderWithDescriptor:tex->m_blitDepth[bindIdx]] endEncoding];
} else {
SWindowRect intersectRect = rect.intersect(SWindowRect(0, 0, tex->m_width, tex->m_height));
NSUInteger y = tlOrigin ? intersectRect.location[1] : int(tex->m_height) -
intersectRect.location[1] - intersectRect.size[1];
MTLOrigin origin = {NSUInteger(intersectRect.location[0]), y, 0};
id <MTLBlitCommandEncoder> blitEnc = [m_cmdBuf blitCommandEncoder];
if (color && tex->m_colorBindTex[bindIdx]) {
[blitEnc copyFromTexture:tex->m_colorTex
sourceSlice:0
sourceLevel:0
sourceOrigin:origin
sourceSize:MTLSizeMake(intersectRect.size[0], intersectRect.size[1], 1)
toTexture:tex->m_colorBindTex[bindIdx]
destinationSlice:0
destinationLevel:0
destinationOrigin:origin];
}
if (depth && tex->m_depthBindTex[bindIdx]) {
[blitEnc copyFromTexture:tex->m_depthTex
sourceSlice:0
sourceLevel:0
sourceOrigin:origin
sourceSize:MTLSizeMake(intersectRect.size[0], intersectRect.size[1], 1)
toTexture:tex->m_depthBindTex[bindIdx]
destinationSlice:0
destinationLevel:0
destinationOrigin:origin];
}
[blitEnc endEncoding];
}
}
void resolveBindTexture(const ObjToken<ITextureR>& texture, const SWindowRect& rect, bool tlOrigin,
int bindIdx, bool color, bool depth, bool clearDepth) {
MetalTextureR* tex = texture.cast<MetalTextureR>();
@autoreleasepool {
[m_enc endEncoding];
_resolveBindTexture(tex, rect, tlOrigin, bindIdx, color, depth);
m_enc = [m_cmdBuf renderCommandEncoderWithDescriptor:clearDepth ? tex->m_clearDepthPassDesc : tex->m_passDesc];
[m_enc setFrontFacingWinding:MTLWindingCounterClockwise];
if (m_boundData)
_setShaderDataBinding(m_boundData);
if (m_boundVp.width || m_boundVp.height)
[m_enc setViewport:m_boundVp];
if (m_boundScissor.width || m_boundScissor.height)
[m_enc setScissorRect:m_boundScissor];
}
}
ObjToken<ITextureR> m_needsDisplay;
void resolveDisplay(const ObjToken<ITextureR>& source) {
m_needsDisplay = source;
}
id <MTLBuffer> m_tessFactorBuffer = nullptr;
id <MTLBuffer> ensureTessFactorBuffer(size_t patchCount) {
size_t targetLength = sizeof(MTLQuadTessellationFactorsHalf) * patchCount;
if (!m_tessFactorBuffer) {
m_tessFactorBuffer = [m_ctx->m_dev newBufferWithLength:targetLength * 2 options:MTLResourceStorageModePrivate];
} else if (m_tessFactorBuffer.length < targetLength) {
targetLength *= 2;
id <MTLBuffer> newBuf = [m_ctx->m_dev newBufferWithLength:targetLength options:MTLResourceStorageModePrivate];
id <MTLBlitCommandEncoder> enc = [m_cmdBuf blitCommandEncoder];
[enc copyFromBuffer:m_tessFactorBuffer sourceOffset:0 toBuffer:newBuf destinationOffset:0 size:m_tessFactorBuffer.length];
[enc endEncoding];
m_tessFactorBuffer = newBuf;
}
return m_tessFactorBuffer;
}
void dispatchTessKernel(id <MTLComputePipelineState> computeState, size_t patchStart,
size_t patchCount, uint32_t patchSize) {
struct KernelPatchInfo {
uint32_t numPatches; // total number of patches to process.
