boo/lib/graphicsdev/Vulkan.cpp

4210 lines
166 KiB
C++

#include "boo/graphicsdev/Vulkan.hpp"
#include <array>
#include <cmath>
#include <vector>
#include <glslang/Public/ShaderLang.h>
#include <StandAlone/ResourceLimits.h>
#include <SPIRV/GlslangToSpv.h>
#include <SPIRV/disassemble.h>
#include <optick.h>
#include "boo/IGraphicsContext.hpp"
#include "boo/graphicsdev/GLSLMacros.hpp"
#include "boo/graphicsdev/IGraphicsCommandQueue.hpp"
#include "lib/graphicsdev/Common.hpp"
#define AMD_PAL_HACK 1
#define VMA_IMPLEMENTATION
#define VMA_STATIC_VULKAN_FUNCTIONS 0
#include "vk_mem_alloc.h"
#include <logvisor/logvisor.hpp>
#define BOO_VK_MAX_DESCRIPTOR_SETS 65536
#undef min
#undef max
#undef None
static const char* GammaVS = "#version 330\n" BOO_GLSL_BINDING_HEAD
"layout(location=0) in vec4 posIn;\n"
"layout(location=1) in vec4 uvIn;\n"
"\n"
"struct VertToFrag\n"
"{\n"
" vec2 uv;\n"
"};\n"
"\n"
"SBINDING(0) out VertToFrag vtf;\n"
"void main()\n"
"{\n"
" vtf.uv = uvIn.xy;\n"
" gl_Position = posIn;\n"
"}\n";
static const char* GammaFS = "#version 330\n" BOO_GLSL_BINDING_HEAD
"struct VertToFrag\n"
"{\n"
" vec2 uv;\n"
"};\n"
"\n"
"SBINDING(0) in VertToFrag vtf;\n"
"layout(location=0) out vec4 colorOut;\n"
"TBINDING0 uniform sampler2D screenTex;\n"
"TBINDING1 uniform sampler2D gammaLUT;\n"
"void main()\n"
"{\n"
" ivec4 tex = ivec4(texture(screenTex, vtf.uv) * 65535.0);\n"
" for (int i=0 ; i<3 ; ++i)\n"
" colorOut[i] = texelFetch(gammaLUT, ivec2(tex[i] % 256, tex[i] / 256), 0).r;\n"
"}\n";
namespace boo {
static logvisor::Module Log("boo::Vulkan");
VulkanContext g_VulkanContext;
class VulkanDataFactoryImpl;
struct VulkanCommandQueue;
struct VulkanDescriptorPool;
class VulkanDataFactoryImpl final : public VulkanDataFactory, public GraphicsDataFactoryHead {
friend struct VulkanCommandQueue;
friend class VulkanDataFactory::Context;
friend struct VulkanData;
friend struct VulkanPool;
friend struct VulkanDescriptorPool;
friend struct VulkanShaderDataBinding;
IGraphicsContext* m_parent;
VulkanContext* m_ctx;
VulkanDescriptorPool* m_descPoolHead = nullptr;
PipelineCompileQueue<class VulkanShaderPipeline> m_pipelineQueue;
float m_gamma = 1.f;
ObjToken<IShaderPipeline> m_gammaShader;
ObjToken<ITextureD> m_gammaLUT;
ObjToken<IGraphicsBufferS> m_gammaVBO;
ObjToken<IShaderDataBinding> m_gammaBinding;
void SetupGammaResources() {
commitTransaction([this](IGraphicsDataFactory::Context& ctx) {
auto vertexSiprv = VulkanDataFactory::CompileGLSL(GammaVS, PipelineStage::Vertex);
auto vertexShader = ctx.newShaderStage(vertexSiprv, PipelineStage::Vertex);
auto fragmentSiprv = VulkanDataFactory::CompileGLSL(GammaFS, PipelineStage::Fragment);
auto fragmentShader = ctx.newShaderStage(fragmentSiprv, PipelineStage::Fragment);
const VertexElementDescriptor vfmt[] = {{VertexSemantic::Position4}, {VertexSemantic::UV4}};
AdditionalPipelineInfo info = {
BlendFactor::One, BlendFactor::Zero, Primitive::TriStrips, ZTest::None, false, true, false, CullMode::None};
m_gammaShader = ctx.newShaderPipeline(vertexShader, fragmentShader, vfmt, info, false);
m_gammaLUT = ctx.newDynamicTexture(256, 256, TextureFormat::I16, TextureClampMode::ClampToEdge);
setDisplayGamma(1.f);
const struct Vert {
float pos[4];
float uv[4];
} verts[4] = {{{-1.f, -1.f, 0.f, 1.f}, {0.f, 0.f, 0.f, 0.f}},
{{1.f, -1.f, 0.f, 1.f}, {1.f, 0.f, 0.f, 0.f}},
{{-1.f, 1.f, 0.f, 1.f}, {0.f, 1.f, 0.f, 0.f}},
{{1.f, 1.f, 0.f, 1.f}, {1.f, 1.f, 0.f, 0.f}}};
m_gammaVBO = ctx.newStaticBuffer(BufferUse::Vertex, verts, 32, 4);
ObjToken<ITexture> texs[] = {{}, m_gammaLUT.get()};
m_gammaBinding = ctx.newShaderDataBinding(m_gammaShader, m_gammaVBO.get(), {}, {}, 0, nullptr, nullptr, 2, texs,
nullptr, nullptr);
return true;
} BooTrace);
}
void DestroyGammaResources() {
m_gammaBinding.reset();
m_gammaVBO.reset();
m_gammaLUT.reset();
m_gammaShader.reset();
}
public:
VulkanDataFactoryImpl(IGraphicsContext* parent, VulkanContext* ctx);
~VulkanDataFactoryImpl() { assert(m_descPoolHead == nullptr && "Dangling descriptor pools detected"); }
Platform platform() const { return Platform::Vulkan; }
const SystemChar* platformName() const { return _SYS_STR("Vulkan"); }
boo::ObjToken<VulkanDescriptorPool> allocateDescriptorSets(VkDescriptorSet* out);
void commitTransaction(const FactoryCommitFunc& __BooTraceArgs);
boo::ObjToken<IGraphicsBufferD> newPoolBuffer(BufferUse use, size_t stride, size_t count __BooTraceArgs);
void setDisplayGamma(float gamma) {
m_gamma = gamma;
UpdateGammaLUT(m_gammaLUT.get(), gamma);
}
bool isTessellationSupported(uint32_t& maxPatchSizeOut) {
maxPatchSizeOut = 0;
if (!m_ctx->m_features.tessellationShader)
return false;
maxPatchSizeOut = m_ctx->m_gpuProps.limits.maxTessellationPatchSize;
return true;
}
void waitUntilShadersReady() {
m_pipelineQueue.waitUntilReady();
}
bool areShadersReady() {
return m_pipelineQueue.isReady();
}
};
static void ThrowIfFailed(VkResult res) {
if (res != VK_SUCCESS)
Log.report(logvisor::Fatal, FMT_STRING("{}\n"), res);
}
static VKAPI_ATTR VkBool32 VKAPI_CALL dbgFunc(VkDebugReportFlagsEXT msgFlags, VkDebugReportObjectTypeEXT objType,
uint64_t srcObject, size_t location, int32_t msgCode,
const char* pLayerPrefix, const char* pMsg, void* pUserData) {
if (msgFlags & VK_DEBUG_REPORT_ERROR_BIT_EXT) {
Log.report(logvisor::Error, FMT_STRING("[{}] Code {} : {}"), pLayerPrefix, msgCode, pMsg);
} else if (msgFlags & VK_DEBUG_REPORT_WARNING_BIT_EXT) {
Log.report(logvisor::Warning, FMT_STRING("[{}] Code {} : {}"), pLayerPrefix, msgCode, pMsg);
} else if (msgFlags & VK_DEBUG_REPORT_PERFORMANCE_WARNING_BIT_EXT) {
Log.report(logvisor::Warning, FMT_STRING("[{}] Code {} : {}"), pLayerPrefix, msgCode, pMsg);
} else if (msgFlags & VK_DEBUG_REPORT_INFORMATION_BIT_EXT) {
Log.report(logvisor::Info, FMT_STRING("[{}] Code {} : {}"), pLayerPrefix, msgCode, pMsg);
} else if (msgFlags & VK_DEBUG_REPORT_DEBUG_BIT_EXT) {
Log.report(logvisor::Info, FMT_STRING("[{}] Code {} : {}"), pLayerPrefix, msgCode, pMsg);
}
/*
* false indicates that layer should not bail-out of an
* API call that had validation failures. This may mean that the
* app dies inside the driver due to invalid parameter(s).
* That's what would happen without validation layers, so we'll
* keep that behavior here.
*/
return VK_FALSE;
}
static void SetImageLayout(VkCommandBuffer cmd, VkImage image, VkImageAspectFlags aspectMask,
VkImageLayout old_image_layout, VkImageLayout new_image_layout, uint32_t mipCount,
uint32_t layerCount, uint32_t baseMipLevel = 0) {
VkImageMemoryBarrier imageMemoryBarrier = {};
imageMemoryBarrier.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;
imageMemoryBarrier.pNext = nullptr;
imageMemoryBarrier.srcAccessMask = 0;
imageMemoryBarrier.dstAccessMask = 0;
imageMemoryBarrier.oldLayout = old_image_layout;
imageMemoryBarrier.newLayout = new_image_layout;
imageMemoryBarrier.image = image;
imageMemoryBarrier.subresourceRange.aspectMask = aspectMask;
imageMemoryBarrier.subresourceRange.baseMipLevel = baseMipLevel;
imageMemoryBarrier.subresourceRange.levelCount = mipCount;
imageMemoryBarrier.subresourceRange.layerCount = layerCount;
imageMemoryBarrier.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
imageMemoryBarrier.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
VkPipelineStageFlags src_stages = VK_PIPELINE_STAGE_ALL_GRAPHICS_BIT;
VkPipelineStageFlags dest_stages = VK_PIPELINE_STAGE_ALL_GRAPHICS_BIT;
switch (old_image_layout) {
case VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL:
imageMemoryBarrier.srcAccessMask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT | VK_ACCESS_COLOR_ATTACHMENT_READ_BIT;
src_stages = VK_PIPELINE_STAGE_ALL_GRAPHICS_BIT;
break;
case VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL:
imageMemoryBarrier.srcAccessMask = VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT;
src_stages = VK_PIPELINE_STAGE_ALL_GRAPHICS_BIT;
break;
case VK_IMAGE_LAYOUT_PREINITIALIZED:
imageMemoryBarrier.srcAccessMask = VK_ACCESS_HOST_WRITE_BIT;
break;
case VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL:
imageMemoryBarrier.srcAccessMask = VK_ACCESS_TRANSFER_READ_BIT;
src_stages = VK_PIPELINE_STAGE_TRANSFER_BIT;
break;
case VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL:
imageMemoryBarrier.srcAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT;
src_stages = VK_PIPELINE_STAGE_TRANSFER_BIT;
break;
case VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL:
imageMemoryBarrier.srcAccessMask = VK_ACCESS_SHADER_READ_BIT;
src_stages = VK_PIPELINE_STAGE_ALL_GRAPHICS_BIT;
break;
default:
break;
}
switch (new_image_layout) {
case VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL:
imageMemoryBarrier.dstAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT;
dest_stages = VK_PIPELINE_STAGE_TRANSFER_BIT;
break;
case VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL:
imageMemoryBarrier.dstAccessMask = VK_ACCESS_TRANSFER_READ_BIT;
dest_stages = VK_PIPELINE_STAGE_TRANSFER_BIT;
break;
case VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL:
imageMemoryBarrier.dstAccessMask = VK_ACCESS_SHADER_READ_BIT;
dest_stages = VK_PIPELINE_STAGE_ALL_GRAPHICS_BIT;
break;
case VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL:
imageMemoryBarrier.dstAccessMask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT | VK_ACCESS_COLOR_ATTACHMENT_READ_BIT;
dest_stages = VK_PIPELINE_STAGE_ALL_GRAPHICS_BIT;
break;
case VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL:
imageMemoryBarrier.dstAccessMask = VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT;
dest_stages = VK_PIPELINE_STAGE_ALL_GRAPHICS_BIT;
break;
case VK_IMAGE_LAYOUT_PRESENT_SRC_KHR:
imageMemoryBarrier.dstAccessMask = VK_ACCESS_MEMORY_READ_BIT;
dest_stages = VK_PIPELINE_STAGE_ALL_GRAPHICS_BIT;
break;
default:
break;
}
vk::CmdPipelineBarrier(cmd, src_stages, dest_stages, 0, 0, nullptr, 0, nullptr, 1, &imageMemoryBarrier);
}
static VkResult InitGlobalExtensionProperties(VulkanContext::LayerProperties& layerProps) {
VkExtensionProperties* instance_extensions;
uint32_t instance_extension_count;
VkResult res;
char* layer_name = nullptr;
layer_name = layerProps.properties.layerName;
do {
res = vk::EnumerateInstanceExtensionProperties(layer_name, &instance_extension_count, nullptr);
if (res)
return res;
if (instance_extension_count == 0) {
return VK_SUCCESS;
}
layerProps.extensions.resize(instance_extension_count);
instance_extensions = layerProps.extensions.data();
res = vk::EnumerateInstanceExtensionProperties(layer_name, &instance_extension_count, instance_extensions);
} while (res == VK_INCOMPLETE);
return res;
}
/*
* Return 1 (true) if all layer names specified in check_names
* can be found in given layer properties.
*/
static void demo_check_layers(const std::vector<VulkanContext::LayerProperties>& layerProps,
const std::vector<const char*>& layerNames) {
uint32_t check_count = layerNames.size();
uint32_t layer_count = layerProps.size();
for (uint32_t i = 0; i < check_count; i++) {
VkBool32 found = 0;
for (uint32_t j = 0; j < layer_count; j++) {
if (!strcmp(layerNames[i], layerProps[j].properties.layerName)) {
found = 1;
}
}
if (!found) {
Log.report(logvisor::Fatal, FMT_STRING("Cannot find layer: {}"), layerNames[i]);
}
}
}
bool VulkanContext::initVulkan(std::string_view appName, PFN_vkGetInstanceProcAddr getVkProc) {
vk::init_dispatch_table_top(getVkProc);
if (!glslang::InitializeProcess()) {
Log.report(logvisor::Error, FMT_STRING("unable to initialize glslang"));
return false;
}
uint32_t instanceLayerCount;
VkLayerProperties* vkProps = nullptr;
VkResult res;
/*
* It's possible, though very rare, that the number of
* instance layers could change. For example, installing something
* could include new layers that the loader would pick up
* between the initial query for the count and the
* request for VkLayerProperties. The loader indicates that
* by returning a VK_INCOMPLETE status and will update the
* the count parameter.
* The count parameter will be updated with the number of
* entries loaded into the data pointer - in case the number
* of layers went down or is smaller than the size given.
*/
#ifdef _WIN32
char* vkSdkPath = getenv("VK_SDK_PATH");
if (vkSdkPath) {
std::string str = "VK_LAYER_PATH=";
str += vkSdkPath;
str += "\\Bin";
_putenv(str.c_str());
}
#else
setenv("VK_LAYER_PATH", "/usr/share/vulkan/explicit_layer.d", 1);
#endif
do {
ThrowIfFailed(vk::EnumerateInstanceLayerProperties(&instanceLayerCount, nullptr));
if (instanceLayerCount == 0)
break;
vkProps = (VkLayerProperties*)realloc(vkProps, instanceLayerCount * sizeof(VkLayerProperties));
res = vk::EnumerateInstanceLayerProperties(&instanceLayerCount, vkProps);
} while (res == VK_INCOMPLETE);
/*
* Now gather the extension list for each instance layer.