// we need this because this value may
// not be a multiple of threadgroup size.
uint16_t numPatchesInThreadGroup; // number of patches processed by a
// thread-group
uint16_t numControlPointsPerPatch;
} patchInfo = {uint32_t(patchCount), 32, uint16_t(patchSize)};
[m_enc endEncoding];
m_enc = nullptr;
id <MTLBuffer> tessFactorBuf = ensureTessFactorBuffer(patchStart + patchCount);
id <MTLComputeCommandEncoder> computeEnc = [m_cmdBuf computeCommandEncoder];
[computeEnc setComputePipelineState:computeState];
m_boundData->bindCompute(computeEnc, m_fillBuf);
[computeEnc setStageInRegion:MTLRegionMake1D(patchStart, patchCount)];
[computeEnc setBytes:&patchInfo length:sizeof(patchInfo) atIndex:2];
[computeEnc setBuffer:tessFactorBuf
offset:patchStart * sizeof(MTLQuadTessellationFactorsHalf) atIndex:3];
[computeEnc dispatchThreads:MTLSizeMake(patchCount, 1, 1) threadsPerThreadgroup:MTLSizeMake(32, 1, 1)];
[computeEnc endEncoding];
_autoSetRenderTarget(false, false);
m_boundData->bind(m_enc, m_fillBuf);
[m_enc setFragmentSamplerStates:m_samplers withRange:NSMakeRange(0, 5)];
[m_enc setVertexSamplerStates:m_samplers withRange:NSMakeRange(0, 5)];
[m_enc setTessellationFactorBuffer:m_tessFactorBuffer offset:0 instanceStride:0];
}
bool m_inProgress = false;
std::unordered_map<uintptr_t, MTLRenderPassDescriptor*> m_resolvePasses;
std::unordered_map<uintptr_t, MTLRenderPassDescriptor*> m_gammaPasses;
void execute() {
if (!m_running)
return;
@autoreleasepool {
/* Update dynamic data here */
MetalDataFactoryImpl* gfxF = static_cast<MetalDataFactoryImpl*>(m_parent->getDataFactory());
std::unique_lock<std::recursive_mutex> datalk(gfxF->m_dataMutex);
if (gfxF->m_dataHead) {
for (BaseGraphicsData& d : *gfxF->m_dataHead) {
if (d.m_DBufs)
for (IGraphicsBufferD& b : *d.m_DBufs)
static_cast<MetalGraphicsBufferD <BaseGraphicsData>&>(b).update(m_fillBuf);
if (d.m_DTexs)
for (ITextureD& t : *d.m_DTexs)
static_cast<MetalTextureD&>(t).update(m_fillBuf);
}
}
if (gfxF->m_poolHead) {
for (BaseGraphicsPool& p : *gfxF->m_poolHead) {
if (p.m_DBufs)
for (IGraphicsBufferD& b : *p.m_DBufs)
static_cast<MetalGraphicsBufferD <BaseGraphicsData>&>(b).update(m_fillBuf);
}
}
datalk.unlock();
[m_enc endEncoding];
m_enc = nullptr;
/* Abandon if in progress (renderer too slow) */
if (m_inProgress) {
m_cmdBuf = [m_ctx->m_q commandBuffer];
return;
}
/* Perform texture resizes */
if (m_texResizes.size() || m_texCubeResizes.size()) {
for (const auto& resize : m_texResizes)
resize.first->resize(m_ctx, resize.second.first, resize.second.second);
m_texResizes.clear();
for (const auto& resize : m_texCubeResizes)
resize.first->resize(m_ctx, resize.second.first, resize.second.second);
m_texCubeResizes.clear();
m_cmdBuf = [m_ctx->m_q commandBuffer];
return;
}
/* Wrap up and present if needed */
if (m_needsDisplay) {
MetalContext::Window& w = m_ctx->m_windows[m_parentWindow];
{
std::unique_lock<std::mutex> lk(w.m_resizeLock);
if (w.m_needsResize) {
w.m_metalLayer.drawableSize = w.m_size;
w.m_needsResize = NO;
m_needsDisplay.reset();
return;
}
}
id <CAMetalDrawable> drawable = [w.m_metalLayer nextDrawable];
if (drawable) {
MetalTextureR* src = m_needsDisplay.cast<MetalTextureR>();
id <MTLTexture> dest = drawable.texture;
if (src->m_colorTex.width == dest.width &&
src->m_colorTex.height == dest.height) {