*/
for (uint32_t i = 0; i < instanceLayerCount; ++i) {
LayerProperties layerProps;
layerProps.properties = vkProps[i];
ThrowIfFailed(InitGlobalExtensionProperties(layerProps));
m_instanceLayerProperties.push_back(layerProps);
}
free(vkProps);
/* need platform surface extensions */
m_instanceExtensionNames.push_back(VK_KHR_SURFACE_EXTENSION_NAME);
#ifdef _WIN32
m_instanceExtensionNames.push_back(VK_KHR_WIN32_SURFACE_EXTENSION_NAME);
#else
m_instanceExtensionNames.push_back(VK_KHR_XCB_SURFACE_EXTENSION_NAME);
#endif
#ifndef NDEBUG
m_layerNames.push_back("VK_LAYER_KHRONOS_validation");
// m_layerNames.push_back("VK_LAYER_RENDERDOC_Capture");
// m_layerNames.push_back("VK_LAYER_LUNARG_api_dump");
#endif
demo_check_layers(m_instanceLayerProperties, m_layerNames);
#ifndef NDEBUG
/* Enable debug callback extension */
m_instanceExtensionNames.push_back(VK_EXT_DEBUG_REPORT_EXTENSION_NAME);
#endif
/* create the instance */
VkApplicationInfo appInfo = {};
appInfo.sType = VK_STRUCTURE_TYPE_APPLICATION_INFO;
appInfo.pNext = nullptr;
appInfo.pApplicationName = appName.data();
appInfo.applicationVersion = 1;
appInfo.pEngineName = "Boo";
appInfo.engineVersion = 1;
appInfo.apiVersion = VK_API_VERSION_1_1;
VkInstanceCreateInfo instInfo = {};
instInfo.sType = VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO;
instInfo.pNext = nullptr;
instInfo.flags = 0;
instInfo.pApplicationInfo = &appInfo;
instInfo.enabledLayerCount = m_layerNames.size();
instInfo.ppEnabledLayerNames = m_layerNames.size() ? m_layerNames.data() : nullptr;
instInfo.enabledExtensionCount = m_instanceExtensionNames.size();
instInfo.ppEnabledExtensionNames = m_instanceExtensionNames.data();
VkResult instRes = vk::CreateInstance(&instInfo, nullptr, &m_instance);
if (instRes != VK_SUCCESS) {
Log.report(logvisor::Error,
FMT_STRING("The Vulkan runtime is installed, but there are no supported "
"hardware vendor interfaces present"));
return false;
}
#ifndef NDEBUG
PFN_vkCreateDebugReportCallbackEXT createDebugReportCallback =
(PFN_vkCreateDebugReportCallbackEXT)vk::GetInstanceProcAddr(m_instance, "vkCreateDebugReportCallbackEXT");
if (!createDebugReportCallback)
Log.report(logvisor::Fatal, FMT_STRING("GetInstanceProcAddr: Unable to find vkCreateDebugReportCallbackEXT function."));
m_destroyDebugReportCallback =
(PFN_vkDestroyDebugReportCallbackEXT)vk::GetInstanceProcAddr(m_instance, "vkDestroyDebugReportCallbackEXT");
if (!m_destroyDebugReportCallback)
Log.report(logvisor::Fatal, FMT_STRING("GetInstanceProcAddr: Unable to find vkDestroyDebugReportCallbackEXT function."));
VkDebugReportCallbackCreateInfoEXT debugCreateInfo = {};
debugCreateInfo.sType = VK_STRUCTURE_TYPE_DEBUG_REPORT_CREATE_INFO_EXT;
debugCreateInfo.pNext = nullptr;
debugCreateInfo.flags = VK_DEBUG_REPORT_ERROR_BIT_EXT | VK_DEBUG_REPORT_WARNING_BIT_EXT;
debugCreateInfo.pfnCallback = dbgFunc;
debugCreateInfo.pUserData = nullptr;
ThrowIfFailed(createDebugReportCallback(m_instance, &debugCreateInfo, nullptr, &m_debugReportCallback));
#endif
vk::init_dispatch_table_middle(m_instance, false);
return true;
}
bool VulkanContext::enumerateDevices() {
uint32_t gpuCount = 1;
ThrowIfFailed(vk::EnumeratePhysicalDevices(m_instance, &gpuCount, nullptr));
if (!gpuCount)
return false;
m_gpus.resize(gpuCount);
ThrowIfFailed(vk::EnumeratePhysicalDevices(m_instance, &gpuCount, m_gpus.data()));
if (!gpuCount)
return false;
vk::GetPhysicalDeviceQueueFamilyProperties(m_gpus[0], &m_queueCount, nullptr);
if (!m_queueCount)
return false;
m_queueProps.resize(m_queueCount);
vk::GetPhysicalDeviceQueueFamilyProperties(m_gpus[0], &m_queueCount, m_queueProps.data());
if (!m_queueCount)
return false;
/* This is as good a place as any to do this */
vk::GetPhysicalDeviceMemoryProperties(m_gpus[0], &m_memoryProperties);
vk::GetPhysicalDeviceProperties(m_gpus[0], &m_gpuProps);
return true;
}
void VulkanContext::initDevice() {
if (m_graphicsQueueFamilyIndex == UINT32_MAX)
Log.report(logvisor::Fatal, FMT_STRING("VulkanContext::m_graphicsQueueFamilyIndex hasn't been initialized"));
/* create the device and queues */
VkDeviceQueueCreateInfo queueInfo = {};
float queuePriorities[1] = {0.0};
queueInfo.sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO;
queueInfo.pNext = nullptr;
queueInfo.queueCount = 1;
queueInfo.pQueuePriorities = queuePriorities;
queueInfo.queueFamilyIndex = m_graphicsQueueFamilyIndex;
vk::GetPhysicalDeviceFeatures(m_gpus[0], &m_features);
VkPhysicalDeviceFeatures features = {};
if (m_features.samplerAnisotropy)
features.samplerAnisotropy = VK_TRUE;
if (!m_features.textureCompressionBC)
Log.report(logvisor::Fatal, FMT_STRING("Vulkan device does not support DXT-format textures"));
features.textureCompressionBC = VK_TRUE;
VkShaderStageFlagBits tessellationDescriptorBit = VkShaderStageFlagBits(0);
if (m_features.tessellationShader) {
tessellationDescriptorBit = VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT;
features.tessellationShader = VK_TRUE;
}
if (!m_features.dualSrcBlend)
Log.report(logvisor::Fatal, FMT_STRING("Vulkan device does not support dual-source blending"));
features.dualSrcBlend = VK_TRUE;
uint32_t extCount = 0;
vk::EnumerateDeviceExtensionProperties(m_gpus[0], nullptr, &extCount, nullptr);
std::vector<VkExtensionProperties> extensions(extCount);
vk::EnumerateDeviceExtensionProperties(m_gpus[0], nullptr, &extCount, extensions.data());
bool hasSwapchain = false;
bool hasDebugMarker = false;
bool hasGetMemReq2 = false;
bool hasDedicatedAllocation = false;
for (const VkExtensionProperties& ext : extensions) {
if (!hasSwapchain && !strcmp(ext.extensionName, VK_KHR_SWAPCHAIN_EXTENSION_NAME))
hasSwapchain = true;
else if (!hasDebugMarker && !strcmp(ext.extensionName, VK_EXT_DEBUG_MARKER_EXTENSION_NAME))
hasDebugMarker = true;
else if (!hasGetMemReq2 && !strcmp(ext.extensionName, VK_KHR_GET_MEMORY_REQUIREMENTS_2_EXTENSION_NAME))
hasGetMemReq2 = true;
else if (!hasDedicatedAllocation && !strcmp(ext.extensionName, VK_KHR_DEDICATED_ALLOCATION_EXTENSION_NAME))
hasDedicatedAllocation = true;
}
if (!hasSwapchain)
Log.report(logvisor::Fatal, FMT_STRING("Vulkan device does not support swapchains"));
/* need swapchain device extension */
m_deviceExtensionNames.push_back(VK_KHR_SWAPCHAIN_EXTENSION_NAME);
#ifdef BOO_GRAPHICS_DEBUG_GROUPS
if (hasDebugMarker) {
/* Enable debug marker extension if enabled in the build system */
m_deviceExtensionNames.push_back(VK_EXT_DEBUG_MARKER_EXTENSION_NAME);
}
#endif
VmaAllocatorCreateFlags allocFlags = VMA_ALLOCATOR_CREATE_EXTERNALLY_SYNCHRONIZED_BIT;
if (hasGetMemReq2 && hasDedicatedAllocation) {
m_deviceExtensionNames.push_back(VK_KHR_GET_MEMORY_REQUIREMENTS_2_EXTENSION_NAME);
m_deviceExtensionNames.push_back(VK_KHR_DEDICATED_ALLOCATION_EXTENSION_NAME);
allocFlags |= VMA_ALLOCATOR_CREATE_KHR_DEDICATED_ALLOCATION_BIT;
}
VkDeviceCreateInfo deviceInfo = {};
deviceInfo.sType = VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO;
deviceInfo.pNext = nullptr;
deviceInfo.queueCreateInfoCount = 1;
deviceInfo.pQueueCreateInfos = &queueInfo;
deviceInfo.enabledLayerCount = m_layerNames.size();
deviceInfo.ppEnabledLayerNames = deviceInfo.enabledLayerCount ? m_layerNames.data() : nullptr;
deviceInfo.enabledExtensionCount = m_deviceExtensionNames.size();
deviceInfo.ppEnabledExtensionNames = deviceInfo.enabledExtensionCount ? m_deviceExtensionNames.data() : nullptr;
deviceInfo.pEnabledFeatures = &features;
ThrowIfFailed(vk::CreateDevice(m_gpus[0], &deviceInfo, nullptr, &m_dev));
vk::init_dispatch_table_bottom(m_instance, m_dev);
/* allocator */
VmaVulkanFunctions vulkanFunctions = {};
vulkanFunctions.vkGetPhysicalDeviceProperties = vk::GetPhysicalDeviceProperties;
vulkanFunctions.vkGetPhysicalDeviceMemoryProperties = vk::GetPhysicalDeviceMemoryProperties;
vulkanFunctions.vkAllocateMemory = vk::AllocateMemory;
vulkanFunctions.vkFreeMemory = vk::FreeMemory;
vulkanFunctions.vkMapMemory = vk::MapMemory;
vulkanFunctions.vkUnmapMemory = vk::UnmapMemory;
vulkanFunctions.vkBindBufferMemory = vk::BindBufferMemory;
vulkanFunctions.vkBindImageMemory = vk::BindImageMemory;
vulkanFunctions.vkGetBufferMemoryRequirements = vk::GetBufferMemoryRequirements;
vulkanFunctions.vkGetImageMemoryRequirements = vk::GetImageMemoryRequirements;
vulkanFunctions.vkCreateBuffer = vk::CreateBuffer;
vulkanFunctions.vkDestroyBuffer = vk::DestroyBuffer;
vulkanFunctions.vkCreateImage = vk::CreateImage;
vulkanFunctions.vkDestroyImage = vk::DestroyImage;
if (hasGetMemReq2 && hasDedicatedAllocation) {
vulkanFunctions.vkGetBufferMemoryRequirements2KHR = reinterpret_cast<PFN_vkGetBufferMemoryRequirements2KHR>(
vk::GetDeviceProcAddr(m_dev, "vkGetBufferMemoryRequirements2KHR"));
vulkanFunctions.vkGetImageMemoryRequirements2KHR = reinterpret_cast<PFN_vkGetImageMemoryRequirements2KHR>(
vk::GetDeviceProcAddr(m_dev, "vkGetImageMemoryRequirements2KHR"));
}
VmaAllocatorCreateInfo allocatorInfo = {};
allocatorInfo.flags = allocFlags;
allocatorInfo.physicalDevice = m_gpus[0];
allocatorInfo.device = m_dev;
allocatorInfo.pVulkanFunctions = &vulkanFunctions;
ThrowIfFailed(vmaCreateAllocator(&allocatorInfo, &m_allocator));
// Going to need a command buffer to send the memory barriers in
// set_image_layout but we couldn't have created one before we knew
// what our graphics_queue_family_index is, but now that we have it,
// create the command buffer
VkCommandPoolCreateInfo cmdPoolInfo = {};
cmdPoolInfo.sType = VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO;
cmdPoolInfo.pNext = nullptr;
cmdPoolInfo.queueFamilyIndex = m_graphicsQueueFamilyIndex;
cmdPoolInfo.flags = VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT;
ThrowIfFailed(vk::CreateCommandPool(m_dev, &cmdPoolInfo, nullptr, &m_loadPool));
VkCommandBufferAllocateInfo cmd = {};
cmd.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO;
cmd.pNext = nullptr;
cmd.commandPool = m_loadPool;
cmd.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY;
cmd.commandBufferCount = 1;
ThrowIfFailed(vk::AllocateCommandBuffers(m_dev, &cmd, &m_loadCmdBuf));
vk::GetDeviceQueue(m_dev, m_graphicsQueueFamilyIndex, 0, &m_queue);
OPTICK_GPU_INIT_VULKAN(&m_dev, &m_gpus[0], &m_queue, &m_graphicsQueueFamilyIndex, 1, nullptr);
/* Begin load command buffer here */
VkCommandBufferBeginInfo cmdBufBeginInfo = {};
cmdBufBeginInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO;
cmdBufBeginInfo.flags = VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT;
ThrowIfFailed(vk::BeginCommandBuffer(m_loadCmdBuf, &cmdBufBeginInfo));
m_sampleCountColor = flp2(std::min(m_gpuProps.limits.framebufferColorSampleCounts, m_sampleCountColor));
m_sampleCountDepth = flp2(std::min(m_gpuProps.limits.framebufferDepthSampleCounts, m_sampleCountDepth));
if (m_features.samplerAnisotropy)
m_anisotropy = std::min(m_gpuProps.limits.maxSamplerAnisotropy, m_anisotropy);
else
m_anisotropy = 1;
VkDescriptorSetLayoutBinding layoutBindings[BOO_GLSL_MAX_UNIFORM_COUNT + BOO_GLSL_MAX_TEXTURE_COUNT];
for (int i = 0; i < BOO_GLSL_MAX_UNIFORM_COUNT; ++i) {
layoutBindings[i].binding = i;
layoutBindings[i].descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER;
layoutBindings[i].descriptorCount = 1;
layoutBindings[i].stageFlags =
VK_SHADER_STAGE_VERTEX_BIT | VK_SHADER_STAGE_FRAGMENT_BIT | tessellationDescriptorBit;
layoutBindings[i].pImmutableSamplers = nullptr;
}
for (int i = BOO_GLSL_MAX_UNIFORM_COUNT; i < BOO_GLSL_MAX_UNIFORM_COUNT + BOO_GLSL_MAX_TEXTURE_COUNT; ++i) {
layoutBindings[i].binding = i;
layoutBindings[i].descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER;
layoutBindings[i].descriptorCount = 1;
layoutBindings[i].stageFlags = VK_SHADER_STAGE_FRAGMENT_BIT | tessellationDescriptorBit;
layoutBindings[i].pImmutableSamplers = nullptr;
}
VkDescriptorSetLayoutCreateInfo descriptorLayout = {};
descriptorLayout.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO;
descriptorLayout.pNext = nullptr;
descriptorLayout.bindingCount = BOO_GLSL_MAX_UNIFORM_COUNT + BOO_GLSL_MAX_TEXTURE_COUNT;
descriptorLayout.pBindings = layoutBindings;
ThrowIfFailed(vk::CreateDescriptorSetLayout(m_dev, &descriptorLayout, nullptr, &m_descSetLayout));
VkPipelineLayoutCreateInfo pipelineLayout = {};
pipelineLayout.sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO;
pipelineLayout.setLayoutCount = 1;
pipelineLayout.pSetLayouts = &m_descSetLayout;
ThrowIfFailed(vk::CreatePipelineLayout(m_dev, &pipelineLayout, nullptr, &m_pipelinelayout));
std::string gpuName = m_gpuProps.deviceName;
Log.report(logvisor::Info, FMT_STRING("Initialized {}"), gpuName);
Log.report(logvisor::Info, FMT_STRING("Vulkan version {}.{}.{}"), m_gpuProps.apiVersion >> 22,
(m_gpuProps.apiVersion >> 12) & 0b1111111111, m_gpuProps.apiVersion & 0b111111111111);
Log.report(logvisor::Info, FMT_STRING("Driver version {}.{}.{}"), m_gpuProps.driverVersion >> 22,
(m_gpuProps.driverVersion >> 12) & 0b1111111111, m_gpuProps.driverVersion & 0b111111111111);
}
void VulkanContext::destroyDevice() {
for (auto& s : m_samplers)
vk::DestroySampler(m_dev, s.second, nullptr);
m_samplers.clear();
if (m_passColorOnly) {
vk::DestroyRenderPass(m_dev, m_passColorOnly, nullptr);
m_passColorOnly = VK_NULL_HANDLE;
}
if (m_passOneSample) {
vk::DestroyRenderPass(m_dev, m_passOneSample, nullptr);
m_passOneSample = VK_NULL_HANDLE;
}
if (m_pass) {
vk::DestroyRenderPass(m_dev, m_pass, nullptr);
m_pass = VK_NULL_HANDLE;
}
if (m_pipelinelayout) {
vk::DestroyPipelineLayout(m_dev, m_pipelinelayout, nullptr);
m_pipelinelayout = VK_NULL_HANDLE;
}
if (m_descSetLayout) {
vk::DestroyDescriptorSetLayout(m_dev, m_descSetLayout, nullptr);
m_descSetLayout = VK_NULL_HANDLE;
}
if (m_loadPool) {
vk::DestroyCommandPool(m_dev, m_loadPool, nullptr);
m_loadPool = VK_NULL_HANDLE;
}
if (m_allocator) {
vmaDestroyAllocator(m_allocator);
m_allocator = VK_NULL_HANDLE;
}
#ifndef NDEBUG
if (m_debugReportCallback) {
m_destroyDebugReportCallback(m_instance, m_debugReportCallback, nullptr);
m_debugReportCallback = VK_NULL_HANDLE;
}
#endif
if (m_dev) {
vk::DestroyDevice(m_dev, nullptr);
m_dev = VK_NULL_HANDLE;
}
if (m_instance) {
vk::DestroyInstance(m_instance, nullptr);
m_instance = VK_NULL_HANDLE;
}
}
void VulkanContext::Window::SwapChain::Buffer::setImage(VulkanContext* ctx, VkImage image, uint32_t width,
uint32_t height) {
m_image = image;
if (m_colorView)
vk::DestroyImageView(ctx->m_dev, m_colorView, nullptr);
if (m_framebuffer)
vk::DestroyFramebuffer(ctx->m_dev, m_framebuffer, nullptr);
/* Create resource views */
VkImageViewCreateInfo viewCreateInfo = {};
viewCreateInfo.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO;
viewCreateInfo.pNext = nullptr;
viewCreateInfo.image = m_image;
viewCreateInfo.viewType = VK_IMAGE_VIEW_TYPE_2D;
viewCreateInfo.format = ctx->m_displayFormat;
viewCreateInfo.components.r = VK_COMPONENT_SWIZZLE_R;
viewCreateInfo.components.g = VK_COMPONENT_SWIZZLE_G;
viewCreateInfo.components.b = VK_COMPONENT_SWIZZLE_B;
viewCreateInfo.components.a = VK_COMPONENT_SWIZZLE_A;
viewCreateInfo.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
viewCreateInfo.subresourceRange.baseMipLevel = 0;
viewCreateInfo.subresourceRange.levelCount = 1;
viewCreateInfo.subresourceRange.baseArrayLayer = 0;
viewCreateInfo.subresourceRange.layerCount = 1;
ThrowIfFailed(vk::CreateImageView(ctx->m_dev, &viewCreateInfo, nullptr, &m_colorView));
/* framebuffer */
VkFramebufferCreateInfo fbCreateInfo = {};
fbCreateInfo.sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO;
fbCreateInfo.pNext = nullptr;
fbCreateInfo.renderPass = ctx->m_passColorOnly;
fbCreateInfo.attachmentCount = 1;
fbCreateInfo.width = width;
fbCreateInfo.height = height;
fbCreateInfo.layers = 1;
fbCreateInfo.pAttachments = &m_colorView;
ThrowIfFailed(vk::CreateFramebuffer(ctx->m_dev, &fbCreateInfo, nullptr, &m_framebuffer));
m_passBeginInfo.sType = VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO;
m_passBeginInfo.pNext = nullptr;
m_passBeginInfo.renderPass = ctx->m_passColorOnly;
m_passBeginInfo.framebuffer = m_framebuffer;
m_passBeginInfo.renderArea.offset.x = 0;
m_passBeginInfo.renderArea.offset.y = 0;
m_passBeginInfo.renderArea.extent.width = width;
m_passBeginInfo.renderArea.extent.height = height;
m_passBeginInfo.clearValueCount = 0;
m_passBeginInfo.pClearValues = nullptr;
}
void VulkanContext::Window::SwapChain::Buffer::destroy(VkDevice dev) {
if (m_colorView)
vk::DestroyImageView(dev, m_colorView, nullptr);
if (m_framebuffer)
vk::DestroyFramebuffer(dev, m_framebuffer, nullptr);
}
void VulkanContext::initSwapChain(VulkanContext::Window& windowCtx, VkSurfaceKHR surface, VkFormat format,
VkColorSpaceKHR colorspace) {
m_internalFormat = m_displayFormat = format;
if (m_deepColor)
m_internalFormat = VK_FORMAT_R16G16B16A16_UNORM;
/* bootstrap render passes if needed */
if (!m_pass) {
VkAttachmentDescription attachments[2] = {};
/* color attachment */
attachments[0].format = m_internalFormat;
attachments[0].samples = VkSampleCountFlagBits(m_sampleCountColor);
attachments[0].loadOp = VK_ATTACHMENT_LOAD_OP_LOAD;
attachments[0].storeOp = VK_ATTACHMENT_STORE_OP_STORE;
attachments[0].stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE;
attachments[0].stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE;
attachments[0].initialLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
attachments[0].finalLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
VkAttachmentReference colorAttachmentRef = {0, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL};
/* depth attachment */
attachments[1].format = VK_FORMAT_D32_SFLOAT;
attachments[1].samples = VkSampleCountFlagBits(m_sampleCountDepth);
attachments[1].loadOp = VK_ATTACHMENT_LOAD_OP_LOAD;
attachments[1].storeOp = VK_ATTACHMENT_STORE_OP_STORE;
attachments[1].stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE;
attachments[1].stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE;
attachments[1].initialLayout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL;
attachments[1].finalLayout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL;
VkAttachmentReference depthAttachmentRef = {1, VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL};
/* render subpass */
VkSubpassDescription subpass = {};
subpass.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS;
subpass.colorAttachmentCount = 1;
subpass.pColorAttachments = &colorAttachmentRef;
subpass.pDepthStencilAttachment = &depthAttachmentRef;
/* render pass */
VkRenderPassCreateInfo renderPass = {};
renderPass.sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO;
renderPass.attachmentCount = 2;
renderPass.pAttachments = attachments;
renderPass.subpassCount = 1;
renderPass.pSubpasses = &subpass;
ThrowIfFailed(vk::CreateRenderPass(m_dev, &renderPass, nullptr, &m_pass));
/* render pass one sample */
attachments[0].samples = VK_SAMPLE_COUNT_1_BIT;
attachments[1].samples = VK_SAMPLE_COUNT_1_BIT;
ThrowIfFailed(vk::CreateRenderPass(m_dev, &renderPass, nullptr, &m_passOneSample));
/* render pass color only */
attachments[0].format = m_displayFormat;
renderPass.attachmentCount = 1;
subpass.pDepthStencilAttachment = nullptr;
ThrowIfFailed(vk::CreateRenderPass(m_dev, &renderPass, nullptr, &m_passColorOnly));
}
VkSurfaceCapabilitiesKHR surfCapabilities;
ThrowIfFailed(vk::GetPhysicalDeviceSurfaceCapabilitiesKHR(m_gpus[0], surface, &surfCapabilities));
uint32_t presentModeCount;
ThrowIfFailed(vk::GetPhysicalDeviceSurfacePresentModesKHR(m_gpus[0], surface, &presentModeCount, nullptr));
std::unique_ptr<VkPresentModeKHR[]> presentModes(new VkPresentModeKHR[presentModeCount]);
ThrowIfFailed(vk::GetPhysicalDeviceSurfacePresentModesKHR(m_gpus[0], surface, &presentModeCount, presentModes.get()));
VkExtent2D swapChainExtent;
// width and height are either both -1, or both not -1.
if (surfCapabilities.currentExtent.width == (uint32_t)-1) {
// If the surface size is undefined, the size is set to
// the size of the images requested.
swapChainExtent.width = 50;
swapChainExtent.height = 50;
} else {
// If the surface size is defined, the swap chain size must match
swapChainExtent = surfCapabilities.currentExtent;
}
// If mailbox mode is available, use it, as is the lowest-latency non-
// tearing mode. If not, try IMMEDIATE which will usually be available,
// and is fastest (though it tears). If not, fall back to FIFO which is
// always available.
VkPresentModeKHR swapchainPresentMode = VK_PRESENT_MODE_FIFO_KHR;
for (size_t i = 0; i < presentModeCount; ++i) {
if (presentModes[i] == VK_PRESENT_MODE_MAILBOX_KHR) {
swapchainPresentMode = VK_PRESENT_MODE_MAILBOX_KHR;
break;
}
if ((swapchainPresentMode != VK_PRESENT_MODE_MAILBOX_KHR) && (presentModes[i] == VK_PRESENT_MODE_IMMEDIATE_KHR)) {
swapchainPresentMode = VK_PRESENT_MODE_IMMEDIATE_KHR;
}
}
// Determine the number of VkImage's to use in the swap chain (we desire to
// own only 1 image at a time, besides the images being displayed and
// queued for display):
uint32_t desiredNumberOfSwapChainImages = surfCapabilities.minImageCount + 1;
if ((surfCapabilities.maxImageCount > 0) && (desiredNumberOfSwapChainImages > surfCapabilities.maxImageCount)) {
// Application must settle for fewer images than desired:
desiredNumberOfSwapChainImages = surfCapabilities.maxImageCount;
}
VkSurfaceTransformFlagBitsKHR preTransform;
if (surfCapabilities.supportedTransforms & VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR)
preTransform = VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR;
else
preTransform = surfCapabilities.currentTransform;
VkSwapchainCreateInfoKHR swapChainInfo = {};
swapChainInfo.sType = VK_STRUCTURE_TYPE_SWAPCHAIN_CREATE_INFO_KHR;
swapChainInfo.pNext = nullptr;
swapChainInfo.surface = surface;
swapChainInfo.minImageCount = desiredNumberOfSwapChainImages;
swapChainInfo.imageFormat = format;
swapChainInfo.imageExtent.width = swapChainExtent.width;
swapChainInfo.imageExtent.height = swapChainExtent.height;
swapChainInfo.preTransform = preTransform;
swapChainInfo.compositeAlpha = VK_COMPOSITE_ALPHA_OPAQUE_BIT_KHR;
swapChainInfo.imageArrayLayers = 1;
swapChainInfo.presentMode = swapchainPresentMode;
swapChainInfo.oldSwapchain = nullptr;
swapChainInfo.clipped = true;
swapChainInfo.imageColorSpace = colorspace;
swapChainInfo.imageUsage = VK_IMAGE_USAGE_TRANSFER_DST_BIT | VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT;
swapChainInfo.imageSharingMode = VK_SHARING_MODE_EXCLUSIVE;
swapChainInfo.queueFamilyIndexCount = 0;
swapChainInfo.pQueueFamilyIndices = nullptr;
Window::SwapChain& sc = windowCtx.m_swapChains[windowCtx.m_activeSwapChain];
ThrowIfFailed(vk::CreateSwapchainKHR(m_dev, &swapChainInfo, nullptr, &sc.m_swapChain));
sc.m_format = format;
uint32_t swapchainImageCount;
ThrowIfFailed(vk::GetSwapchainImagesKHR(m_dev, sc.m_swapChain, &swapchainImageCount, nullptr));
std::unique_ptr<VkImage[]> swapchainImages(new VkImage[swapchainImageCount]);
ThrowIfFailed(vk::GetSwapchainImagesKHR(m_dev, sc.m_swapChain, &swapchainImageCount, swapchainImages.get()));
/* images */
sc.m_bufs.resize(swapchainImageCount);
for (uint32_t i = 0; i < swapchainImageCount; ++i) {
Window::SwapChain::Buffer& buf = sc.m_bufs[i];
buf.setImage(this, swapchainImages[i], swapChainExtent.width, swapChainExtent.height);
}
}
void VulkanContext::resizeSwapChain(VulkanContext::Window& windowCtx, VkSurfaceKHR surface, VkFormat format,
VkColorSpaceKHR colorspace, const SWindowRect& rect) {
std::unique_lock<std::mutex> lk(m_resizeLock);
m_deferredResizes.emplace(windowCtx, surface, format, colorspace, rect);
}
bool VulkanContext::_resizeSwapChains() {
std::unique_lock<std::mutex> lk(m_resizeLock);
if (m_deferredResizes.empty())
return false;
while (m_deferredResizes.size()) {
SwapChainResize& resize = m_deferredResizes.front();
VkSurfaceCapabilitiesKHR surfCapabilities;
ThrowIfFailed(vk::GetPhysicalDeviceSurfaceCapabilitiesKHR(m_gpus[0], resize.m_surface, &surfCapabilities));
uint32_t presentModeCount;
ThrowIfFailed(vk::GetPhysicalDeviceSurfacePresentModesKHR(m_gpus[0], resize.m_surface, &presentModeCount, nullptr));
std::unique_ptr<VkPresentModeKHR[]> presentModes(new VkPresentModeKHR[presentModeCount]);
ThrowIfFailed(vk::GetPhysicalDeviceSurfacePresentModesKHR(m_gpus[0], resize.m_surface, &presentModeCount,
presentModes.get()));
VkExtent2D swapChainExtent;
// width and height are either both -1, or both not -1.
if (surfCapabilities.currentExtent.width == (uint32_t)-1) {
// If the surface size is undefined, the size is set to
// the size of the images requested.
swapChainExtent.width = 50;
swapChainExtent.height = 50;
} else {
// If the surface size is defined, the swap chain size must match
swapChainExtent = surfCapabilities.currentExtent;
}
// If mailbox mode is available, use it, as is the lowest-latency non-
// tearing mode. If not, try IMMEDIATE which will usually be available,
// and is fastest (though it tears). If not, fall back to FIFO which is
// always available.
VkPresentModeKHR swapchainPresentMode = VK_PRESENT_MODE_FIFO_KHR;
for (size_t i = 0; i < presentModeCount; ++i) {
if (presentModes[i] == VK_PRESENT_MODE_MAILBOX_KHR) {
swapchainPresentMode = VK_PRESENT_MODE_MAILBOX_KHR;
break;
}
if ((swapchainPresentMode != VK_PRESENT_MODE_MAILBOX_KHR) && (presentModes[i] == VK_PRESENT_MODE_IMMEDIATE_KHR)) {
swapchainPresentMode = VK_PRESENT_MODE_IMMEDIATE_KHR;
}
}
// Determine the number of VkImage's to use in the swap chain (we desire to
// own only 1 image at a time, besides the images being displayed and
// queued for display):
uint32_t desiredNumberOfSwapChainImages = surfCapabilities.minImageCount + 1;
if ((surfCapabilities.maxImageCount > 0) && (desiredNumberOfSwapChainImages > surfCapabilities.maxImageCount)) {
// Application must settle for fewer images than desired:
desiredNumberOfSwapChainImages = surfCapabilities.maxImageCount;
}
VkSurfaceTransformFlagBitsKHR preTransform;
if (surfCapabilities.supportedTransforms & VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR)
preTransform = VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR;
else
preTransform = surfCapabilities.currentTransform;
Window::SwapChain& oldSc = resize.m_windowCtx.m_swapChains[resize.m_windowCtx.m_activeSwapChain];
VkSwapchainCreateInfoKHR swapChainInfo = {};
swapChainInfo.sType = VK_STRUCTURE_TYPE_SWAPCHAIN_CREATE_INFO_KHR;
swapChainInfo.pNext = nullptr;
swapChainInfo.surface = resize.m_surface;
swapChainInfo.minImageCount = desiredNumberOfSwapChainImages;
swapChainInfo.imageFormat = resize.m_format;
swapChainInfo.imageExtent.width = swapChainExtent.width;
swapChainInfo.imageExtent.height = swapChainExtent.height;
swapChainInfo.preTransform = preTransform;
swapChainInfo.compositeAlpha = VK_COMPOSITE_ALPHA_OPAQUE_BIT_KHR;
swapChainInfo.imageArrayLayers = 1;
swapChainInfo.presentMode = swapchainPresentMode;
swapChainInfo.oldSwapchain = oldSc.m_swapChain;
swapChainInfo.clipped = true;
swapChainInfo.imageColorSpace = resize.m_colorspace;
swapChainInfo.imageUsage = VK_IMAGE_USAGE_TRANSFER_DST_BIT | VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT;
swapChainInfo.imageSharingMode = VK_SHARING_MODE_EXCLUSIVE;
swapChainInfo.queueFamilyIndexCount = 0;
swapChainInfo.pQueueFamilyIndices = nullptr;
resize.m_windowCtx.m_activeSwapChain ^= 1;
Window::SwapChain& sc = resize.m_windowCtx.m_swapChains[resize.m_windowCtx.m_activeSwapChain];
sc.destroy(m_dev);
ThrowIfFailed(vk::CreateSwapchainKHR(m_dev, &swapChainInfo, nullptr, &sc.m_swapChain));
sc.m_format = resize.m_format;
uint32_t swapchainImageCount;
ThrowIfFailed(vk::GetSwapchainImagesKHR(m_dev, sc.m_swapChain, &swapchainImageCount, nullptr));
std::unique_ptr<VkImage[]> swapchainImages(new VkImage[swapchainImageCount]);
ThrowIfFailed(vk::GetSwapchainImagesKHR(m_dev, sc.m_swapChain, &swapchainImageCount, swapchainImages.get()));
/* images */
sc.m_bufs.resize(swapchainImageCount);
for (uint32_t i = 0; i < swapchainImageCount; ++i) {
Window::SwapChain::Buffer& buf = sc.m_bufs[i];
buf.setImage(this, swapchainImages[i], swapChainExtent.width, swapChainExtent.height);
}
m_deferredResizes.pop();
}
return true;
}
struct VulkanDescriptorPool : ListNode<VulkanDescriptorPool, VulkanDataFactoryImpl*> {
VkDescriptorPool m_descPool;
int m_allocatedSets = 0;
VulkanDescriptorPool(VulkanDataFactoryImpl* factory)
: ListNode<VulkanDescriptorPool, VulkanDataFactoryImpl*>(factory) {
OPTICK_EVENT();
VkDescriptorPoolSize poolSizes[2] = {};
VkDescriptorPoolCreateInfo descriptorPoolInfo = {};
descriptorPoolInfo.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_CREATE_INFO;
descriptorPoolInfo.pNext = nullptr;
descriptorPoolInfo.maxSets = BOO_VK_MAX_DESCRIPTOR_SETS;
descriptorPoolInfo.poolSizeCount = 2;
descriptorPoolInfo.pPoolSizes = poolSizes;
poolSizes[0].type = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER;
poolSizes[0].descriptorCount = BOO_GLSL_MAX_UNIFORM_COUNT * BOO_VK_MAX_DESCRIPTOR_SETS;
poolSizes[1].type = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER;
poolSizes[1].descriptorCount = BOO_GLSL_MAX_TEXTURE_COUNT * BOO_VK_MAX_DESCRIPTOR_SETS;
ThrowIfFailed(vk::CreateDescriptorPool(factory->m_ctx->m_dev, &descriptorPoolInfo, nullptr, &m_descPool));
}
~VulkanDescriptorPool() {
OPTICK_EVENT();
vk::DestroyDescriptorPool(m_head->m_ctx->m_dev, m_descPool, nullptr);
}
static std::unique_lock<std::recursive_mutex> _getHeadLock(VulkanDataFactoryImpl* factory) {
return std::unique_lock<std::recursive_mutex>{factory->m_dataMutex};
}
static VulkanDescriptorPool*& _getHeadPtr(VulkanDataFactoryImpl* factory) { return factory->m_descPoolHead; }
};
boo::ObjToken<VulkanDescriptorPool> VulkanDataFactoryImpl::allocateDescriptorSets(VkDescriptorSet* out) {
OPTICK_EVENT();
std::lock_guard<std::recursive_mutex> lk(m_dataMutex);
boo::ObjToken<VulkanDescriptorPool> pool;
if (!m_descPoolHead || m_descPoolHead->m_allocatedSets == BOO_VK_MAX_DESCRIPTOR_SETS)
pool = new VulkanDescriptorPool(this);
else
pool = m_descPoolHead;
VkDescriptorSetLayout layouts[] = {m_ctx->m_descSetLayout, m_ctx->m_descSetLayout};
VkDescriptorSetAllocateInfo descAllocInfo;
descAllocInfo.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO;
descAllocInfo.pNext = nullptr;
descAllocInfo.descriptorPool = pool->m_descPool;
descAllocInfo.descriptorSetCount = 2;
descAllocInfo.pSetLayouts = layouts;
ThrowIfFailed(vk::AllocateDescriptorSets(m_ctx->m_dev, &descAllocInfo, out));
pool->m_allocatedSets += 2;
return pool;
}
struct AllocatedBuffer {
VkBuffer m_buffer = VK_NULL_HANDLE;
VmaAllocation m_allocation;
void* _create(VulkanContext* ctx, const VkBufferCreateInfo* pBufferCreateInfo, VmaMemoryUsage usage) {
OPTICK_EVENT();
assert(m_buffer == VK_NULL_HANDLE && "create may only be called once");
VmaAllocationCreateInfo bufAllocInfo = {};
bufAllocInfo.flags = VMA_ALLOCATION_CREATE_MAPPED_BIT;
bufAllocInfo.usage = usage;
VmaAllocationInfo allocInfo;
ThrowIfFailed(
vmaCreateBuffer(ctx->m_allocator, pBufferCreateInfo, &bufAllocInfo, &m_buffer, &m_allocation, &allocInfo));
return allocInfo.pMappedData;
}
void* createCPU(VulkanContext* ctx, const VkBufferCreateInfo* pBufferCreateInfo) {
return _create(ctx, pBufferCreateInfo, VMA_MEMORY_USAGE_CPU_ONLY);
}
void* createCPUtoGPU(VulkanContext* ctx, const VkBufferCreateInfo* pBufferCreateInfo) {
return _create(ctx, pBufferCreateInfo, VMA_MEMORY_USAGE_CPU_TO_GPU);
}
void destroy(VulkanContext* ctx) {
if (m_buffer) {
OPTICK_EVENT();
vmaDestroyBuffer(ctx->m_allocator, m_buffer, m_allocation);
m_buffer = VK_NULL_HANDLE;
}
}
};
struct AllocatedImage {
VkImage m_image = VK_NULL_HANDLE;
VmaAllocation m_allocation;
VkImageLayout m_layout = VK_IMAGE_LAYOUT_UNDEFINED;
VkImageLayout m_committedLayout = VK_IMAGE_LAYOUT_UNDEFINED;
void _create(VulkanContext* ctx, const VkImageCreateInfo* pImageCreateInfo, VmaAllocationCreateFlags flags) {
assert(m_image == VK_NULL_HANDLE && "create may only be called once");
VmaAllocationCreateInfo bufAllocInfo = {};
bufAllocInfo.flags = flags;
bufAllocInfo.usage = VMA_MEMORY_USAGE_GPU_ONLY;
ThrowIfFailed(vmaCreateImage(ctx->m_allocator, pImageCreateInfo, &bufAllocInfo, &m_image, &m_allocation, nullptr));
}
void create(VulkanContext* ctx, const VkImageCreateInfo* pImageCreateInf) { _create(ctx, pImageCreateInf, 0); }
void createFB(VulkanContext* ctx, const VkImageCreateInfo* pImageCreateInf) {
_create(ctx, pImageCreateInf, VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT);
}
void destroy(VulkanContext* ctx) {
if (m_image) {
vmaDestroyImage(ctx->m_allocator, m_image, m_allocation);
m_image = VK_NULL_HANDLE;
m_layout = VK_IMAGE_LAYOUT_UNDEFINED;
m_committedLayout = VK_IMAGE_LAYOUT_UNDEFINED;
}
}
void toLayout(VkCommandBuffer cmdBuf, VkImageAspectFlags aspect, VkImageLayout layout,
uint32_t mipCount = 1, uint32_t layerCount = 1, uint32_t baseMipLevel = 0) {
if (layout != m_layout) {
SetImageLayout(cmdBuf, m_image, aspect, m_layout, layout, mipCount, layerCount, baseMipLevel);
m_layout = layout;
}
}
void commitLayout() { m_committedLayout = m_layout; }
void rollbackLayout() { m_layout = m_committedLayout; }
};
struct VulkanData : BaseGraphicsData {
VulkanContext* m_ctx;
/* Vertex, Index, Uniform */
AllocatedBuffer m_constantBuffers[3];
AllocatedBuffer m_texStagingBuffer;
explicit VulkanData(VulkanDataFactoryImpl& head __BooTraceArgs)
: BaseGraphicsData(head __BooTraceArgsUse), m_ctx(head.m_ctx) {}
~VulkanData() {
for (int i = 0; i < 3; ++i)
m_constantBuffers[i].destroy(m_ctx);
m_texStagingBuffer.destroy(m_ctx);
}
};
struct VulkanPool : BaseGraphicsPool {
VulkanContext* m_ctx;
AllocatedBuffer m_constantBuffer;
explicit VulkanPool(VulkanDataFactoryImpl& head __BooTraceArgs)
: BaseGraphicsPool(head __BooTraceArgsUse), m_ctx(head.m_ctx) {}
~VulkanPool() { m_constantBuffer.destroy(m_ctx); }
};
static const VkBufferUsageFlagBits USE_TABLE[] = {VkBufferUsageFlagBits(0), VK_BUFFER_USAGE_VERTEX_BUFFER_BIT,
VK_BUFFER_USAGE_INDEX_BUFFER_BIT, VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT};
class VulkanGraphicsBufferS : public GraphicsDataNode<IGraphicsBufferS> {
friend class VulkanDataFactory;
friend struct VulkanCommandQueue;
VulkanContext* m_ctx;
size_t m_sz;
std::unique_ptr<uint8_t[]> m_stagingBuf;
VulkanGraphicsBufferS(const boo::ObjToken<BaseGraphicsData>& parent, BufferUse use, VulkanContext* ctx,
const void* data, size_t stride, size_t count)
: GraphicsDataNode<IGraphicsBufferS>(parent)
, m_ctx(ctx)
, m_sz(stride * count)
, m_stagingBuf(new uint8_t[m_sz])
, m_use(use) {
memmove(m_stagingBuf.get(), data, m_sz);
m_bufferInfo.range = m_sz;
}
public:
size_t size() const { return m_sz; }
VkDescriptorBufferInfo m_bufferInfo;
BufferUse m_use;
VkDeviceSize sizeForGPU(VulkanContext* ctx, VkDeviceSize offset) {
m_bufferInfo.offset = offset;
offset += m_sz;
if (m_use == BufferUse::Uniform) {
size_t minOffset = std::max(VkDeviceSize(256), ctx->m_gpuProps.limits.minUniformBufferOffsetAlignment);
offset = (offset + minOffset - 1) & ~(minOffset - 1);
}
return offset;
}
void placeForGPU(VkBuffer bufObj, uint8_t* buf) {
m_bufferInfo.buffer = bufObj;
memmove(buf + m_bufferInfo.offset, m_stagingBuf.get(), m_sz);
m_stagingBuf.reset();
}
};
template <class DataCls>
class VulkanGraphicsBufferD : public GraphicsDataNode<IGraphicsBufferD, DataCls> {
friend class VulkanDataFactory;
friend class VulkanDataFactoryImpl;
friend struct VulkanCommandQueue;
VulkanContext* m_ctx;
size_t m_cpuSz;
std::unique_ptr<uint8_t[]> m_cpuBuf;
int m_validSlots = 0;
VulkanGraphicsBufferD(const boo::ObjToken<DataCls>& parent, BufferUse use, VulkanContext* ctx, size_t stride,
size_t count)
: GraphicsDataNode<IGraphicsBufferD, DataCls>(parent)
, m_ctx(ctx)
, m_cpuSz(stride * count)
, m_cpuBuf(new uint8_t[m_cpuSz])
, m_use(use) {
m_bufferInfo[0].range = m_cpuSz;
m_bufferInfo[1].range = m_cpuSz;
}
void update(int b);
public:
VkDescriptorBufferInfo m_bufferInfo[2];
uint8_t* m_bufferPtrs[2] = {};
BufferUse m_use;
void load(const void* data, size_t sz);
void* map(size_t sz);
void unmap();
VkDeviceSize sizeForGPU(VulkanContext* ctx, VkDeviceSize offset) {
for (int i = 0; i < 2; ++i) {
m_bufferInfo[i].offset = offset;
offset += m_cpuSz;
if (m_use == BufferUse::Uniform) {
size_t minOffset = std::max(VkDeviceSize(256), ctx->m_gpuProps.limits.minUniformBufferOffsetAlignment);
offset = (offset + minOffset - 1) & ~(minOffset - 1);
}
}
return offset;
}
void placeForGPU(VkBuffer bufObj, uint8_t* buf) {
m_bufferInfo[0].buffer = bufObj;
m_bufferInfo[1].buffer = bufObj;
m_bufferPtrs[0] = buf + m_bufferInfo[0].offset;
m_bufferPtrs[1] = buf + m_bufferInfo[1].offset;
}
};
static void MakeSampler(VulkanContext* ctx, VkSampler& sampOut, TextureClampMode mode, int mips) {
uint32_t key = (uint32_t(mode) << 16) | mips;
auto search = ctx->m_samplers.find(key);
if (search != ctx->m_samplers.end()) {
sampOut = search->second;
return;
}
/* Create linear sampler */
VkSamplerCreateInfo samplerInfo = {};
samplerInfo.sType = VK_STRUCTURE_TYPE_SAMPLER_CREATE_INFO;
samplerInfo.pNext = nullptr;
samplerInfo.magFilter = VK_FILTER_LINEAR;
samplerInfo.minFilter = VK_FILTER_LINEAR;
samplerInfo.mipmapMode = VK_SAMPLER_MIPMAP_MODE_LINEAR;
samplerInfo.anisotropyEnable = ctx->m_features.samplerAnisotropy;
samplerInfo.maxAnisotropy = ctx->m_anisotropy;
samplerInfo.maxLod = mips - 1;
switch (mode) {
case TextureClampMode::Repeat:
default:
samplerInfo.addressModeU = VK_SAMPLER_ADDRESS_MODE_REPEAT;