if (gfxF->m_gamma != 1.f) {
SWindowRect rect(0, 0, src->m_width, src->m_height);
_resolveBindTexture(src, rect, true, 0, true, false);
uintptr_t key = uintptr_t(dest);
auto passSearch = m_gammaPasses.find(key);
if (passSearch == m_gammaPasses.end()) {
MTLRenderPassDescriptor* desc = [MTLRenderPassDescriptor renderPassDescriptor];
desc.colorAttachments[0].texture = dest;
desc.colorAttachments[0].loadAction = MTLLoadActionLoad;
desc.colorAttachments[0].storeAction = MTLStoreActionStore;
passSearch = m_gammaPasses.insert(std::make_pair(key, desc)).first;
}
id <MTLRenderCommandEncoder> enc = [m_cmdBuf renderCommandEncoderWithDescriptor:passSearch->second];
MetalShaderDataBinding* gammaBinding = gfxF->m_gammaBinding.cast<MetalShaderDataBinding>();
gammaBinding->m_texs[0].tex = m_needsDisplay.get();
gammaBinding->bind(enc, m_drawBuf);
[enc setFragmentSamplerStates:m_samplers withRange:NSMakeRange(0, 5)];
[enc setVertexSamplerStates:m_samplers withRange:NSMakeRange(0, 5)];
[enc drawPrimitives:MTLPrimitiveTypeTriangleStrip vertexStart:0 vertexCount:4];
gammaBinding->m_texs[0].tex.reset();
[enc endEncoding];
} else {
if (src->samples() > 1) {
uintptr_t key = uintptr_t(src->m_colorTex) ^uintptr_t(dest);
auto passSearch = m_resolvePasses.find(key);
if (passSearch == m_resolvePasses.end()) {
MTLRenderPassDescriptor* desc = [MTLRenderPassDescriptor renderPassDescriptor];
desc.colorAttachments[0].texture = src->m_colorTex;
desc.colorAttachments[0].loadAction = MTLLoadActionLoad;
desc.colorAttachments[0].storeAction = MTLStoreActionMultisampleResolve;
desc.colorAttachments[0].resolveTexture = dest;
passSearch = m_resolvePasses.insert(std::make_pair(key, desc)).first;
}
[[m_cmdBuf renderCommandEncoderWithDescriptor:passSearch->second] endEncoding];
} else {
id <MTLBlitCommandEncoder> blitEnc = [m_cmdBuf blitCommandEncoder];
[blitEnc copyFromTexture:src->m_colorTex
sourceSlice:0
sourceLevel:0
sourceOrigin:MTLOriginMake(0, 0, 0)
sourceSize:MTLSizeMake(dest.width, dest.height, 1)
toTexture:dest
destinationSlice:0
destinationLevel:0
destinationOrigin:MTLOriginMake(0, 0, 0)];
[blitEnc endEncoding];
}
}
[m_cmdBuf presentDrawable:drawable];
}
}
m_needsDisplay.reset();
}
m_drawBuf = m_fillBuf;
m_fillBuf ^= 1;
[m_cmdBuf addCompletedHandler:^(id <MTLCommandBuffer> buf) { m_inProgress = false; }];
m_inProgress = true;
[m_cmdBuf commit];
m_cmdBuf = [m_ctx->m_q commandBuffer];
}
}
#ifdef BOO_GRAPHICS_DEBUG_GROUPS
void pushDebugGroup(const char* name, const std::array<float, 4>& color) {
@autoreleasepool {
[m_cmdBuf pushDebugGroup:[NSString stringWithUTF8String:name]];
}
}
void popDebugGroup() {
@autoreleasepool {
[m_cmdBuf popDebugGroup];
}
}
#endif
};
void MetalShaderPipeline::draw(MetalCommandQueue& q, size_t start, size_t count) {
[q.m_enc drawPrimitives:m_drawPrim
vertexStart:start + q.m_boundData->m_baseVert
vertexCount:count];
}
void MetalShaderPipeline::drawIndexed(MetalCommandQueue& q, size_t start, size_t count, size_t baseVertex) {
[q.m_enc drawIndexedPrimitives:m_drawPrim
indexCount:count
indexType:MTLIndexTypeUInt32
indexBuffer:GetBufferGPUResource(q.m_boundData->m_ibuf, q.m_fillBuf)
indexBufferOffset:start * 4
instanceCount:1
baseVertex:q.m_boundData->m_baseVert + baseVertex
baseInstance:0];
}
void MetalShaderPipeline::drawInstances(MetalCommandQueue& q, size_t start, size_t count, size_t instCount,
size_t startInst) {
[q.m_enc drawPrimitives:m_drawPrim
vertexStart:start + q.m_boundData->m_baseVert
vertexCount:count
instanceCount:instCount
baseInstance:startInst + q.m_boundData->m_baseInst];
}
void MetalShaderPipeline::drawInstancesIndexed(MetalCommandQueue& q, size_t start, size_t count, size_t instCount,
size_t startInst) {
[q.m_enc drawIndexedPrimitives:m_drawPrim
indexCount:count
indexType:MTLIndexTypeUInt32
indexBuffer:GetBufferGPUResource(q.m_boundData->m_ibuf, q.m_fillBuf)
indexBufferOffset:start * 4
instanceCount:instCount
baseVertex:q.m_boundData->m_baseVert
baseInstance:startInst + q.m_boundData->m_baseInst];
}
void MetalTessellationShaderPipeline::draw(MetalCommandQueue& q, size_t start, size_t count) {
q.dispatchTessKernel(m_computeState, start, count, m_patchSize);
[q.m_enc drawPatches:m_patchSize
patchStart:start
patchCount:count
patchIndexBuffer:nullptr
patchIndexBufferOffset:0
instanceCount:1
baseInstance:0];
}
void MetalTessellationShaderPipeline::drawIndexed(MetalCommandQueue& q, size_t start, size_t count, size_t baseVertex) {
q.dispatchTessKernel(m_computeState, start, count, m_patchSize);
[q.m_enc drawIndexedPatches:m_patchSize
patchStart:0
patchCount:count
patchIndexBuffer:nullptr
patchIndexBufferOffset:baseVertex
controlPointIndexBuffer:GetBufferGPUResource(q.m_boundData->m_ibuf, q.m_fillBuf)
controlPointIndexBufferOffset:start * 4
instanceCount:1
baseInstance:0];
}
void MetalTessellationShaderPipeline::drawInstances(MetalCommandQueue& q, size_t start, size_t count, size_t instCount,
size_t startInst) {
q.dispatchTessKernel(m_computeState, start, count, m_patchSize);
[q.m_enc drawPatches:m_patchSize
patchStart:start
patchCount:count
patchIndexBuffer:nullptr
patchIndexBufferOffset:0
instanceCount:instCount
baseInstance:startInst];
}
void MetalTessellationShaderPipeline::drawInstancesIndexed(MetalCommandQueue& q, size_t start, size_t count,
size_t instCount, size_t startInst) {
q.dispatchTessKernel(m_computeState, start, count, m_patchSize);
[q.m_enc drawIndexedPatches:m_patchSize
patchStart:0
patchCount:count
patchIndexBuffer:nullptr
patchIndexBufferOffset:0
controlPointIndexBuffer:GetBufferGPUResource(q.m_boundData->m_ibuf, q.m_fillBuf)
controlPointIndexBufferOffset:start * 4
instanceCount:instCount
baseInstance:startInst];
}
MetalDataFactory::Context::Context(MetalDataFactory& parent __BooTraceArgs)
: m_parent(parent), m_data(new BaseGraphicsData(static_cast<MetalDataFactoryImpl&>(parent)__BooTraceArgsUse)) {}
MetalDataFactory::Context::~Context() {}
ObjToken<IGraphicsBufferS>
MetalDataFactory::Context::newStaticBuffer(BufferUse use, const void* data, size_t stride, size_t count) {
@autoreleasepool {
MetalDataFactoryImpl& factory = static_cast<MetalDataFactoryImpl&>(m_parent);
return {new MetalGraphicsBufferS(m_data, use, factory.m_ctx, data, stride, count)};
}
}
ObjToken<IGraphicsBufferD>
MetalDataFactory::Context::newDynamicBuffer(BufferUse use, size_t stride, size_t count) {
@autoreleasepool {
MetalDataFactoryImpl& factory = static_cast<MetalDataFactoryImpl&>(m_parent);
MetalCommandQueue* q = static_cast<MetalCommandQueue*>(factory.m_parent->getCommandQueue());
return {new MetalGraphicsBufferD<BaseGraphicsData>(m_data, q, use, factory.m_ctx, stride, count)};