samplerInfo.addressModeV = VK_SAMPLER_ADDRESS_MODE_REPEAT;
samplerInfo.addressModeW = VK_SAMPLER_ADDRESS_MODE_REPEAT;
break;
case TextureClampMode::ClampToWhite:
samplerInfo.addressModeU = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_BORDER;
samplerInfo.addressModeV = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_BORDER;
samplerInfo.addressModeW = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_BORDER;
samplerInfo.borderColor = VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE;
break;
case TextureClampMode::ClampToBlack:
samplerInfo.addressModeU = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_BORDER;
samplerInfo.addressModeV = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_BORDER;
samplerInfo.addressModeW = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_BORDER;
samplerInfo.borderColor = VK_BORDER_COLOR_FLOAT_OPAQUE_BLACK;
break;
case TextureClampMode::ClampToEdge:
samplerInfo.addressModeU = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE;
samplerInfo.addressModeV = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE;
samplerInfo.addressModeW = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE;
break;
case TextureClampMode::ClampToEdgeNearest:
samplerInfo.magFilter = VK_FILTER_NEAREST;
samplerInfo.minFilter = VK_FILTER_NEAREST;
samplerInfo.mipmapMode = VK_SAMPLER_MIPMAP_MODE_NEAREST;
samplerInfo.anisotropyEnable = VK_FALSE;
samplerInfo.addressModeU = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE;
samplerInfo.addressModeV = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE;
samplerInfo.addressModeW = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE;
break;
}
ThrowIfFailed(vk::CreateSampler(ctx->m_dev, &samplerInfo, nullptr, &sampOut));
ctx->m_samplers[key] = sampOut;
}
class VulkanTextureS : public GraphicsDataNode<ITextureS> {
friend class VulkanDataFactory;
VulkanContext* m_ctx;
TextureFormat m_fmt;
size_t m_sz;
size_t m_width, m_height, m_mips;
TextureClampMode m_clampMode;
VkFormat m_vkFmt;
int m_pixelPitchNum = 1;
int m_pixelPitchDenom = 1;
VulkanTextureS(const boo::ObjToken<BaseGraphicsData>& parent, VulkanContext* ctx, size_t width, size_t height,
size_t mips, TextureFormat fmt, TextureClampMode clampMode, const void* data, size_t sz)
: GraphicsDataNode<ITextureS>(parent)
, m_ctx(ctx)
, m_fmt(fmt)
, m_sz(sz)
, m_width(width)
, m_height(height)
, m_mips(mips)
, m_clampMode(clampMode) {
VkFormat pfmt = VK_FORMAT_UNDEFINED;
switch (fmt) {
case TextureFormat::RGBA8:
pfmt = VK_FORMAT_R8G8B8A8_UNORM;
m_pixelPitchNum = 4;
break;
case TextureFormat::I8:
pfmt = VK_FORMAT_R8_UNORM;
break;
case TextureFormat::I16:
pfmt = VK_FORMAT_R16_UNORM;
m_pixelPitchNum = 2;
break;
case TextureFormat::DXT1:
pfmt = VK_FORMAT_BC1_RGBA_UNORM_BLOCK;
m_pixelPitchNum = 1;
m_pixelPitchDenom = 2;
break;
case TextureFormat::DXT3:
pfmt = VK_FORMAT_BC2_UNORM_BLOCK;
m_pixelPitchNum = 1;
m_pixelPitchDenom = 1;
break;
case TextureFormat::DXT5:
pfmt = VK_FORMAT_BC3_UNORM_BLOCK;
m_pixelPitchNum = 1;
m_pixelPitchDenom = 1;
break;
case TextureFormat::BPTC:
pfmt = VK_FORMAT_BC7_UNORM_BLOCK;
m_pixelPitchNum = 1;
m_pixelPitchDenom = 1;
break;
default:
Log.report(logvisor::Fatal, FMT_STRING("unsupported tex format"));
}
m_vkFmt = pfmt;
/* create cpu image buffer */
VkBufferCreateInfo bufCreateInfo = {};
bufCreateInfo.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
bufCreateInfo.size = sz;
bufCreateInfo.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT;
bufCreateInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
void* mappedData = m_cpuBuf.createCPU(ctx, &bufCreateInfo);
memmove(mappedData, data, sz);
}
public:
AllocatedBuffer m_cpuBuf;
AllocatedImage m_gpuTex;
VkImageView m_gpuView = VK_NULL_HANDLE;
VkSampler m_sampler = VK_NULL_HANDLE;
VkDescriptorImageInfo m_descInfo;
~VulkanTextureS() {
vk::DestroyImageView(m_ctx->m_dev, m_gpuView, nullptr);
m_gpuTex.destroy(m_ctx);
m_cpuBuf.destroy(m_ctx);
}
void _setClampMode(TextureClampMode mode) {
MakeSampler(m_ctx, m_sampler, mode, m_mips);
m_descInfo.sampler = m_sampler;
}
void setClampMode(TextureClampMode mode) {
if (m_clampMode == mode)
return;
m_clampMode = mode;
_setClampMode(mode);
}
void deleteUploadObjects() { m_cpuBuf.destroy(m_ctx); }
void placeForGPU(VulkanContext* ctx) {
/* create gpu image */
VkImageCreateInfo texCreateInfo = {};
texCreateInfo.sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO;
texCreateInfo.imageType = VK_IMAGE_TYPE_2D;
texCreateInfo.format = m_vkFmt;
texCreateInfo.mipLevels = m_mips;
texCreateInfo.arrayLayers = 1;
texCreateInfo.samples = VK_SAMPLE_COUNT_1_BIT;
texCreateInfo.tiling = VK_IMAGE_TILING_OPTIMAL;
texCreateInfo.usage = VK_IMAGE_USAGE_SAMPLED_BIT;
texCreateInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
texCreateInfo.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
texCreateInfo.extent = {uint32_t(m_width), uint32_t(m_height), 1};
texCreateInfo.usage = VK_IMAGE_USAGE_TRANSFER_DST_BIT | VK_IMAGE_USAGE_SAMPLED_BIT;
m_gpuTex.create(m_ctx, &texCreateInfo);
_setClampMode(m_clampMode);
m_descInfo.imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
/* create image view */
VkImageViewCreateInfo viewInfo = {};
viewInfo.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO;
viewInfo.pNext = nullptr;
viewInfo.image = m_gpuTex.m_image;
viewInfo.viewType = VK_IMAGE_VIEW_TYPE_2D;
viewInfo.format = m_vkFmt;
viewInfo.components.r = VK_COMPONENT_SWIZZLE_R;
viewInfo.components.g = VK_COMPONENT_SWIZZLE_G;
viewInfo.components.b = VK_COMPONENT_SWIZZLE_B;
viewInfo.components.a = VK_COMPONENT_SWIZZLE_A;
viewInfo.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
viewInfo.subresourceRange.baseMipLevel = 0;
viewInfo.subresourceRange.levelCount = m_mips;
viewInfo.subresourceRange.baseArrayLayer = 0;
viewInfo.subresourceRange.layerCount = 1;
ThrowIfFailed(vk::CreateImageView(ctx->m_dev, &viewInfo, nullptr, &m_gpuView));
m_descInfo.imageView = m_gpuView;
/* Since we're going to blit to the texture image, set its layout to
* DESTINATION_OPTIMAL */
m_gpuTex.toLayout(ctx->m_loadCmdBuf, VK_IMAGE_ASPECT_COLOR_BIT,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, m_mips);
VkBufferImageCopy copyRegions[16] = {};
size_t width = m_width;
size_t height = m_height;
size_t regionCount = std::min(size_t(16), m_mips);
size_t offset = 0;
for (size_t i = 0; i < regionCount; ++i) {
size_t regionPitch = width * height * m_pixelPitchNum / m_pixelPitchDenom;
copyRegions[i].imageSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
copyRegions[i].imageSubresource.mipLevel = i;
copyRegions[i].imageSubresource.baseArrayLayer = 0;
copyRegions[i].imageSubresource.layerCount = 1;
copyRegions[i].imageExtent.width = width;
copyRegions[i].imageExtent.height = height;
copyRegions[i].imageExtent.depth = 1;
copyRegions[i].bufferOffset = offset;
if (width > 1)
width /= 2;
if (height > 1)
height /= 2;
offset += regionPitch;
}
/* Put the copy command into the command buffer */
vk::CmdCopyBufferToImage(ctx->m_loadCmdBuf, m_cpuBuf.m_buffer, m_gpuTex.m_image,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, regionCount, copyRegions);
/* Set the layout for the texture image from DESTINATION_OPTIMAL to
* SHADER_READ_ONLY */
m_gpuTex.toLayout(ctx->m_loadCmdBuf, VK_IMAGE_ASPECT_COLOR_BIT,
VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL, m_mips);
}
TextureFormat format() const { return m_fmt; }
};
class VulkanTextureSA : public GraphicsDataNode<ITextureSA> {
friend class VulkanDataFactory;
VulkanContext* m_ctx;
TextureFormat m_fmt;
size_t m_sz;
size_t m_width, m_height, m_layers, m_mips;
TextureClampMode m_clampMode = TextureClampMode::Invalid;
VkFormat m_vkFmt;
int m_pixelPitchNum = 1;
int m_pixelPitchDenom = 1;
VulkanTextureSA(const boo::ObjToken<BaseGraphicsData>& parent, VulkanContext* ctx, size_t width, size_t height,
size_t layers, size_t mips, TextureFormat fmt, TextureClampMode clampMode, const void* data,
size_t sz)
: GraphicsDataNode<ITextureSA>(parent)
, m_ctx(ctx)
, m_fmt(fmt)
, m_sz(sz)
, m_width(width)
, m_height(height)
, m_layers(layers)
, m_mips(mips)
, m_clampMode(clampMode) {
VkFormat pfmt = VK_FORMAT_UNDEFINED;
switch (fmt) {
case TextureFormat::RGBA8:
pfmt = VK_FORMAT_R8G8B8A8_UNORM;
m_pixelPitchNum = 4;
break;
case TextureFormat::I8:
pfmt = VK_FORMAT_R8_UNORM;
break;
case TextureFormat::I16:
pfmt = VK_FORMAT_R16_UNORM;
m_pixelPitchNum = 2;
break;
default:
Log.report(logvisor::Fatal, FMT_STRING("unsupported tex format"));
}
m_vkFmt = pfmt;
/* create cpu image buffer */
VkBufferCreateInfo bufCreateInfo = {};
bufCreateInfo.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
bufCreateInfo.size = sz;
bufCreateInfo.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT;
bufCreateInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
void* mappedData = m_cpuBuf.createCPU(ctx, &bufCreateInfo);
memmove(mappedData, data, sz);
}
public:
AllocatedBuffer m_cpuBuf;
AllocatedImage m_gpuTex;
VkImageView m_gpuView = VK_NULL_HANDLE;
VkSampler m_sampler = VK_NULL_HANDLE;
VkDescriptorImageInfo m_descInfo;
~VulkanTextureSA() {
vk::DestroyImageView(m_ctx->m_dev, m_gpuView, nullptr);
m_gpuTex.destroy(m_ctx);
m_cpuBuf.destroy(m_ctx);
}
void _setClampMode(TextureClampMode mode) {
MakeSampler(m_ctx, m_sampler, mode, m_mips);
m_descInfo.sampler = m_sampler;
}
void setClampMode(TextureClampMode mode) {
if (m_clampMode == mode)
return;
m_clampMode = mode;
_setClampMode(mode);
}
void deleteUploadObjects() { m_cpuBuf.destroy(m_ctx); }
void placeForGPU(VulkanContext* ctx) {
/* create gpu image */
VkImageCreateInfo texCreateInfo = {};
texCreateInfo.sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO;
texCreateInfo.imageType = VK_IMAGE_TYPE_2D;
texCreateInfo.format = m_vkFmt;
texCreateInfo.mipLevels = m_mips;
texCreateInfo.arrayLayers = m_layers;
texCreateInfo.samples = VK_SAMPLE_COUNT_1_BIT;
texCreateInfo.tiling = VK_IMAGE_TILING_OPTIMAL;
texCreateInfo.usage = VK_IMAGE_USAGE_SAMPLED_BIT;
texCreateInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
texCreateInfo.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
texCreateInfo.extent = {uint32_t(m_width), uint32_t(m_height), 1};
texCreateInfo.usage = VK_IMAGE_USAGE_TRANSFER_DST_BIT | VK_IMAGE_USAGE_SAMPLED_BIT;
m_gpuTex.create(m_ctx, &texCreateInfo);
_setClampMode(m_clampMode);
m_descInfo.imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
/* create image view */
VkImageViewCreateInfo viewInfo = {};
viewInfo.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO;
viewInfo.pNext = nullptr;
viewInfo.image = m_gpuTex.m_image;
viewInfo.viewType = VK_IMAGE_VIEW_TYPE_2D_ARRAY;
viewInfo.format = m_vkFmt;
viewInfo.components.r = VK_COMPONENT_SWIZZLE_R;
viewInfo.components.g = VK_COMPONENT_SWIZZLE_G;
viewInfo.components.b = VK_COMPONENT_SWIZZLE_B;
viewInfo.components.a = VK_COMPONENT_SWIZZLE_A;
viewInfo.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
viewInfo.subresourceRange.baseMipLevel = 0;
viewInfo.subresourceRange.levelCount = m_mips;
viewInfo.subresourceRange.baseArrayLayer = 0;
viewInfo.subresourceRange.layerCount = m_layers;
ThrowIfFailed(vk::CreateImageView(ctx->m_dev, &viewInfo, nullptr, &m_gpuView));
m_descInfo.imageView = m_gpuView;
/* Since we're going to blit to the texture image, set its layout to
* DESTINATION_OPTIMAL */
m_gpuTex.toLayout(ctx->m_loadCmdBuf, VK_IMAGE_ASPECT_COLOR_BIT,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, m_mips, m_layers);
VkBufferImageCopy copyRegions[16] = {};
size_t width = m_width;
size_t height = m_height;
size_t regionCount = std::min(size_t(16), m_mips);
size_t offset = 0;
for (size_t i = 0; i < regionCount; ++i) {
size_t regionPitch = width * height * m_layers * m_pixelPitchNum / m_pixelPitchDenom;
copyRegions[i].imageSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
copyRegions[i].imageSubresource.mipLevel = i;
copyRegions[i].imageSubresource.baseArrayLayer = 0;
copyRegions[i].imageSubresource.layerCount = m_layers;
copyRegions[i].imageExtent.width = width;
copyRegions[i].imageExtent.height = height;
copyRegions[i].imageExtent.depth = 1;
copyRegions[i].bufferOffset = offset;
if (width > 1)
width /= 2;
if (height > 1)
height /= 2;
offset += regionPitch;
}
/* Put the copy command into the command buffer */
vk::CmdCopyBufferToImage(ctx->m_loadCmdBuf, m_cpuBuf.m_buffer, m_gpuTex.m_image,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, regionCount, copyRegions);
/* Set the layout for the texture image from DESTINATION_OPTIMAL to
* SHADER_READ_ONLY */
m_gpuTex.toLayout(ctx->m_loadCmdBuf, VK_IMAGE_ASPECT_COLOR_BIT,
VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL, m_mips, m_layers);
}
TextureFormat format() const { return m_fmt; }
size_t layers() const { return m_layers; }
};
class VulkanTextureD : public GraphicsDataNode<ITextureD> {
friend class VulkanDataFactory;
friend struct VulkanCommandQueue;
size_t m_width;
size_t m_height;
TextureFormat m_fmt;
TextureClampMode m_clampMode;
VulkanCommandQueue* m_q;
std::unique_ptr<uint8_t[]> m_stagingBuf;
size_t m_cpuSz;
VkDeviceSize m_cpuOffsets[2];
VkFormat m_vkFmt;
int m_validSlots = 0;
VulkanTextureD(const boo::ObjToken<BaseGraphicsData>& parent, VulkanCommandQueue* q, size_t width, size_t height,
TextureFormat fmt, TextureClampMode clampMode)
: GraphicsDataNode<ITextureD>(parent), m_width(width), m_height(height), m_fmt(fmt), m_clampMode(clampMode), m_q(q) {
VkFormat pfmt = VK_FORMAT_UNDEFINED;
switch (fmt) {
case TextureFormat::RGBA8:
pfmt = VK_FORMAT_R8G8B8A8_UNORM;
m_cpuSz = width * height * 4;
break;
case TextureFormat::I8:
pfmt = VK_FORMAT_R8_UNORM;
m_cpuSz = width * height;
break;
case TextureFormat::I16:
pfmt = VK_FORMAT_R16_UNORM;
m_cpuSz = width * height * 2;
break;
default:
Log.report(logvisor::Fatal, FMT_STRING("unsupported tex format"));
}
m_vkFmt = pfmt;
m_stagingBuf.reset(new uint8_t[m_cpuSz]);
}
void update(int b);
public:
VkBuffer m_cpuBuf = VK_NULL_HANDLE; /* Owned externally */
uint8_t* m_cpuBufPtrs[2] = {};
AllocatedImage m_gpuTex[2];
VkImageView m_gpuView[2];
VkSampler m_sampler = VK_NULL_HANDLE;
VkDescriptorImageInfo m_descInfo[2];
~VulkanTextureD();
void _setClampMode(TextureClampMode mode);
void setClampMode(TextureClampMode mode);
void load(const void* data, size_t sz);
void* map(size_t sz);
void unmap();
VkDeviceSize sizeForGPU(VulkanContext* ctx, VkDeviceSize offset) {
for (int i = 0; i < 2; ++i) {
m_cpuOffsets[i] = offset;
offset += m_cpuSz;
}
return offset;
}
void placeForGPU(VulkanContext* ctx, VkBuffer bufObj, uint8_t* buf) {
m_cpuBuf = bufObj;
m_cpuBufPtrs[0] = buf + m_cpuOffsets[0];
m_cpuBufPtrs[1] = buf + m_cpuOffsets[1];
/* Create images */
VkImageCreateInfo texCreateInfo = {};
texCreateInfo.sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO;
texCreateInfo.pNext = nullptr;
texCreateInfo.imageType = VK_IMAGE_TYPE_2D;
texCreateInfo.format = m_vkFmt;
texCreateInfo.extent.width = m_width;
texCreateInfo.extent.height = m_height;
texCreateInfo.extent.depth = 1;
texCreateInfo.mipLevels = 1;
texCreateInfo.arrayLayers = 1;
texCreateInfo.samples = VK_SAMPLE_COUNT_1_BIT;
texCreateInfo.tiling = VK_IMAGE_TILING_OPTIMAL;
texCreateInfo.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
texCreateInfo.usage = VK_IMAGE_USAGE_TRANSFER_DST_BIT | VK_IMAGE_USAGE_SAMPLED_BIT;
texCreateInfo.queueFamilyIndexCount = 0;
texCreateInfo.pQueueFamilyIndices = nullptr;
texCreateInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
texCreateInfo.flags = 0;
_setClampMode(m_clampMode);
for (int i = 0; i < 2; ++i) {
/* create gpu image */
m_gpuTex[i].create(ctx, &texCreateInfo);
m_descInfo[i].sampler = m_sampler;
m_descInfo[i].imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
}
VkImageViewCreateInfo viewInfo = {};
viewInfo.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO;
viewInfo.pNext = nullptr;
viewInfo.image = nullptr;
viewInfo.viewType = VK_IMAGE_VIEW_TYPE_2D;
viewInfo.format = m_vkFmt;
viewInfo.components.r = VK_COMPONENT_SWIZZLE_R;
viewInfo.components.g = VK_COMPONENT_SWIZZLE_G;
viewInfo.components.b = VK_COMPONENT_SWIZZLE_B;
viewInfo.components.a = VK_COMPONENT_SWIZZLE_A;
viewInfo.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
viewInfo.subresourceRange.baseMipLevel = 0;
viewInfo.subresourceRange.levelCount = 1;
viewInfo.subresourceRange.baseArrayLayer = 0;
viewInfo.subresourceRange.layerCount = 1;
for (int i = 0; i < 2; ++i) {
/* create image view */
viewInfo.image = m_gpuTex[i].m_image;
ThrowIfFailed(vk::CreateImageView(ctx->m_dev, &viewInfo, nullptr, &m_gpuView[i]));
m_descInfo[i].imageView = m_gpuView[i];
}
}
TextureFormat format() const { return m_fmt; }
};
#define MAX_BIND_TEXS 4
class VulkanTextureR : public GraphicsDataNode<ITextureR> {
friend class VulkanDataFactory;
friend struct VulkanCommandQueue;
VulkanCommandQueue* m_q;
size_t m_width = 0;
size_t m_height = 0;
VkSampleCountFlags m_samplesColor, m_samplesDepth;
size_t m_colorBindCount;
size_t m_depthBindCount;