}
}
ObjToken<ITextureS>
MetalDataFactory::Context::newStaticTexture(size_t width, size_t height, size_t mips, TextureFormat fmt,
TextureClampMode clampMode, const void* data, size_t sz) {
@autoreleasepool {
MetalDataFactoryImpl& factory = static_cast<MetalDataFactoryImpl&>(m_parent);
return {new MetalTextureS(m_data, factory.m_ctx, width, height, mips, fmt, data, sz)};
}
}
ObjToken<ITextureSA>
MetalDataFactory::Context::newStaticArrayTexture(size_t width, size_t height, size_t layers, size_t mips,
TextureFormat fmt, TextureClampMode clampMode,
const void* data, size_t sz) {
@autoreleasepool {
MetalDataFactoryImpl& factory = static_cast<MetalDataFactoryImpl&>(m_parent);
return {new MetalTextureSA(m_data, factory.m_ctx, width, height, layers, mips, fmt, data, sz)};
}
}
ObjToken<ITextureD>
MetalDataFactory::Context::newDynamicTexture(size_t width, size_t height, TextureFormat fmt,
TextureClampMode clampMode) {
@autoreleasepool {
MetalDataFactoryImpl& factory = static_cast<MetalDataFactoryImpl&>(m_parent);
MetalCommandQueue* q = static_cast<MetalCommandQueue*>(factory.m_parent->getCommandQueue());
return {new MetalTextureD(m_data, q, factory.m_ctx, width, height, fmt)};
}
}
ObjToken<ITextureR>
MetalDataFactory::Context::newRenderTexture(size_t width, size_t height, TextureClampMode clampMode,
size_t colorBindCount, size_t depthBindCount) {
@autoreleasepool {
MetalDataFactoryImpl& factory = static_cast<MetalDataFactoryImpl&>(m_parent);
return {new MetalTextureR(m_data, factory.m_ctx, width, height, factory.m_ctx->m_sampleCount,
colorBindCount, depthBindCount)};
}
}
ObjToken<ITextureCubeR>
MetalDataFactory::Context::newCubeRenderTexture(size_t width, size_t mips) {
@autoreleasepool {
MetalDataFactoryImpl& factory = static_cast<MetalDataFactoryImpl&>(m_parent);
return {new MetalTextureCubeR(m_data, factory.m_ctx, width, mips)};
}
}
ObjToken<IShaderStage>
MetalDataFactory::Context::newShaderStage(const uint8_t* data, size_t size, PipelineStage stage) {
@autoreleasepool {
MetalDataFactoryImpl& factory = static_cast<MetalDataFactoryImpl&>(m_parent);
return {new MetalShaderStage(m_data, factory.m_ctx, data, size, stage)};
}
}
ObjToken<IShaderPipeline>
MetalDataFactory::Context::newShaderPipeline(ObjToken<IShaderStage> vertex, ObjToken<IShaderStage> fragment,
ObjToken<IShaderStage> geometry, ObjToken<IShaderStage> control,
ObjToken<IShaderStage> evaluation, const VertexFormatInfo& vtxFmt,
const AdditionalPipelineInfo& additionalInfo, bool asynchronous) {
@autoreleasepool {
MetalDataFactoryImpl& factory = static_cast<MetalDataFactoryImpl&>(m_parent);
MetalShaderPipeline* ret;
if (evaluation) {
ret = new MetalTessellationShaderPipeline(m_data);
ret->setup(factory.m_ctx, additionalInfo.depthAttachment ? factory.m_ctx->m_sampleCount : 1,
evaluation, fragment, control, vtxFmt, additionalInfo);
} else {
ret = new MetalShaderPipeline(m_data);
ret->setup(factory.m_ctx, additionalInfo.depthAttachment ? factory.m_ctx->m_sampleCount : 1,
vertex, fragment, {}, vtxFmt, additionalInfo);
}
return {ret};
}
}
ObjToken<IShaderDataBinding>
MetalDataFactory::Context::newShaderDataBinding(const ObjToken<IShaderPipeline>& pipeline,
const ObjToken<IGraphicsBuffer>& vbo,
const ObjToken<IGraphicsBuffer>& instVbo,