void Setup(VulkanContext* ctx) {
/* no-ops on first call */
doDestroy();
/* color target */
VkImageCreateInfo texCreateInfo = {};
texCreateInfo.sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO;
texCreateInfo.pNext = nullptr;
texCreateInfo.imageType = VK_IMAGE_TYPE_2D;
texCreateInfo.format = ctx->m_internalFormat;
texCreateInfo.extent.width = m_width;
texCreateInfo.extent.height = m_height;
texCreateInfo.extent.depth = 1;
texCreateInfo.mipLevels = 1;
texCreateInfo.arrayLayers = 1;
texCreateInfo.samples = VkSampleCountFlagBits(m_samplesColor);
texCreateInfo.tiling = VK_IMAGE_TILING_OPTIMAL;
texCreateInfo.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
texCreateInfo.usage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT | VK_IMAGE_USAGE_TRANSFER_SRC_BIT;
texCreateInfo.queueFamilyIndexCount = 0;
texCreateInfo.pQueueFamilyIndices = nullptr;
texCreateInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
texCreateInfo.flags = 0;
m_colorTex.createFB(ctx, &texCreateInfo);
/* depth target */
texCreateInfo.samples = VkSampleCountFlagBits(m_samplesDepth);
texCreateInfo.format = VK_FORMAT_D32_SFLOAT;
texCreateInfo.usage = VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT | VK_IMAGE_USAGE_TRANSFER_SRC_BIT;
m_depthTex.createFB(ctx, &texCreateInfo);
texCreateInfo.samples = VkSampleCountFlagBits(1);
for (size_t i = 0; i < m_colorBindCount; ++i) {
texCreateInfo.format = ctx->m_internalFormat;
texCreateInfo.usage = VK_IMAGE_USAGE_SAMPLED_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT;
m_colorBindTex[i].createFB(ctx, &texCreateInfo);
m_colorBindDescInfo[i].sampler = m_sampler;
m_colorBindDescInfo[i].imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
}
for (size_t i = 0; i < m_depthBindCount; ++i) {
texCreateInfo.format = VK_FORMAT_D32_SFLOAT;
texCreateInfo.usage = VK_IMAGE_USAGE_SAMPLED_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT;
m_depthBindTex[i].createFB(ctx, &texCreateInfo);
m_depthBindDescInfo[i].sampler = m_sampler;
m_depthBindDescInfo[i].imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
}
/* Create resource views */
VkImageViewCreateInfo viewCreateInfo = {};
viewCreateInfo.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO;
viewCreateInfo.pNext = nullptr;
viewCreateInfo.image = m_colorTex.m_image;
viewCreateInfo.viewType = VK_IMAGE_VIEW_TYPE_2D;
viewCreateInfo.format = ctx->m_internalFormat;
viewCreateInfo.components.r = VK_COMPONENT_SWIZZLE_R;
viewCreateInfo.components.g = VK_COMPONENT_SWIZZLE_G;
viewCreateInfo.components.b = VK_COMPONENT_SWIZZLE_B;
viewCreateInfo.components.a = VK_COMPONENT_SWIZZLE_A;
viewCreateInfo.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
viewCreateInfo.subresourceRange.baseMipLevel = 0;
viewCreateInfo.subresourceRange.levelCount = 1;
viewCreateInfo.subresourceRange.baseArrayLayer = 0;
viewCreateInfo.subresourceRange.layerCount = 1;
ThrowIfFailed(vk::CreateImageView(ctx->m_dev, &viewCreateInfo, nullptr, &m_colorView));
viewCreateInfo.image = m_depthTex.m_image;
viewCreateInfo.format = VK_FORMAT_D32_SFLOAT;
viewCreateInfo.subresourceRange.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT;
ThrowIfFailed(vk::CreateImageView(ctx->m_dev, &viewCreateInfo, nullptr, &m_depthView));
for (size_t i = 0; i < m_colorBindCount; ++i) {
viewCreateInfo.image = m_colorBindTex[i].m_image;
viewCreateInfo.format = ctx->m_internalFormat;
viewCreateInfo.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
ThrowIfFailed(vk::CreateImageView(ctx->m_dev, &viewCreateInfo, nullptr, &m_colorBindView[i]));
m_colorBindDescInfo[i].imageView = m_colorBindView[i];
}
for (size_t i = 0; i < m_depthBindCount; ++i) {
viewCreateInfo.image = m_depthBindTex[i].m_image;
viewCreateInfo.format = VK_FORMAT_D32_SFLOAT;
viewCreateInfo.subresourceRange.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT;
ThrowIfFailed(vk::CreateImageView(ctx->m_dev, &viewCreateInfo, nullptr, &m_depthBindView[i]));
m_depthBindDescInfo[i].imageView = m_depthBindView[i];
}
/* framebuffer */
VkFramebufferCreateInfo fbCreateInfo = {};
fbCreateInfo.sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO;
fbCreateInfo.pNext = nullptr;
fbCreateInfo.renderPass = ctx->m_pass;
fbCreateInfo.attachmentCount = 2;
fbCreateInfo.width = m_width;
fbCreateInfo.height = m_height;
fbCreateInfo.layers = 1;
VkImageView attachments[2] = {m_colorView, m_depthView};
fbCreateInfo.pAttachments = attachments;
ThrowIfFailed(vk::CreateFramebuffer(ctx->m_dev, &fbCreateInfo, nullptr, &m_framebuffer));
m_passBeginInfo.sType = VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO;
m_passBeginInfo.pNext = nullptr;
m_passBeginInfo.renderPass = ctx->m_pass;
m_passBeginInfo.framebuffer = m_framebuffer;
m_passBeginInfo.renderArea.offset.x = 0;
m_passBeginInfo.renderArea.offset.y = 0;
m_passBeginInfo.renderArea.extent.width = m_width;
m_passBeginInfo.renderArea.extent.height = m_height;
m_passBeginInfo.clearValueCount = 0;
m_passBeginInfo.pClearValues = nullptr;
}
VulkanTextureR(const boo::ObjToken<BaseGraphicsData>& parent, VulkanCommandQueue* q, size_t width, size_t height,
TextureClampMode clampMode, size_t colorBindCount, size_t depthBindCount);
public:
AllocatedImage m_colorTex;
VkImageView m_colorView = VK_NULL_HANDLE;
AllocatedImage m_depthTex;
VkImageView m_depthView = VK_NULL_HANDLE;
AllocatedImage m_colorBindTex[MAX_BIND_TEXS] = {};
VkImageView m_colorBindView[MAX_BIND_TEXS] = {};
VkDescriptorImageInfo m_colorBindDescInfo[MAX_BIND_TEXS] = {};
AllocatedImage m_depthBindTex[MAX_BIND_TEXS] = {};
VkImageView m_depthBindView[MAX_BIND_TEXS] = {};
VkDescriptorImageInfo m_depthBindDescInfo[MAX_BIND_TEXS] = {};
VkFramebuffer m_framebuffer = VK_NULL_HANDLE;
VkRenderPassBeginInfo m_passBeginInfo = {};
VkSampler m_sampler = VK_NULL_HANDLE;
void setClampMode(TextureClampMode mode);
void doDestroy();
~VulkanTextureR();
void resize(VulkanContext* ctx, size_t width, size_t height) {
if (width < 1)
width = 1;
if (height < 1)
height = 1;
m_width = width;
m_height = height;
Setup(ctx);
}
void initializeBindLayouts(VulkanContext* ctx) {
for (size_t i = 0; i < m_colorBindCount; ++i)
m_colorBindTex[i].toLayout(ctx->m_loadCmdBuf, VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL);
for (size_t i = 0; i < m_depthBindCount; ++i)
m_depthBindTex[i].toLayout(ctx->m_loadCmdBuf, VK_IMAGE_ASPECT_DEPTH_BIT, VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL);
}
void toColorTransferSrcLayout(VkCommandBuffer cmdBuf) {
m_colorTex.toLayout(cmdBuf, VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL);
}
void toDepthTransferSrcLayout(VkCommandBuffer cmdBuf) {
m_depthTex.toLayout(cmdBuf, VK_IMAGE_ASPECT_DEPTH_BIT, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL);
}
void toColorAttachmentLayout(VkCommandBuffer cmdBuf) {
m_colorTex.toLayout(cmdBuf, VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL);
}
void toDepthAttachmentLayout(VkCommandBuffer cmdBuf) {
m_depthTex.toLayout(cmdBuf, VK_IMAGE_ASPECT_DEPTH_BIT, VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL);
}
void toAttachmentLayout(VkCommandBuffer cmdBuf) {
toColorAttachmentLayout(cmdBuf);
toDepthAttachmentLayout(cmdBuf);
}
void toColorBindTransferDstLayout(VkCommandBuffer cmdBuf, int bindIdx) {
m_colorBindTex[bindIdx].toLayout(cmdBuf, VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL);
}
void toDepthBindTransferDstLayout(VkCommandBuffer cmdBuf, int bindIdx) {
m_depthBindTex[bindIdx].toLayout(cmdBuf, VK_IMAGE_ASPECT_DEPTH_BIT, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL);
}
void toColorBindShaderReadLayout(VkCommandBuffer cmdBuf, int bindIdx) {
m_colorBindTex[bindIdx].toLayout(cmdBuf, VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL);
}
void toDepthBindShaderReadLayout(VkCommandBuffer cmdBuf, int bindIdx) {
m_depthBindTex[bindIdx].toLayout(cmdBuf, VK_IMAGE_ASPECT_DEPTH_BIT, VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL);
}
void commitLayouts() {
m_colorTex.commitLayout();
m_depthTex.commitLayout();
for (size_t i = 0; i < m_colorBindCount; ++i)
m_colorBindTex[i].commitLayout();
for (size_t i = 0; i < m_depthBindCount; ++i)
m_depthBindTex[i].commitLayout();
}
void rollbackLayouts() {
m_colorTex.rollbackLayout();
m_depthTex.rollbackLayout();
for (size_t i = 0; i < m_colorBindCount; ++i)
m_colorBindTex[i].rollbackLayout();
for (size_t i = 0; i < m_depthBindCount; ++i)
m_depthBindTex[i].rollbackLayout();
}
};
class VulkanTextureCubeR : public GraphicsDataNode<ITextureCubeR> {
friend class VulkanDataFactory;
friend struct VulkanCommandQueue;
VulkanCommandQueue* m_q;
size_t m_width;
size_t m_mipCount = 0;
void Setup(VulkanContext* ctx) {
/* no-ops on first call */
doDestroy();
setClampMode(TextureClampMode::Repeat);
/* color target */
VkImageCreateInfo texCreateInfo = {};
texCreateInfo.sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO;
texCreateInfo.pNext = nullptr;
texCreateInfo.imageType = VK_IMAGE_TYPE_2D;
texCreateInfo.format = ctx->m_internalFormat;
texCreateInfo.extent.width = m_width;
texCreateInfo.extent.height = m_width;
texCreateInfo.extent.depth = 1;
texCreateInfo.mipLevels = m_mipCount;
texCreateInfo.arrayLayers = 6;
texCreateInfo.samples = VkSampleCountFlagBits(1);
texCreateInfo.tiling = VK_IMAGE_TILING_OPTIMAL;
texCreateInfo.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
texCreateInfo.usage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT | VK_IMAGE_USAGE_TRANSFER_SRC_BIT |
VK_IMAGE_USAGE_TRANSFER_DST_BIT | VK_IMAGE_USAGE_SAMPLED_BIT;
texCreateInfo.queueFamilyIndexCount = 0;
texCreateInfo.pQueueFamilyIndices = nullptr;
texCreateInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
texCreateInfo.flags = VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT;
m_colorTex.createFB(ctx, &texCreateInfo);
/* depth target */
texCreateInfo.mipLevels = 1;
texCreateInfo.samples = VkSampleCountFlagBits(1);
texCreateInfo.format = VK_FORMAT_D32_SFLOAT;
texCreateInfo.usage = VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT | VK_IMAGE_USAGE_TRANSFER_SRC_BIT;
m_depthTex.createFB(ctx, &texCreateInfo);
m_colorBindDescInfo.sampler = m_sampler;
m_colorBindDescInfo.imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
/* Create resource views */
VkImageViewCreateInfo viewCreateInfo = {};
viewCreateInfo.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO;
viewCreateInfo.pNext = nullptr;
viewCreateInfo.image = m_colorTex.m_image;
viewCreateInfo.viewType = VK_IMAGE_VIEW_TYPE_CUBE;
viewCreateInfo.format = ctx->m_internalFormat;
viewCreateInfo.components.r = VK_COMPONENT_SWIZZLE_R;
viewCreateInfo.components.g = VK_COMPONENT_SWIZZLE_G;
viewCreateInfo.components.b = VK_COMPONENT_SWIZZLE_B;
viewCreateInfo.components.a = VK_COMPONENT_SWIZZLE_A;
viewCreateInfo.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
viewCreateInfo.subresourceRange.baseMipLevel = 0;
viewCreateInfo.subresourceRange.levelCount = m_mipCount;
viewCreateInfo.subresourceRange.baseArrayLayer = 0;
viewCreateInfo.subresourceRange.layerCount = 6;
ThrowIfFailed(vk::CreateImageView(ctx->m_dev, &viewCreateInfo, nullptr, &m_colorBindView));
m_colorBindDescInfo.imageView = m_colorBindView;
viewCreateInfo.image = m_colorTex.m_image;
viewCreateInfo.subresourceRange.levelCount = 1;
viewCreateInfo.subresourceRange.layerCount = 1;
for (int i = 0; i < 6; ++i) {
viewCreateInfo.subresourceRange.baseArrayLayer = i;
ThrowIfFailed(vk::CreateImageView(ctx->m_dev, &viewCreateInfo, nullptr, &m_colorView[i]));
}
viewCreateInfo.image = m_depthTex.m_image;
viewCreateInfo.format = VK_FORMAT_D32_SFLOAT;
viewCreateInfo.subresourceRange.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT;
for (int i = 0; i < 6; ++i) {
viewCreateInfo.subresourceRange.baseArrayLayer = i;
ThrowIfFailed(vk::CreateImageView(ctx->m_dev, &viewCreateInfo, nullptr, &m_depthView[i]));
}
/* framebuffer */
VkFramebufferCreateInfo fbCreateInfo = {};
fbCreateInfo.sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO;
fbCreateInfo.pNext = nullptr;
fbCreateInfo.renderPass = ctx->m_passOneSample;
fbCreateInfo.attachmentCount = 2;
fbCreateInfo.width = m_width;
fbCreateInfo.height = m_width;
fbCreateInfo.layers = 1;
VkImageView attachments[2] = {};
fbCreateInfo.pAttachments = attachments;
for (int i = 0; i < 6; ++i) {
attachments[0] = m_colorView[i];
attachments[1] = m_depthView[i];
ThrowIfFailed(vk::CreateFramebuffer(ctx->m_dev, &fbCreateInfo, nullptr, &m_framebuffer[i]));
auto& pbInfo = m_passBeginInfo[i];
pbInfo.sType = VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO;
pbInfo.pNext = nullptr;
pbInfo.renderPass = ctx->m_passOneSample;
pbInfo.framebuffer = m_framebuffer[i];
pbInfo.renderArea.offset.x = 0;
pbInfo.renderArea.offset.y = 0;
pbInfo.renderArea.extent.width = m_width;
pbInfo.renderArea.extent.height = m_width;
pbInfo.clearValueCount = 0;
pbInfo.pClearValues = nullptr;
}
}
VulkanTextureCubeR(const boo::ObjToken<BaseGraphicsData>& parent, VulkanCommandQueue* q, size_t width, size_t mips);
public:
AllocatedImage m_colorTex;
VkImageView m_colorView[6] = {};
VkImageLayout m_mipsLayout = VK_IMAGE_LAYOUT_UNDEFINED;
AllocatedImage m_depthTex;
VkImageView m_depthView[6] = {};
VkImageView m_colorBindView = VK_NULL_HANDLE;
VkDescriptorImageInfo m_colorBindDescInfo = {};
VkFramebuffer m_framebuffer[6] = {};
VkRenderPassBeginInfo m_passBeginInfo[6] = {};
VkSampler m_sampler = VK_NULL_HANDLE;
void setClampMode(TextureClampMode mode);
void doDestroy();
~VulkanTextureCubeR();
void resize(VulkanContext* ctx, size_t width, size_t mips) {
if (width < 1)
width = 1;
m_width = width;
m_mipCount = mips;
Setup(ctx);
}
void toColorTransferSrcLayout(VkCommandBuffer cmdBuf) {
m_colorTex.toLayout(cmdBuf, VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, 1, 6);
}
void toColorAttachmentLayout(VkCommandBuffer cmdBuf) {
m_colorTex.toLayout(cmdBuf, VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL, 1, 6);
}
void toDepthAttachmentLayout(VkCommandBuffer cmdBuf) {
m_depthTex.toLayout(cmdBuf, VK_IMAGE_ASPECT_DEPTH_BIT, VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL, 1, 6);
}
void toAttachmentLayout(VkCommandBuffer cmdBuf) {
toColorAttachmentLayout(cmdBuf);
toDepthAttachmentLayout(cmdBuf);
}
void toColorShaderReadLayout(VkCommandBuffer cmdBuf) {
m_colorTex.toLayout(cmdBuf, VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL, m_mipCount, 6);
}
void commitLayouts() {
m_colorTex.commitLayout();
m_depthTex.commitLayout();
}
void rollbackLayouts() {
m_colorTex.rollbackLayout();
m_depthTex.rollbackLayout();
}
};
static const size_t SEMANTIC_SIZE_TABLE[] = {0, 12, 16, 12, 16, 16, 4, 8, 16, 16, 16, 8};
static const VkFormat SEMANTIC_TYPE_TABLE[] = {
VK_FORMAT_UNDEFINED, VK_FORMAT_R32G32B32_SFLOAT, VK_FORMAT_R32G32B32A32_SFLOAT,
VK_FORMAT_R32G32B32_SFLOAT, VK_FORMAT_R32G32B32A32_SFLOAT, VK_FORMAT_R32G32B32A32_SFLOAT,
VK_FORMAT_R8G8B8A8_UNORM, VK_FORMAT_R32G32_SFLOAT, VK_FORMAT_R32G32B32A32_SFLOAT,
VK_FORMAT_R32G32B32A32_SFLOAT, VK_FORMAT_R32G32B32A32_SFLOAT, VK_FORMAT_R32G32_SFLOAT,
};
struct VulkanVertexFormat {
VkVertexInputBindingDescription m_bindings[2];
std::unique_ptr<VkVertexInputAttributeDescription[]> m_attributes;
VkPipelineVertexInputStateCreateInfo m_info;
size_t m_stride = 0;
size_t m_instStride = 0;
VulkanVertexFormat(const VertexFormatInfo& info)
: m_attributes(new VkVertexInputAttributeDescription[info.elementCount]) {
m_info.sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO;
m_info.pNext = nullptr;
m_info.flags = 0;
m_info.vertexBindingDescriptionCount = 0;
m_info.pVertexBindingDescriptions = m_bindings;
m_info.vertexAttributeDescriptionCount = info.elementCount;
m_info.pVertexAttributeDescriptions = m_attributes.get();
for (size_t i = 0; i < info.elementCount; ++i) {
const VertexElementDescriptor* elemin = &info.elements[i];
VkVertexInputAttributeDescription& attribute = m_attributes[i];
int semantic = int(elemin->semantic & boo::VertexSemantic::SemanticMask);
attribute.location = i;
attribute.format = SEMANTIC_TYPE_TABLE[semantic];
if (True(elemin->semantic & boo::VertexSemantic::Instanced)) {
attribute.binding = 1;
attribute.offset = m_instStride;
m_instStride += SEMANTIC_SIZE_TABLE[semantic];
} else {
attribute.binding = 0;
attribute.offset = m_stride;
m_stride += SEMANTIC_SIZE_TABLE[semantic];
}
}
if (m_stride) {
m_bindings[0].binding = 0;
m_bindings[0].stride = m_stride;
m_bindings[0].inputRate = VK_VERTEX_INPUT_RATE_VERTEX;
++m_info.vertexBindingDescriptionCount;
}
if (m_instStride) {
m_bindings[m_info.vertexBindingDescriptionCount].binding = 1;
m_bindings[m_info.vertexBindingDescriptionCount].stride = m_instStride;
m_bindings[m_info.vertexBindingDescriptionCount].inputRate = VK_VERTEX_INPUT_RATE_INSTANCE;
++m_info.vertexBindingDescriptionCount;
}
}
};
static const VkPrimitiveTopology PRIMITIVE_TABLE[] = {
VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP, VK_PRIMITIVE_TOPOLOGY_PATCH_LIST};
static const VkBlendFactor BLEND_FACTOR_TABLE[] = {VK_BLEND_FACTOR_ZERO, VK_BLEND_FACTOR_ONE,