const ObjToken<IGraphicsBuffer>& ibo,
size_t ubufCount, const ObjToken<IGraphicsBuffer>* ubufs,
const PipelineStage* ubufStages,
const size_t* ubufOffs, const size_t* ubufSizes,
size_t texCount, const ObjToken<ITexture>* texs,
const int* texBindIdxs, const bool* depthBind,
size_t baseVert, size_t baseInst) {
@autoreleasepool {
MetalDataFactoryImpl& factory = static_cast<MetalDataFactoryImpl&>(m_parent);
return {new MetalShaderDataBinding(m_data,
factory.m_ctx, pipeline, vbo, instVbo, ibo,
ubufCount, ubufs, ubufStages, ubufOffs,
ubufSizes, texCount, texs, texBindIdxs,
depthBind, baseVert, baseInst)};
}
}
void MetalDataFactoryImpl::commitTransaction(const FactoryCommitFunc& trans __BooTraceArgs) {
MetalDataFactory::Context ctx(*this __BooTraceArgsUse);
trans(ctx);
}
ObjToken<IGraphicsBufferD>
MetalDataFactoryImpl::newPoolBuffer(BufferUse use, size_t stride, size_t count __BooTraceArgs) {
ObjToken<BaseGraphicsPool> pool(new BaseGraphicsPool(*this __BooTraceArgsUse));
MetalCommandQueue* q = static_cast<MetalCommandQueue*>(m_parent->getCommandQueue());
return {new MetalGraphicsBufferD<BaseGraphicsPool>(pool, q, use, m_ctx, stride, count)};
}
std::unique_ptr<IGraphicsCommandQueue> _NewMetalCommandQueue(MetalContext* ctx, IWindow* parentWindow,
IGraphicsContext* parent) {
return std::make_unique<MetalCommandQueue>(ctx, parentWindow, parent);
}
std::unique_ptr<IGraphicsDataFactory> _NewMetalDataFactory(IGraphicsContext* parent, MetalContext* ctx) {
return std::make_unique<MetalDataFactoryImpl>(parent, ctx);
}
std::vector<uint8_t> MetalDataFactory::CompileMetal(const char* source, PipelineStage stage) {
size_t strSz = strlen(source) + 1;
std::vector<uint8_t> ret(strSz + 1);
memcpy(ret.data() + 1, source, strSz);
return ret;
}
void MetalDataFactoryImpl::SetupGammaResources() {
m_hasTessellation = [m_ctx->m_dev supportsFeatureSet:MTLFeatureSet_macOS_GPUFamily1_v2];
commitTransaction([this](IGraphicsDataFactory::Context& ctx) {
auto vertexMetal = MetalDataFactory::CompileMetal(GammaVS, PipelineStage::Vertex);
auto vertexShader = ctx.newShaderStage(vertexMetal, PipelineStage::Vertex);
auto fragmentMetal = MetalDataFactory::CompileMetal(GammaFS, PipelineStage::Fragment);
auto fragmentShader = ctx.newShaderStage(fragmentMetal, PipelineStage::Fragment);
const VertexElementDescriptor vfmt[] = {
{VertexSemantic::Position4},
{VertexSemantic::UV4}
};
VertexFormatInfo vfmtInfo(vfmt);
AdditionalPipelineInfo info =
{
BlendFactor::One, BlendFactor::Zero,
Primitive::TriStrips, ZTest::None, false, true, false, CullMode::None
};
m_gammaShader = ctx.newShaderPipeline(vertexShader, fragmentShader, vfmtInfo, info);
m_gammaLUT = ctx.newDynamicTexture(256, 256, TextureFormat::I16, TextureClampMode::ClampToEdge);
setDisplayGamma(1.f);
const struct Vert {
float pos[4];
float uv[4];
} verts[4] = {
{{-1.f, 1.f, 0.f, 1.f}, {0.f, 0.f, 0.f, 0.f}},
{{1.f, 1.f, 0.f, 1.f}, {1.f, 0.f, 0.f, 0.f}},
{{-1.f, -1.f, 0.f, 1.f}, {0.f, 1.f, 0.f, 0.f}},
{{1.f, -1.f, 0.f, 1.f}, {1.f, 1.f, 0.f, 0.f}}
};
m_gammaVBO = ctx.newStaticBuffer(BufferUse::Vertex, verts, 32, 4);
ObjToken<ITexture> texs[] = {{}, m_gammaLUT.get()};
m_gammaBinding = ctx.newShaderDataBinding(m_gammaShader, m_gammaVBO.get(), {}, {},
0, nullptr, nullptr, 2, texs, nullptr, nullptr);
return true;
} BooTrace);
}
}
#endif