VK_BLEND_FACTOR_SRC_COLOR, VK_BLEND_FACTOR_ONE_MINUS_SRC_COLOR,
VK_BLEND_FACTOR_DST_COLOR, VK_BLEND_FACTOR_ONE_MINUS_DST_COLOR,
VK_BLEND_FACTOR_SRC_ALPHA, VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA,
VK_BLEND_FACTOR_DST_ALPHA, VK_BLEND_FACTOR_ONE_MINUS_DST_ALPHA,
VK_BLEND_FACTOR_SRC1_COLOR, VK_BLEND_FACTOR_ONE_MINUS_SRC1_COLOR};
class VulkanShaderStage : public GraphicsDataNode<IShaderStage> {
friend class VulkanDataFactory;
VulkanContext* m_ctx;
VkShaderModule m_module;
VulkanShaderStage(const boo::ObjToken<BaseGraphicsData>& parent, VulkanContext* ctx, const uint8_t* data, size_t size,
PipelineStage stage)
: GraphicsDataNode<IShaderStage>(parent), m_ctx(ctx) {
VkShaderModuleCreateInfo smCreateInfo = {};
smCreateInfo.sType = VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO;
smCreateInfo.pNext = nullptr;
smCreateInfo.flags = 0;
smCreateInfo.codeSize = size;
smCreateInfo.pCode = (uint32_t*)data;
ThrowIfFailed(vk::CreateShaderModule(m_ctx->m_dev, &smCreateInfo, nullptr, &m_module));
}
public:
~VulkanShaderStage() { vk::DestroyShaderModule(m_ctx->m_dev, m_module, nullptr); }
VkShaderModule shader() const { return m_module; }
};
class VulkanShaderPipeline : public GraphicsDataNode<IShaderPipeline> {
protected:
friend class VulkanDataFactory;
friend class VulkanDataFactoryImpl;
friend struct VulkanShaderDataBinding;
VulkanContext* m_ctx;
VkPipelineCache m_pipelineCache;
mutable VulkanVertexFormat m_vtxFmt;
mutable ObjToken<IShaderStage> m_vertex;
mutable ObjToken<IShaderStage> m_fragment;
mutable ObjToken<IShaderStage> m_geometry;
mutable ObjToken<IShaderStage> m_control;
mutable ObjToken<IShaderStage> m_evaluation;
BlendFactor m_srcFac;
BlendFactor m_dstFac;
Primitive m_prim;
ZTest m_depthTest;
bool m_depthWrite;
bool m_colorWrite;
bool m_alphaWrite;
bool m_overwriteAlpha;
CullMode m_culling;
uint32_t m_patchSize;
bool m_asynchronous;
mutable std::atomic<VkPipeline> m_pipeline = VK_NULL_HANDLE;
VulkanShaderPipeline(const boo::ObjToken<BaseGraphicsData>& parent, VulkanContext* ctx, ObjToken<IShaderStage> vertex,
ObjToken<IShaderStage> fragment, ObjToken<IShaderStage> geometry, ObjToken<IShaderStage> control,
ObjToken<IShaderStage> evaluation, VkPipelineCache pipelineCache, const VertexFormatInfo& vtxFmt,
const AdditionalPipelineInfo& info, bool asynchronous)
: GraphicsDataNode<IShaderPipeline>(parent)
, m_ctx(ctx)
, m_pipelineCache(pipelineCache)
, m_vtxFmt(vtxFmt)
, m_vertex(vertex)
, m_fragment(fragment)
, m_geometry(geometry)
, m_control(control)
, m_evaluation(evaluation)
, m_srcFac(info.srcFac)
, m_dstFac(info.dstFac)
, m_prim(info.prim)
, m_depthTest(info.depthTest)
, m_depthWrite(info.depthWrite)
, m_colorWrite(info.colorWrite)
, m_alphaWrite(info.alphaWrite)
, m_overwriteAlpha(info.overwriteAlpha)
, m_culling(info.culling)
, m_patchSize(info.patchSize)
, m_asynchronous(asynchronous) {
if (control && evaluation)
m_prim = Primitive::Patches;
}
public:
~VulkanShaderPipeline() {
if (m_pipeline)
vk::DestroyPipeline(m_ctx->m_dev, m_pipeline, nullptr);
if (m_pipelineCache)
vk::DestroyPipelineCache(m_ctx->m_dev, m_pipelineCache, nullptr);
}
VulkanShaderPipeline& operator=(const VulkanShaderPipeline&) = delete;
VulkanShaderPipeline(const VulkanShaderPipeline&) = delete;
VkPipeline bind(VkRenderPass rPass = 0) const {
compile(rPass);
while (m_pipeline == VK_NULL_HANDLE) {}
return m_pipeline;
}
mutable std::atomic_bool m_startCompile = {};
void compile(VkRenderPass rPass = 0) const {
bool falseCmp = false;
if (m_startCompile.compare_exchange_strong(falseCmp, true)) {
if (!m_pipeline) {
if (!rPass)
rPass = m_ctx->m_pass;
VkCullModeFlagBits cullMode;
switch (m_culling) {
case CullMode::None:
default:
cullMode = VK_CULL_MODE_NONE;
break;
case CullMode::Backface:
cullMode = VK_CULL_MODE_BACK_BIT;
break;
case CullMode::Frontface:
cullMode = VK_CULL_MODE_FRONT_BIT;
break;
}
std::vector<VkDynamicState> dynamicStateEnables;
VkPipelineShaderStageCreateInfo stages[5] = {};
uint32_t numStages = 0;
if (m_vertex) {
stages[numStages].sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO;
stages[numStages].pNext = nullptr;
stages[numStages].flags = 0;
stages[numStages].stage = VK_SHADER_STAGE_VERTEX_BIT;
stages[numStages].module = m_vertex.cast<VulkanShaderStage>()->shader();
stages[numStages].pName = "main";
stages[numStages++].pSpecializationInfo = nullptr;
}
if (m_fragment) {
stages[numStages].sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO;
stages[numStages].pNext = nullptr;
stages[numStages].flags = 0;
stages[numStages].stage = VK_SHADER_STAGE_FRAGMENT_BIT;
stages[numStages].module = m_fragment.cast<VulkanShaderStage>()->shader();
stages[numStages].pName = "main";
stages[numStages++].pSpecializationInfo = nullptr;
}
if (m_geometry) {
stages[numStages].sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO;
stages[numStages].pNext = nullptr;
stages[numStages].flags = 0;
stages[numStages].stage = VK_SHADER_STAGE_GEOMETRY_BIT;
stages[numStages].module = m_geometry.cast<VulkanShaderStage>()->shader();
stages[numStages].pName = "main";
stages[numStages++].pSpecializationInfo = nullptr;
}
if (m_control) {
stages[numStages].sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO;
stages[numStages].pNext = nullptr;
stages[numStages].flags = 0;
stages[numStages].stage = VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT;
stages[numStages].module = m_control.cast<VulkanShaderStage>()->shader();
stages[numStages].pName = "main";
stages[numStages++].pSpecializationInfo = nullptr;
}
if (m_evaluation) {
stages[numStages].sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO;
stages[numStages].pNext = nullptr;
stages[numStages].flags = 0;
stages[numStages].stage = VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT;
stages[numStages].module = m_evaluation.cast<VulkanShaderStage>()->shader();
stages[numStages].pName = "main";
stages[numStages++].pSpecializationInfo = nullptr;
}
VkPipelineInputAssemblyStateCreateInfo assemblyInfo = {};
assemblyInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO;
assemblyInfo.pNext = nullptr;
assemblyInfo.flags = 0;
assemblyInfo.topology = PRIMITIVE_TABLE[int(m_prim)];
assemblyInfo.primitiveRestartEnable = m_prim == Primitive::TriStrips;
VkPipelineTessellationStateCreateInfo tessInfo = {};
tessInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_TESSELLATION_STATE_CREATE_INFO;
tessInfo.pNext = nullptr;
tessInfo.flags = 0;
tessInfo.patchControlPoints = m_patchSize;
VkPipelineViewportStateCreateInfo viewportInfo = {};
viewportInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO;
viewportInfo.pNext = nullptr;
viewportInfo.flags = 0;
viewportInfo.viewportCount = 1;
viewportInfo.pViewports = nullptr;
viewportInfo.scissorCount = 1;
viewportInfo.pScissors = nullptr;
dynamicStateEnables.push_back(VK_DYNAMIC_STATE_VIEWPORT);
dynamicStateEnables.push_back(VK_DYNAMIC_STATE_SCISSOR);
#if AMD_PAL_HACK
dynamicStateEnables.push_back(VK_DYNAMIC_STATE_BLEND_CONSTANTS);
#endif
VkPipelineRasterizationStateCreateInfo rasterizationInfo = {};
rasterizationInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO;
rasterizationInfo.pNext = nullptr;
rasterizationInfo.flags = 0;
rasterizationInfo.depthClampEnable = VK_FALSE;
rasterizationInfo.rasterizerDiscardEnable = VK_FALSE;
rasterizationInfo.polygonMode = VK_POLYGON_MODE_FILL;
rasterizationInfo.cullMode = cullMode;
rasterizationInfo.frontFace = VK_FRONT_FACE_COUNTER_CLOCKWISE;
rasterizationInfo.depthBiasEnable = VK_FALSE;
rasterizationInfo.lineWidth = 1.f;
VkPipelineMultisampleStateCreateInfo multisampleInfo = {};
multisampleInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO;
multisampleInfo.pNext = nullptr;
multisampleInfo.flags = 0;
multisampleInfo.rasterizationSamples = VkSampleCountFlagBits(m_ctx->m_sampleCountColor);
VkPipelineDepthStencilStateCreateInfo depthStencilInfo = {};
depthStencilInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_DEPTH_STENCIL_STATE_CREATE_INFO;
depthStencilInfo.pNext = nullptr;
depthStencilInfo.flags = 0;
depthStencilInfo.depthTestEnable = m_depthTest != ZTest::None;
depthStencilInfo.depthWriteEnable = m_depthWrite;
depthStencilInfo.front.compareOp = VK_COMPARE_OP_ALWAYS;
depthStencilInfo.back.compareOp = VK_COMPARE_OP_ALWAYS;
switch (m_depthTest) {
case ZTest::None:
default:
depthStencilInfo.depthCompareOp = VK_COMPARE_OP_ALWAYS;
break;
case ZTest::LEqual:
depthStencilInfo.depthCompareOp = VK_COMPARE_OP_LESS_OR_EQUAL;
break;
case ZTest::Greater:
depthStencilInfo.depthCompareOp = VK_COMPARE_OP_GREATER;
break;
case ZTest::Equal:
depthStencilInfo.depthCompareOp = VK_COMPARE_OP_EQUAL;
break;
case ZTest::GEqual:
depthStencilInfo.depthCompareOp = VK_COMPARE_OP_GREATER_OR_EQUAL;
break;
}
VkPipelineColorBlendAttachmentState colorAttachment = {};
colorAttachment.blendEnable = m_dstFac != BlendFactor::Zero;
if (m_srcFac == BlendFactor::Subtract || m_dstFac == BlendFactor::Subtract) {
colorAttachment.srcColorBlendFactor = VK_BLEND_FACTOR_SRC_ALPHA;
colorAttachment.dstColorBlendFactor = VK_BLEND_FACTOR_ONE;
colorAttachment.colorBlendOp = VK_BLEND_OP_REVERSE_SUBTRACT;
if (m_overwriteAlpha) {
colorAttachment.srcAlphaBlendFactor = VK_BLEND_FACTOR_ONE;
colorAttachment.dstAlphaBlendFactor = VK_BLEND_FACTOR_ZERO;
colorAttachment.alphaBlendOp = VK_BLEND_OP_ADD;
} else {
colorAttachment.srcAlphaBlendFactor = VK_BLEND_FACTOR_SRC_ALPHA;
colorAttachment.dstAlphaBlendFactor = VK_BLEND_FACTOR_ONE;
colorAttachment.alphaBlendOp = VK_BLEND_OP_REVERSE_SUBTRACT;
}
} else {
colorAttachment.srcColorBlendFactor = BLEND_FACTOR_TABLE[int(m_srcFac)];
colorAttachment.dstColorBlendFactor = BLEND_FACTOR_TABLE[int(m_dstFac)];
colorAttachment.colorBlendOp = VK_BLEND_OP_ADD;
if (m_overwriteAlpha) {
colorAttachment.srcAlphaBlendFactor = VK_BLEND_FACTOR_ONE;
colorAttachment.dstAlphaBlendFactor = VK_BLEND_FACTOR_ZERO;
} else {
colorAttachment.srcAlphaBlendFactor = BLEND_FACTOR_TABLE[int(m_srcFac)];
colorAttachment.dstAlphaBlendFactor = BLEND_FACTOR_TABLE[int(m_dstFac)];
}
colorAttachment.alphaBlendOp = VK_BLEND_OP_ADD;
}
colorAttachment.colorWriteMask =
(m_colorWrite ? (VK_COLOR_COMPONENT_R_BIT | VK_COLOR_COMPONENT_G_BIT | VK_COLOR_COMPONENT_B_BIT) : 0) |
(m_alphaWrite ? VK_COLOR_COMPONENT_A_BIT : 0);
VkPipelineColorBlendStateCreateInfo colorBlendInfo = {};
colorBlendInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO;
colorBlendInfo.pNext = nullptr;
colorBlendInfo.flags = 0;
colorBlendInfo.logicOpEnable = VK_FALSE;
colorBlendInfo.attachmentCount = 1;
colorBlendInfo.pAttachments = &colorAttachment;
VkPipelineDynamicStateCreateInfo dynamicState = {};
dynamicState.sType = VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO;
dynamicState.pNext = nullptr;
dynamicState.pDynamicStates = dynamicStateEnables.data();
dynamicState.dynamicStateCount = uint32_t(dynamicStateEnables.size());
VkGraphicsPipelineCreateInfo pipelineCreateInfo = {};
pipelineCreateInfo.sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO;
pipelineCreateInfo.pNext = nullptr;
pipelineCreateInfo.flags = 0;
pipelineCreateInfo.stageCount = numStages;
pipelineCreateInfo.pStages = stages;
pipelineCreateInfo.pVertexInputState = &m_vtxFmt.m_info;
pipelineCreateInfo.pInputAssemblyState = &assemblyInfo;
pipelineCreateInfo.pTessellationState = &tessInfo;
pipelineCreateInfo.pViewportState = &viewportInfo;
pipelineCreateInfo.pRasterizationState = &rasterizationInfo;
pipelineCreateInfo.pMultisampleState = &multisampleInfo;
pipelineCreateInfo.pDepthStencilState = &depthStencilInfo;
pipelineCreateInfo.pColorBlendState = &colorBlendInfo;
pipelineCreateInfo.pDynamicState = &dynamicState;
pipelineCreateInfo.layout = m_ctx->m_pipelinelayout;
pipelineCreateInfo.renderPass = rPass;
VkPipeline p;
ThrowIfFailed(
vk::CreateGraphicsPipelines(m_ctx->m_dev, m_pipelineCache, 1, &pipelineCreateInfo, nullptr, &p));
m_pipeline = p;
m_vertex.reset();
m_fragment.reset();
m_geometry.reset();
m_control.reset();
m_evaluation.reset();
}
}
}
bool isReady() const { return m_pipeline != VK_NULL_HANDLE; }
};
static const VkDescriptorBufferInfo* GetBufferGPUResource(const IGraphicsBuffer* buf, int idx) {
if (buf->dynamic()) {
const VulkanGraphicsBufferD<BaseGraphicsData>* cbuf =
static_cast<const VulkanGraphicsBufferD<BaseGraphicsData>*>(buf);
return &cbuf->m_bufferInfo[idx];
} else {
const VulkanGraphicsBufferS* cbuf = static_cast<const VulkanGraphicsBufferS*>(buf);
return &cbuf->m_bufferInfo;
}
}
static const VkDescriptorImageInfo* GetTextureGPUResource(const ITexture* tex, int idx, int bindIdx, bool depth) {
switch (tex->type()) {
case TextureType::Dynamic: {
const VulkanTextureD* ctex = static_cast<const VulkanTextureD*>(tex);
return &ctex->m_descInfo[idx];
}
case TextureType::Static: {
const VulkanTextureS* ctex = static_cast<const VulkanTextureS*>(tex);
return &ctex->m_descInfo;
}
case TextureType::StaticArray: {
const VulkanTextureSA* ctex = static_cast<const VulkanTextureSA*>(tex);
return &ctex->m_descInfo;
}
case TextureType::Render: {
const VulkanTextureR* ctex = static_cast<const VulkanTextureR*>(tex);
return depth ? &ctex->m_depthBindDescInfo[bindIdx] : &ctex->m_colorBindDescInfo[bindIdx];
}
case TextureType::CubeRender: {
const VulkanTextureCubeR* ctex = static_cast<const VulkanTextureCubeR*>(tex);
return &ctex->m_colorBindDescInfo;
}
default:
break;
}
return nullptr;
}
struct VulkanShaderDataBinding : GraphicsDataNode<IShaderDataBinding> {
VulkanContext* m_ctx;
boo::ObjToken<IShaderPipeline> m_pipeline;
boo::ObjToken<IGraphicsBuffer> m_vbuf;
boo::ObjToken<IGraphicsBuffer> m_instVbuf;
boo::ObjToken<IGraphicsBuffer> m_ibuf;
std::vector<boo::ObjToken<IGraphicsBuffer>> m_ubufs;
std::vector<std::array<VkDescriptorBufferInfo, 2>> m_ubufOffs;
VkImageView m_knownViewHandles[2][BOO_GLSL_MAX_TEXTURE_COUNT] = {};
struct BindTex {
boo::ObjToken<ITexture> tex;
int idx;
bool depth;
};
std::vector<BindTex> m_texs;
VkBuffer m_vboBufs[2][2] = {{}, {}};
VkDeviceSize m_vboOffs[2][2] = {{}, {}};
VkBuffer m_iboBufs[2] = {};
VkDeviceSize m_iboOffs[2] = {};
boo::ObjToken<VulkanDescriptorPool> m_descPool;
VkDescriptorSet m_descSets[2] = {};
size_t m_vertOffset;
size_t m_instOffset;
#ifndef NDEBUG
/* Debugging aids */
bool m_committed = false;
#endif
VulkanShaderDataBinding(const boo::ObjToken<BaseGraphicsData>& d, VulkanDataFactoryImpl& factory,
const boo::ObjToken<IShaderPipeline>& pipeline, const boo::ObjToken<IGraphicsBuffer>& vbuf,
const boo::ObjToken<IGraphicsBuffer>& instVbuf, const boo::ObjToken<IGraphicsBuffer>& ibuf,
size_t ubufCount, const boo::ObjToken<IGraphicsBuffer>* ubufs, const size_t* ubufOffs,
const size_t* ubufSizes, size_t texCount, const boo::ObjToken<ITexture>* texs,
const int* bindIdxs, const bool* depthBinds, size_t baseVert, size_t baseInst)
: GraphicsDataNode<IShaderDataBinding>(d)
, m_ctx(factory.m_ctx)
, m_pipeline(pipeline)
, m_vbuf(vbuf)
, m_instVbuf(instVbuf)
, m_ibuf(ibuf) {
VulkanShaderPipeline* cpipeline = m_pipeline.cast<VulkanShaderPipeline>();
VulkanVertexFormat& vtxFmt = cpipeline->m_vtxFmt;
m_vertOffset = baseVert * vtxFmt.m_stride;
m_instOffset = baseInst * vtxFmt.m_instStride;
if (ubufOffs && ubufSizes) {
m_ubufOffs.reserve(ubufCount);
for (size_t i = 0; i < ubufCount; ++i) {
#ifndef NDEBUG
if (ubufOffs[i] % 256) {
Log.report(logvisor::Fatal, FMT_STRING("non-256-byte-aligned uniform-offset {} provided to newShaderDataBinding"),
i);
}
#endif
std::array<VkDescriptorBufferInfo, 2> fillArr;
fillArr.fill({VK_NULL_HANDLE, ubufOffs[i], (ubufSizes[i] + 255) & ~255});
m_ubufOffs.push_back(fillArr);
}
}
m_ubufs.reserve(ubufCount);
for (size_t i = 0; i < ubufCount; ++i) {
#ifndef NDEBUG
if (!ubufs[i]) {
Log.report(logvisor::Fatal, FMT_STRING("null uniform-buffer {} provided to newShaderDataBinding"), i);
}
#endif
m_ubufs.push_back(ubufs[i]);
}
m_texs.reserve(texCount);
for (size_t i = 0; i < texCount; ++i) {
m_texs.push_back({texs[i], bindIdxs ? bindIdxs[i] : 0, depthBinds ? depthBinds[i] : false});
}
size_t totalDescs = ubufCount + texCount;
if (totalDescs > 0)
m_descPool = factory.allocateDescriptorSets(m_descSets);
}
void commit(VulkanContext* ctx) {
OPTICK_EVENT();
VkWriteDescriptorSet writes[(BOO_GLSL_MAX_UNIFORM_COUNT + BOO_GLSL_MAX_TEXTURE_COUNT) * 2] = {};
size_t totalWrites = 0;
for (int b = 0; b < 2; ++b) {
if (m_vbuf) {
const VkDescriptorBufferInfo* vbufInfo = GetBufferGPUResource(m_vbuf.get(), b);
m_vboBufs[b][0] = vbufInfo->buffer;
m_vboOffs[b][0] = vbufInfo->offset + m_vertOffset;
}
if (m_instVbuf) {
const VkDescriptorBufferInfo* vbufInfo = GetBufferGPUResource(m_instVbuf.get(), b);
m_vboBufs[b][1] = vbufInfo->buffer;
m_vboOffs[b][1] = vbufInfo->offset + m_instOffset;
}
if (m_ibuf) {
const VkDescriptorBufferInfo* ibufInfo = GetBufferGPUResource(m_ibuf.get(), b);
m_iboBufs[b] = ibufInfo->buffer;
m_iboOffs[b] = ibufInfo->offset;
}
size_t binding = 0;
if (m_ubufOffs.size()) {
for (size_t i = 0; i < BOO_GLSL_MAX_UNIFORM_COUNT; ++i) {
if (i < m_ubufs.size()) {
VkDescriptorBufferInfo& modInfo = m_ubufOffs[i][b];
if (modInfo.range) {
writes[totalWrites].sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
writes[totalWrites].pNext = nullptr;
writes[totalWrites].dstSet = m_descSets[b];
writes[totalWrites].descriptorCount = 1;
writes[totalWrites].descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER;
const VkDescriptorBufferInfo* origInfo = GetBufferGPUResource(m_ubufs[i].get(), b);
modInfo.buffer = origInfo->buffer;
modInfo.offset += origInfo->offset;
writes[totalWrites].pBufferInfo = &modInfo;
writes[totalWrites].dstArrayElement = 0;
writes[totalWrites].dstBinding = binding;
++totalWrites;
}
}
++binding;
}
} else {
for (size_t i = 0; i < BOO_GLSL_MAX_UNIFORM_COUNT; ++i) {
if (i < m_ubufs.size()) {
writes[totalWrites].sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
writes[totalWrites].pNext = nullptr;
writes[totalWrites].dstSet = m_descSets[b];
writes[totalWrites].descriptorCount = 1;
writes[totalWrites].descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER;
writes[totalWrites].pBufferInfo = GetBufferGPUResource(m_ubufs[i].get(), b);
writes[totalWrites].dstArrayElement = 0;
writes[totalWrites].dstBinding = binding;
++totalWrites;
}
++binding;
}
}
for (size_t i = 0; i < BOO_GLSL_MAX_TEXTURE_COUNT; ++i) {
if (i < m_texs.size() && m_texs[i].tex) {
writes[totalWrites].sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
writes[totalWrites].pNext = nullptr;
writes[totalWrites].dstSet = m_descSets[b];
writes[totalWrites].descriptorCount = 1;
writes[totalWrites].descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER;
writes[totalWrites].pImageInfo =
GetTextureGPUResource(m_texs[i].tex.get(), b, m_texs[i].idx, m_texs[i].depth);
writes[totalWrites].dstArrayElement = 0;
writes[totalWrites].dstBinding = binding;
m_knownViewHandles[b][i] = writes[totalWrites].pImageInfo->imageView;
++totalWrites;
}
++binding;
}
}
if (totalWrites) {
OPTICK_EVENT("vk::UpdateDescriptorSets");
vk::UpdateDescriptorSets(ctx->m_dev, totalWrites, writes, 0, nullptr);
}
#ifndef NDEBUG
m_committed = true;
#endif
}
void bind(VkCommandBuffer cmdBuf, int b, VkRenderPass rPass = 0) {
#ifndef NDEBUG
if (!m_committed)
Log.report(logvisor::Fatal, FMT_STRING("attempted to use uncommitted VulkanShaderDataBinding"));
#endif
/* Ensure resized texture bindings are re-bound */
size_t binding = BOO_GLSL_MAX_UNIFORM_COUNT;
VkWriteDescriptorSet writes[BOO_GLSL_MAX_TEXTURE_COUNT] = {};
size_t totalWrites = 0;
for (size_t i = 0; i < BOO_GLSL_MAX_TEXTURE_COUNT; ++i) {
if (i < m_texs.size() && m_texs[i].tex) {
const VkDescriptorImageInfo* resComp =
GetTextureGPUResource(m_texs[i].tex.get(), b, m_texs[i].idx, m_texs[i].depth);
if (resComp->imageView != m_knownViewHandles[b][i]) {
writes[totalWrites].sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
writes[totalWrites].pNext = nullptr;
writes[totalWrites].dstSet = m_descSets[b];
writes[totalWrites].descriptorCount = 1;
writes[totalWrites].descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER;
writes[totalWrites].pImageInfo = resComp;
writes[totalWrites].dstArrayElement = 0;
writes[totalWrites].dstBinding = binding;
++totalWrites;
m_knownViewHandles[b][i] = resComp->imageView;
}
}
++binding;
}
if (totalWrites)
vk::UpdateDescriptorSets(m_ctx->m_dev, totalWrites, writes, 0, nullptr);
vk::CmdBindPipeline(cmdBuf, VK_PIPELINE_BIND_POINT_GRAPHICS, m_pipeline.cast<VulkanShaderPipeline>()->bind(rPass));
if (m_descSets[b])
vk::CmdBindDescriptorSets(cmdBuf, VK_PIPELINE_BIND_POINT_GRAPHICS, m_ctx->m_pipelinelayout, 0, 1, &m_descSets[b],
0, nullptr);
if (m_vbuf && m_instVbuf)
vk::CmdBindVertexBuffers(cmdBuf, 0, 2, m_vboBufs[b], m_vboOffs[b]);
else if (m_vbuf)
vk::CmdBindVertexBuffers(cmdBuf, 0, 1, m_vboBufs[b], m_vboOffs[b]);
else if (m_instVbuf)
vk::CmdBindVertexBuffers(cmdBuf, 1, 1, &m_vboBufs[b][1], &m_vboOffs[b][1]);
if (m_ibuf)
vk::CmdBindIndexBuffer(cmdBuf, m_iboBufs[b], m_iboOffs[b], VK_INDEX_TYPE_UINT32);
#if AMD_PAL_HACK
/* AMD GCN architecture is prone to hanging after binding a new pipeline without also refreshing the
* device context registers (i.e. viewport, scissor, line width, blend constants). Blend Constants
* are the simplest register to set within the PAL codebase. */
float dummy[4] = {};
vk::CmdSetBlendConstants(cmdBuf, dummy);
#endif
}
};
struct VulkanCommandQueue final : IGraphicsCommandQueue {
Platform platform() const { return IGraphicsDataFactory::Platform::Vulkan; }
const SystemChar* platformName() const { return _SYS_STR("Vulkan"); }
VulkanContext* m_ctx;
VulkanContext::Window* m_windowCtx;
IGraphicsContext* m_parent;
VkCommandPool m_cmdPool;
VkCommandBuffer m_cmdBufs[2];
VkSemaphore m_swapChainReadySem = VK_NULL_HANDLE;
VkSemaphore m_drawCompleteSem = VK_NULL_HANDLE;
VkFence m_drawCompleteFence;
VkCommandPool m_dynamicCmdPool;
VkCommandBuffer m_dynamicCmdBufs[2];
VkFence m_dynamicBufFence;
bool m_running = true;
bool m_dynamicNeedsReset = false;
bool m_submitted = false;
int m_fillBuf = 0;
int m_drawBuf = 0;
std::vector<boo::ObjToken<boo::IObj>> m_drawResTokens[2];
void resetCommandBuffer() {
ThrowIfFailed(vk::ResetCommandBuffer(m_cmdBufs[m_fillBuf], 0));
VkCommandBufferBeginInfo cmdBufBeginInfo = {};
cmdBufBeginInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO;
cmdBufBeginInfo.flags = VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT;
ThrowIfFailed(vk::BeginCommandBuffer(m_cmdBufs[m_fillBuf], &cmdBufBeginInfo));
OPTICK_GPU_CONTEXT(m_cmdBufs[m_fillBuf]);
}
void resetDynamicCommandBuffer() {
ThrowIfFailed(vk::ResetCommandBuffer(m_dynamicCmdBufs[m_fillBuf], 0));
VkCommandBufferBeginInfo cmdBufBeginInfo = {};
cmdBufBeginInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO;
cmdBufBeginInfo.flags = VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT;
ThrowIfFailed(vk::BeginCommandBuffer(m_dynamicCmdBufs[m_fillBuf], &cmdBufBeginInfo));
OPTICK_GPU_CONTEXT(m_dynamicCmdBufs[m_fillBuf]);
m_dynamicNeedsReset = false;
}
void stallDynamicUpload() {
if (m_dynamicNeedsReset) {
ThrowIfFailed(vk::WaitForFences(m_ctx->m_dev, 1, &m_dynamicBufFence, VK_FALSE, -1));
resetDynamicCommandBuffer();
}
}
VulkanCommandQueue(VulkanContext* ctx, VulkanContext::Window* windowCtx, IGraphicsContext* parent)
: m_ctx(ctx), m_windowCtx(windowCtx), m_parent(parent) {
VkCommandPoolCreateInfo poolInfo = {};
poolInfo.sType = VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO;
poolInfo.flags = VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT;
poolInfo.queueFamilyIndex = m_ctx->m_graphicsQueueFamilyIndex;
ThrowIfFailed(vk::CreateCommandPool(ctx->m_dev, &poolInfo, nullptr, &m_cmdPool));
ThrowIfFailed(vk::CreateCommandPool(ctx->m_dev, &poolInfo, nullptr, &m_dynamicCmdPool));
VkCommandBufferAllocateInfo allocInfo = {};
allocInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO;
allocInfo.commandPool = m_cmdPool;
allocInfo.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY;
allocInfo.commandBufferCount = 2;
VkCommandBufferBeginInfo cmdBufBeginInfo = {};
cmdBufBeginInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO;
cmdBufBeginInfo.flags = VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT;
ThrowIfFailed(vk::AllocateCommandBuffers(m_ctx->m_dev, &allocInfo, m_cmdBufs));
ThrowIfFailed(vk::BeginCommandBuffer(m_cmdBufs[0], &cmdBufBeginInfo));
OPTICK_GPU_CONTEXT(m_cmdBufs[0]);
allocInfo.commandPool = m_dynamicCmdPool;
ThrowIfFailed(vk::AllocateCommandBuffers(m_ctx->m_dev, &allocInfo, m_dynamicCmdBufs));
ThrowIfFailed(vk::BeginCommandBuffer(m_dynamicCmdBufs[0], &cmdBufBeginInfo));
OPTICK_GPU_CONTEXT(m_dynamicCmdBufs[0]);
VkSemaphoreCreateInfo semInfo = {};
semInfo.sType = VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO;
ThrowIfFailed(vk::CreateSemaphore(ctx->m_dev, &semInfo, nullptr, &m_swapChainReadySem));
ThrowIfFailed(vk::CreateSemaphore(ctx->m_dev, &semInfo, nullptr, &m_drawCompleteSem));
VkFenceCreateInfo fenceInfo = {};
fenceInfo.sType = VK_STRUCTURE_TYPE_FENCE_CREATE_INFO;
fenceInfo.flags = VK_FENCE_CREATE_SIGNALED_BIT;
ThrowIfFailed(vk::CreateFence(m_ctx->m_dev, &fenceInfo, nullptr, &m_drawCompleteFence));
ThrowIfFailed(vk::CreateFence(m_ctx->m_dev, &fenceInfo, nullptr, &m_dynamicBufFence));
}
void startRenderer() { static_cast<VulkanDataFactoryImpl*>(m_parent->getDataFactory())->SetupGammaResources(); }
void stopRenderer() {
m_running = false;
if (m_submitted && vk::GetFenceStatus(m_ctx->m_dev, m_drawCompleteFence) == VK_NOT_READY)
vk::WaitForFences(m_ctx->m_dev, 1, &m_drawCompleteFence, VK_FALSE, -1);
stallDynamicUpload();
static_cast<VulkanDataFactoryImpl*>(m_parent->getDataFactory())->DestroyGammaResources();
m_drawResTokens[0].clear();
m_drawResTokens[1].clear();
m_boundTarget.reset();
m_resolveDispSource.reset();
}
~VulkanCommandQueue() {
if (m_running)
stopRenderer();
vk::DestroyFence(m_ctx->m_dev, m_dynamicBufFence, nullptr);
vk::DestroyFence(m_ctx->m_dev, m_drawCompleteFence, nullptr);
vk::DestroySemaphore(m_ctx->m_dev, m_drawCompleteSem, nullptr);
vk::DestroySemaphore(m_ctx->m_dev, m_swapChainReadySem, nullptr);
vk::DestroyCommandPool(m_ctx->m_dev, m_dynamicCmdPool, nullptr);
vk::DestroyCommandPool(m_ctx->m_dev, m_cmdPool, nullptr);
}
void setShaderDataBinding(const boo::ObjToken<IShaderDataBinding>& binding) {
VulkanShaderDataBinding* cbind = binding.cast<VulkanShaderDataBinding>();
cbind->bind(m_cmdBufs[m_fillBuf], m_fillBuf);
m_drawResTokens[m_fillBuf].push_back(binding.get());
}
boo::ObjToken<ITexture> m_boundTarget;
void setRenderTarget(const boo::ObjToken<ITextureR>& target) {
VulkanTextureR* ctarget = target.cast<VulkanTextureR>();
VkCommandBuffer cmdBuf = m_cmdBufs[m_fillBuf];
if (m_boundTarget.get() != ctarget) {
if (m_boundTarget)
vk::CmdEndRenderPass(cmdBuf);
ctarget->toAttachmentLayout(cmdBuf);
m_boundTarget = target.get();
m_drawResTokens[m_fillBuf].push_back(target.get());
vk::CmdBeginRenderPass(cmdBuf, &ctarget->m_passBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
}
}
static constexpr int CubeFaceRemap[] = {0, 1, 3, 2, 4, 5};
int m_boundFace = 0;
void setRenderTarget(const ObjToken<ITextureCubeR>& target, int face) {
VulkanTextureCubeR* ctarget = target.cast<VulkanTextureCubeR>();
VkCommandBuffer cmdBuf = m_cmdBufs[m_fillBuf];
face = CubeFaceRemap[face];
if (m_boundTarget.get() != ctarget || m_boundFace != face) {
if (m_boundTarget)
vk::CmdEndRenderPass(cmdBuf);
ctarget->toAttachmentLayout(cmdBuf);
m_boundTarget = target.get();
m_boundFace = face;
m_drawResTokens[m_fillBuf].push_back(target.get());
vk::CmdBeginRenderPass(cmdBuf, &ctarget->m_passBeginInfo[face], VK_SUBPASS_CONTENTS_INLINE);
}
}
void setViewport(const SWindowRect& rect, float znear, float zfar) {
if (m_boundTarget) {
size_t texHeight = 0;
switch (m_boundTarget->type()) {
case TextureType::Render: texHeight = m_boundTarget.cast<VulkanTextureR>()->m_height; break;
case TextureType::CubeRender: texHeight = m_boundTarget.cast<VulkanTextureCubeR>()->m_width; break;
default: break;
}
VkViewport vp = {float(rect.location[0]),
float(std::max(0, int(texHeight) - rect.location[1] - rect.size[1])),
float(rect.size[0]),
float(rect.size[1]),
znear,
zfar};
vk::CmdSetViewport(m_cmdBufs[m_fillBuf], 0, 1, &vp);
}
}
void setScissor(const SWindowRect& rect) {
if (m_boundTarget) {
size_t texHeight = 0;
switch (m_boundTarget->type()) {
case TextureType::Render: texHeight = m_boundTarget.cast<VulkanTextureR>()->m_height; break;
case TextureType::CubeRender: texHeight = m_boundTarget.cast<VulkanTextureCubeR>()->m_width; break;
default: break;
}
VkRect2D vkrect = {
{int32_t(rect.location[0]), int32_t(std::max(0, int(texHeight) - rect.location[1] - rect.size[1]))},
{uint32_t(rect.size[0]), uint32_t(rect.size[1])}};
vk::CmdSetScissor(m_cmdBufs[m_fillBuf], 0, 1, &vkrect);
}
}
std::unordered_map<VulkanTextureR*, std::pair<size_t, size_t>> m_texResizes;
void resizeRenderTexture(const boo::ObjToken<ITextureR>& tex, size_t width, size_t height) {
VulkanTextureR* ctex = tex.cast<VulkanTextureR>();
m_texResizes[ctex] = std::make_pair(width, height);
m_drawResTokens[m_fillBuf].push_back(tex.get());
}
std::unordered_map<VulkanTextureCubeR*, std::pair<size_t, size_t>> m_cubeTexResizes;
void resizeRenderTexture(const boo::ObjToken<ITextureCubeR>& tex, size_t width, size_t mips) {
VulkanTextureCubeR* ctex = tex.cast<VulkanTextureCubeR>();
m_cubeTexResizes[ctex] = std::make_pair(width, mips);
m_drawResTokens[m_fillBuf].push_back(tex.get());
}
void generateMipmaps(const ObjToken<ITextureCubeR>& tex) {
SCOPED_GRAPHICS_DEBUG_GROUP(this, "VulkanCommandQueue::generateMipmaps", {1.f, 0.f, 0.f, 1.f});
VulkanTextureCubeR* ctex = tex.cast<VulkanTextureCubeR>();
VkCommandBuffer cmdBuf = m_cmdBufs[m_fillBuf];
if (m_boundTarget) {
vk::CmdEndRenderPass(cmdBuf);
m_boundTarget.reset();
}
ctex->toColorTransferSrcLayout(cmdBuf);
size_t tmpWidth = ctex->m_width;
for (size_t i = 1; i < ctex->m_mipCount; i++) {
VkImageBlit blit = {};
blit.srcSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
blit.srcSubresource.layerCount = 6;
blit.srcSubresource.mipLevel = i-1;
blit.srcOffsets[1].x = int32_t(tmpWidth);
blit.srcOffsets[1].y = int32_t(tmpWidth);
blit.srcOffsets[1].z = 1;
tmpWidth >>= 1;
blit.dstSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
blit.dstSubresource.layerCount = 6;
blit.dstSubresource.mipLevel = i;
blit.dstOffsets[1].x = int32_t(tmpWidth);
blit.dstOffsets[1].y = int32_t(tmpWidth);
blit.dstOffsets[1].z = 1;
SetImageLayout(cmdBuf, ctex->m_colorTex.m_image, VK_IMAGE_ASPECT_COLOR_BIT,
ctex->m_mipsLayout, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1, 6, i);
vk::CmdBlitImage(cmdBuf, ctex->m_colorTex.m_image, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,
ctex->m_colorTex.m_image, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1, &blit, VK_FILTER_LINEAR);
SetImageLayout(cmdBuf, ctex->m_colorTex.m_image, VK_IMAGE_ASPECT_COLOR_BIT,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, 1, 6, i);
}
ctex->toColorShaderReadLayout(cmdBuf);
ctex->m_mipsLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
}
void schedulePostFrameHandler(std::function<void(void)>&& func) { func(); }
float m_clearColor[4] = {0.0, 0.0, 0.0, 0.0};
void setClearColor(const float rgba[4]) {
m_clearColor[0] = rgba[0];
m_clearColor[1] = rgba[1];
m_clearColor[2] = rgba[2];
m_clearColor[3] = rgba[3];
}
void clearTarget(bool render = true, bool depth = true) {
if (!m_boundTarget)
return;
VkClearAttachment clr[2] = {};
VkClearRect rect = {};
rect.layerCount = 1;
switch (m_boundTarget->type()) {
case TextureType::Render: {
VulkanTextureR* ctex = m_boundTarget.cast<VulkanTextureR>();
rect.rect.extent.width = ctex->m_width;
rect.rect.extent.height = ctex->m_height;
break;
}
case TextureType::CubeRender: {
VulkanTextureCubeR* ctex = m_boundTarget.cast<VulkanTextureCubeR>();
rect.rect.extent.width = ctex->m_width;
rect.rect.extent.height = ctex->m_width;
break;
}
default: break;
}
if (render && depth) {
clr[0].clearValue.color.float32[0] = m_clearColor[0];
clr[0].clearValue.color.float32[1] = m_clearColor[1];
clr[0].clearValue.color.float32[2] = m_clearColor[2];
clr[0].clearValue.color.float32[3] = m_clearColor[3];
clr[0].aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
clr[1].aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT;
clr[1].clearValue.depthStencil.depth = 1.f;
vk::CmdClearAttachments(m_cmdBufs[m_fillBuf], 2, clr, 1, &rect);
} else if (render) {
clr[0].clearValue.color.float32[0] = m_clearColor[0];
clr[0].clearValue.color.float32[1] = m_clearColor[1];
clr[0].clearValue.color.float32[2] = m_clearColor[2];
clr[0].clearValue.color.float32[3] = m_clearColor[3];
clr[0].aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
vk::CmdClearAttachments(m_cmdBufs[m_fillBuf], 1, clr, 1, &rect);
} else if (depth) {
clr[0].aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT;
clr[0].clearValue.depthStencil.depth = 1.f;
vk::CmdClearAttachments(m_cmdBufs[m_fillBuf], 1, clr, 1, &rect);
}
}
void draw(size_t start, size_t count) { vk::CmdDraw(m_cmdBufs[m_fillBuf], count, 1, start, 0); }
void drawIndexed(size_t start, size_t count, size_t baseVertex) { vk::CmdDrawIndexed(m_cmdBufs[m_fillBuf], count, 1, start, baseVertex, 0); }
void drawInstances(size_t start, size_t count, size_t instCount, size_t startInst) {
vk::CmdDraw(m_cmdBufs[m_fillBuf], count, instCount, start, startInst);
}
void drawInstancesIndexed(size_t start, size_t count, size_t instCount, size_t startInst) {
vk::CmdDrawIndexed(m_cmdBufs[m_fillBuf], count, instCount, start, 0, startInst);
}
boo::ObjToken<ITextureR> m_resolveDispSource;
void resolveDisplay(const boo::ObjToken<ITextureR>& source) { m_resolveDispSource = source; }
bool _resolveDisplay() {
if (!m_resolveDispSource)
return false;
VulkanContext::Window::SwapChain& sc = m_windowCtx->m_swapChains[m_windowCtx->m_activeSwapChain];
if (!sc.m_swapChain)
return false;
VkCommandBuffer cmdBuf = m_cmdBufs[m_drawBuf];
VulkanTextureR* csource = m_resolveDispSource.cast<VulkanTextureR>();
#ifndef NDEBUG
if (!csource->m_colorBindCount)
Log.report(logvisor::Fatal, FMT_STRING("texture provided to resolveDisplay() must have at least 1 color binding"));
#endif
VkResult res =
vk::AcquireNextImageKHR(m_ctx->m_dev, sc.m_swapChain, UINT64_MAX, m_swapChainReadySem, nullptr, &sc.m_backBuf);
if (res == VK_ERROR_OUT_OF_DATE_KHR) {
return false;
}
ThrowIfFailed(res);
VulkanContext::Window::SwapChain::Buffer& dest = sc.m_bufs[sc.m_backBuf];
VulkanDataFactoryImpl* dataFactory = static_cast<VulkanDataFactoryImpl*>(m_parent->getDataFactory());
if (dataFactory->m_gamma != 1.f || m_ctx->m_internalFormat != m_ctx->m_displayFormat) {
SWindowRect rect(0, 0, csource->m_width, csource->m_height);
_resolveBindTexture(cmdBuf, csource, rect, true, 0, true, false);
VulkanShaderDataBinding* gammaBinding = dataFactory->m_gammaBinding.cast<VulkanShaderDataBinding>();
SetImageLayout(cmdBuf, dest.m_image, VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_LAYOUT_UNDEFINED,
VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL, 1, 1);
vk::CmdBeginRenderPass(cmdBuf, &dest.m_passBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
gammaBinding->m_texs[0].tex = m_resolveDispSource.get();
gammaBinding->bind(cmdBuf, m_drawBuf, m_ctx->m_passColorOnly);
vk::CmdDraw(cmdBuf, 4, 1, 0, 0);
gammaBinding->m_texs[0].tex.reset();
vk::CmdEndRenderPass(cmdBuf);
m_boundTarget.reset();
SetImageLayout(cmdBuf, dest.m_image, VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL,
VK_IMAGE_LAYOUT_PRESENT_SRC_KHR, 1, 1);
} else {
SetImageLayout(cmdBuf, dest.m_image, VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_LAYOUT_UNDEFINED,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1, 1);
csource->toColorTransferSrcLayout(cmdBuf);
if (csource->m_samplesColor > 1) {
VkImageResolve resolveInfo = {};
resolveInfo.srcSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
resolveInfo.srcSubresource.mipLevel = 0;
resolveInfo.srcSubresource.baseArrayLayer = 0;
resolveInfo.srcSubresource.layerCount = 1;
resolveInfo.dstSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
resolveInfo.dstSubresource.mipLevel = 0;
resolveInfo.dstSubresource.baseArrayLayer = 0;
resolveInfo.dstSubresource.layerCount = 1;
resolveInfo.extent.width = csource->m_width;
resolveInfo.extent.height = csource->m_height;
resolveInfo.extent.depth = 1;
vk::CmdResolveImage(cmdBuf, csource->m_colorTex.m_image, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, dest.m_image,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1, &resolveInfo);
} else {
VkImageCopy copyInfo = {};
copyInfo.srcSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
copyInfo.srcSubresource.mipLevel = 0;
copyInfo.srcSubresource.baseArrayLayer = 0;
copyInfo.srcSubresource.layerCount = 1;
copyInfo.dstSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
copyInfo.dstSubresource.mipLevel = 0;
copyInfo.dstSubresource.baseArrayLayer = 0;
copyInfo.dstSubresource.layerCount = 1;
copyInfo.extent.width = csource->m_width;
copyInfo.extent.height = csource->m_height;
copyInfo.extent.depth = 1;
vk::CmdCopyImage(cmdBuf, csource->m_colorTex.m_image, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, dest.m_image,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1, &copyInfo);
}
SetImageLayout(cmdBuf, dest.m_image, VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
VK_IMAGE_LAYOUT_PRESENT_SRC_KHR, 1, 1);
}
m_resolveDispSource.reset();
return true;
}
void _resolveBindTexture(VkCommandBuffer cmdBuf, VulkanTextureR* ctexture, const SWindowRect& rect, bool tlOrigin,
int bindIdx, bool color, bool depth) {
if (color && ctexture->m_colorBindCount) {
if (ctexture->m_samplesColor <= 1) {
VkImageCopy copyInfo = {};
SWindowRect intersectRect = rect.intersect(SWindowRect(0, 0, ctexture->m_width, ctexture->m_height));
copyInfo.srcOffset.y = tlOrigin ? intersectRect.location[1]
: (ctexture->m_height - intersectRect.size[1] - intersectRect.location[1]);
copyInfo.srcOffset.x = intersectRect.location[0];
copyInfo.dstOffset = copyInfo.srcOffset;
copyInfo.extent.width = intersectRect.size[0];
copyInfo.extent.height = intersectRect.size[1];
copyInfo.extent.depth = 1;
copyInfo.dstSubresource.mipLevel = 0;
copyInfo.dstSubresource.baseArrayLayer = 0;
copyInfo.dstSubresource.layerCount = 1;
copyInfo.srcSubresource.mipLevel = 0;
copyInfo.srcSubresource.baseArrayLayer = 0;
copyInfo.srcSubresource.layerCount = 1;
ctexture->toColorTransferSrcLayout(cmdBuf);
ctexture->toColorBindTransferDstLayout(cmdBuf, bindIdx);
copyInfo.srcSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
copyInfo.dstSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
vk::CmdCopyImage(cmdBuf, ctexture->m_colorTex.m_image, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,
ctexture->m_colorBindTex[bindIdx].m_image, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1, &copyInfo);
if (ctexture == m_boundTarget.get())
ctexture->toColorAttachmentLayout(cmdBuf);
ctexture->toColorBindShaderReadLayout(cmdBuf, bindIdx);
} else {
VkImageResolve resolveInfo = {};
SWindowRect intersectRect = rect.intersect(SWindowRect(0, 0, ctexture->m_width, ctexture->m_height));
resolveInfo.srcOffset.y = tlOrigin ? intersectRect.location[1]
: (ctexture->m_height - intersectRect.size[1] - intersectRect.location[1]);
resolveInfo.srcOffset.x = intersectRect.location[0];
resolveInfo.dstOffset = resolveInfo.srcOffset;
resolveInfo.extent.width = intersectRect.size[0];
resolveInfo.extent.height = intersectRect.size[1];
resolveInfo.extent.depth = 1;
resolveInfo.dstSubresource.mipLevel = 0;
resolveInfo.dstSubresource.baseArrayLayer = 0;
resolveInfo.dstSubresource.layerCount = 1;
resolveInfo.srcSubresource.mipLevel = 0;
resolveInfo.srcSubresource.baseArrayLayer = 0;
resolveInfo.srcSubresource.layerCount = 1;
ctexture->toColorTransferSrcLayout(cmdBuf);
ctexture->toColorBindTransferDstLayout(cmdBuf, bindIdx);
resolveInfo.srcSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
resolveInfo.dstSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
vk::CmdResolveImage(cmdBuf, ctexture->m_colorTex.m_image, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,
ctexture->m_colorBindTex[bindIdx].m_image, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1,
&resolveInfo);
if (ctexture == m_boundTarget.get())
ctexture->toColorAttachmentLayout(cmdBuf);
ctexture->toColorBindShaderReadLayout(cmdBuf, bindIdx);
}
}
if (depth && ctexture->m_depthBindCount) {
if (ctexture->m_samplesDepth <= 1) {
VkImageCopy copyInfo = {};
SWindowRect intersectRect = rect.intersect(SWindowRect(0, 0, ctexture->m_width, ctexture->m_height));
copyInfo.srcOffset.y = tlOrigin ? intersectRect.location[1]
: (ctexture->m_height - intersectRect.size[1] - intersectRect.location[1]);
copyInfo.srcOffset.x = intersectRect.location[0];
copyInfo.dstOffset = copyInfo.srcOffset;
copyInfo.extent.width = intersectRect.size[0];
copyInfo.extent.height = intersectRect.size[1];
copyInfo.extent.depth = 1;
copyInfo.dstSubresource.mipLevel = 0;
copyInfo.dstSubresource.baseArrayLayer = 0;
copyInfo.dstSubresource.layerCount = 1;
copyInfo.srcSubresource.mipLevel = 0;
copyInfo.srcSubresource.baseArrayLayer = 0;
copyInfo.srcSubresource.layerCount = 1;
ctexture->toDepthTransferSrcLayout(cmdBuf);
ctexture->toDepthBindTransferDstLayout(cmdBuf, bindIdx);
copyInfo.srcSubresource.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT;
copyInfo.dstSubresource.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT;
vk::CmdCopyImage(cmdBuf, ctexture->m_depthTex.m_image, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,
ctexture->m_depthBindTex[bindIdx].m_image, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1, &copyInfo);
if (ctexture == m_boundTarget.get())
ctexture->toDepthAttachmentLayout(cmdBuf);
ctexture->toDepthBindShaderReadLayout(cmdBuf, bindIdx);
} else {
VkImageResolve resolveInfo = {};
SWindowRect intersectRect = rect.intersect(SWindowRect(0, 0, ctexture->m_width, ctexture->m_height));
resolveInfo.srcOffset.y = tlOrigin ? intersectRect.location[1]
: (ctexture->m_height - intersectRect.size[1] - intersectRect.location[1]);
resolveInfo.srcOffset.x = intersectRect.location[0];
resolveInfo.dstOffset = resolveInfo.srcOffset;
resolveInfo.extent.width = intersectRect.size[0];
resolveInfo.extent.height = intersectRect.size[1];
resolveInfo.extent.depth = 1;
resolveInfo.dstSubresource.mipLevel = 0;
resolveInfo.dstSubresource.baseArrayLayer = 0;
resolveInfo.dstSubresource.layerCount = 1;
resolveInfo.srcSubresource.mipLevel = 0;
resolveInfo.srcSubresource.baseArrayLayer = 0;
resolveInfo.srcSubresource.layerCount = 1;
ctexture->toDepthTransferSrcLayout(cmdBuf);
ctexture->toDepthBindTransferDstLayout(cmdBuf, bindIdx);
resolveInfo.srcSubresource.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT;
resolveInfo.dstSubresource.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT;
vk::CmdResolveImage(cmdBuf, ctexture->m_depthTex.m_image, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,
ctexture->m_depthBindTex[bindIdx].m_image, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1,
&resolveInfo);
if (ctexture == m_boundTarget.get())
ctexture->toDepthAttachmentLayout(cmdBuf);
ctexture->toDepthBindShaderReadLayout(cmdBuf, bindIdx);
}
}
}
void resolveBindTexture(const boo::ObjToken<ITextureR>& texture, const SWindowRect& rect, bool tlOrigin, int bindIdx,
bool color, bool depth, bool clearDepth) {
VkCommandBuffer cmdBuf = m_cmdBufs[m_fillBuf];
VulkanTextureR* ctexture = texture.cast<VulkanTextureR>();
vk::CmdEndRenderPass(cmdBuf);
_resolveBindTexture(cmdBuf, ctexture, rect, tlOrigin, bindIdx, color, depth);
VkRenderPassBeginInfo* pbInfo = nullptr;
switch (m_boundTarget->type()) {
case TextureType::Render: pbInfo = &m_boundTarget.cast<VulkanTextureR>()->m_passBeginInfo; break;
case TextureType::CubeRender: pbInfo = &m_boundTarget.cast<VulkanTextureCubeR>()->m_passBeginInfo[m_boundFace]; break;
default: break;
}
vk::CmdBeginRenderPass(cmdBuf, pbInfo, VK_SUBPASS_CONTENTS_INLINE);
if (clearDepth) {
VkClearAttachment clr = {};
VkClearRect rect = {};
rect.layerCount = 1;
rect.rect.extent.width = ctexture->m_width;
rect.rect.extent.height = ctexture->m_height;
clr.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT;
clr.clearValue.depthStencil.depth = 1.f;
vk::CmdClearAttachments(cmdBuf, 1, &clr, 1, &rect);
}
}
void _commitImageLayouts();
void _rollbackImageLayouts();
void execute();
#ifdef BOO_GRAPHICS_DEBUG_GROUPS
void pushDebugGroup(const char* name, const std::array<float, 4>& color) {
if (vk::CmdDebugMarkerBeginEXT) {
VkCommandBuffer cmdBuf = m_cmdBufs[m_fillBuf];
VkDebugMarkerMarkerInfoEXT markerInfo = {};
markerInfo.sType = VK_STRUCTURE_TYPE_DEBUG_MARKER_MARKER_INFO_EXT;
markerInfo.pMarkerName = name;
std::copy(color.begin(), color.end(), markerInfo.color);
vk::CmdDebugMarkerBeginEXT(cmdBuf, &markerInfo);
}
}
void popDebugGroup() {
if (vk::CmdDebugMarkerEndEXT) {
VkCommandBuffer cmdBuf = m_cmdBufs[m_fillBuf];
vk::CmdDebugMarkerEndEXT(cmdBuf);
}
}
#endif
};
void VulkanTextureR::doDestroy() {
if (m_framebuffer) {
vk::DestroyFramebuffer(m_q->m_ctx->m_dev, m_framebuffer, nullptr);
m_framebuffer = VK_NULL_HANDLE;
}
if (m_colorView) {
vk::DestroyImageView(m_q->m_ctx->m_dev, m_colorView, nullptr);
m_colorView = VK_NULL_HANDLE;
}
m_colorTex.destroy(m_q->m_ctx);
if (m_depthView) {
vk::DestroyImageView(m_q->m_ctx->m_dev, m_depthView, nullptr);
m_depthView = VK_NULL_HANDLE;
}
m_depthTex.destroy(m_q->m_ctx);
for (size_t i = 0; i < MAX_BIND_TEXS; ++i)
if (m_colorBindView[i]) {
vk::DestroyImageView(m_q->m_ctx->m_dev, m_colorBindView[i], nullptr);
m_colorBindView[i] = VK_NULL_HANDLE;
}
for (size_t i = 0; i < MAX_BIND_TEXS; ++i)
m_colorBindTex[i].destroy(m_q->m_ctx);
for (size_t i = 0; i < MAX_BIND_TEXS; ++i)
if (m_depthBindView[i]) {
vk::DestroyImageView(m_q->m_ctx->m_dev, m_depthBindView[i], nullptr);
m_depthBindView[i] = VK_NULL_HANDLE;
}
for (size_t i = 0; i < MAX_BIND_TEXS; ++i)
m_depthBindTex[i].destroy(m_q->m_ctx);
}
void VulkanTextureR::setClampMode(TextureClampMode mode) {
MakeSampler(m_q->m_ctx, m_sampler, mode, 1);
for (size_t i = 0; i < m_colorBindCount; ++i)
m_colorBindDescInfo[i].sampler = m_sampler;
for (size_t i = 0; i < m_depthBindCount; ++i)
m_depthBindDescInfo[i].sampler = m_sampler;
}
VulkanTextureR::VulkanTextureR(const boo::ObjToken<BaseGraphicsData>& parent, VulkanCommandQueue* q, size_t width,
size_t height, TextureClampMode clampMode, size_t colorBindCount, size_t depthBindCount)
: GraphicsDataNode<ITextureR>(parent)
, m_q(q)
, m_width(width)
, m_height(height)
, m_samplesColor(q->m_ctx->m_sampleCountColor)
, m_samplesDepth(q->m_ctx->m_sampleCountDepth)
, m_colorBindCount(colorBindCount)
, m_depthBindCount(depthBindCount) {
if (colorBindCount > MAX_BIND_TEXS)
Log.report(logvisor::Fatal, FMT_STRING("too many color bindings for render texture"));
if (depthBindCount > MAX_BIND_TEXS)
Log.report(logvisor::Fatal, FMT_STRING("too many depth bindings for render texture"));
if (m_samplesColor == 0)
m_samplesColor = 1;
if (m_samplesDepth == 0)
m_samplesDepth = 1;
setClampMode(clampMode);
Setup(q->m_ctx);
}
VulkanTextureR::~VulkanTextureR() {
vk::DestroyFramebuffer(m_q->m_ctx->m_dev, m_framebuffer, nullptr);
vk::DestroyImageView(m_q->m_ctx->m_dev, m_colorView, nullptr);
m_colorTex.destroy(m_q->m_ctx);
vk::DestroyImageView(m_q->m_ctx->m_dev, m_depthView, nullptr);
m_depthTex.destroy(m_q->m_ctx);
for (size_t i = 0; i < MAX_BIND_TEXS; ++i)
if (m_colorBindView[i])
vk::DestroyImageView(m_q->m_ctx->m_dev, m_colorBindView[i], nullptr);
for (size_t i = 0; i < MAX_BIND_TEXS; ++i)
m_colorBindTex[i].destroy(m_q->m_ctx);
for (size_t i = 0; i < MAX_BIND_TEXS; ++i)
if (m_depthBindView[i])
vk::DestroyImageView(m_q->m_ctx->m_dev, m_depthBindView[i], nullptr);
for (size_t i = 0; i < MAX_BIND_TEXS; ++i)
m_depthBindTex[i].destroy(m_q->m_ctx);
}
void VulkanTextureCubeR::doDestroy() {
if (m_framebuffer[0]) {
for (int i = 0; i < 6; ++i)
vk::DestroyFramebuffer(m_q->m_ctx->m_dev, m_framebuffer[i], nullptr);
m_framebuffer[0] = VK_NULL_HANDLE;
}
if (m_colorBindView) {
vk::DestroyImageView(m_q->m_ctx->m_dev, m_colorBindView, nullptr);
m_colorBindView = VK_NULL_HANDLE;
}
if (m_colorView[0]) {
for (int i = 0; i < 6; ++i)
vk::DestroyImageView(m_q->m_ctx->m_dev, m_colorView[i], nullptr);
m_colorView[0] = VK_NULL_HANDLE;
}
m_colorTex.destroy(m_q->m_ctx);
if (m_depthView[0]) {
for (int i = 0; i < 6; ++i)
vk::DestroyImageView(m_q->m_ctx->m_dev, m_depthView[i], nullptr);
m_depthView[0] = VK_NULL_HANDLE;
}
m_depthTex.destroy(m_q->m_ctx);
}
void VulkanTextureCubeR::setClampMode(TextureClampMode mode) {
MakeSampler(m_q->m_ctx, m_sampler, mode, m_mipCount);
m_colorBindDescInfo.sampler = m_sampler;
}
VulkanTextureCubeR::VulkanTextureCubeR(const boo::ObjToken<BaseGraphicsData>& parent,
VulkanCommandQueue* q, size_t width, size_t mips)
: GraphicsDataNode<ITextureCubeR>(parent)
, m_q(q)
, m_width(width)
, m_mipCount(mips) {
Setup(q->m_ctx);
}
VulkanTextureCubeR::~VulkanTextureCubeR() {
for (int i = 0; i < 6; ++i)
vk::DestroyFramebuffer(m_q->m_ctx->m_dev, m_framebuffer[i], nullptr);
vk::DestroyImageView(m_q->m_ctx->m_dev, m_colorBindView, nullptr);
for (int i = 0; i < 6; ++i)
vk::DestroyImageView(m_q->m_ctx->m_dev, m_colorView[i], nullptr);
m_colorTex.destroy(m_q->m_ctx);
for (int i = 0; i < 6; ++i)
vk::DestroyImageView(m_q->m_ctx->m_dev, m_depthView[i], nullptr);
m_depthTex.destroy(m_q->m_ctx);
}
template <class DataCls>
void VulkanGraphicsBufferD<DataCls>::update(int b) {
int slot = 1 << b;
if ((slot & m_validSlots) == 0) {
OPTICK_EVENT();
memmove(m_bufferPtrs[b], m_cpuBuf.get(), m_cpuSz);
m_validSlots |= slot;
}
}
template <class DataCls>
void VulkanGraphicsBufferD<DataCls>::load(const void* data, size_t sz) {
OPTICK_EVENT();
size_t bufSz = std::min(sz, m_cpuSz);
memmove(m_cpuBuf.get(), data, bufSz);
m_validSlots = 0;
}
template <class DataCls>
void* VulkanGraphicsBufferD<DataCls>::map(size_t sz) {
if (sz > m_cpuSz)
return nullptr;
return m_cpuBuf.get();
}
template <class DataCls>
void VulkanGraphicsBufferD<DataCls>::unmap() {
m_validSlots = 0;
}
VulkanTextureD::~VulkanTextureD() {
vk::DestroyImageView(m_q->m_ctx->m_dev, m_gpuView[0], nullptr);
vk::DestroyImageView(m_q->m_ctx->m_dev, m_gpuView[1], nullptr);
m_gpuTex[0].destroy(m_q->m_ctx);
m_gpuTex[1].destroy(m_q->m_ctx);
}
void VulkanTextureD::update(int b) {
int slot = 1 << b;
if ((slot & m_validSlots) == 0) {
m_q->stallDynamicUpload();
VkCommandBuffer cmdBuf = m_q->m_dynamicCmdBufs[b];
/* copy staging data */
memmove(m_cpuBufPtrs[b], m_stagingBuf.get(), m_cpuSz);
m_gpuTex[b].toLayout(cmdBuf, VK_IMAGE_ASPECT_COLOR_BIT,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL);
/* Put the copy command into the command buffer */
VkBufferImageCopy copyRegion = {};
copyRegion.imageSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
copyRegion.imageSubresource.mipLevel = 0;
copyRegion.imageSubresource.baseArrayLayer = 0;
copyRegion.imageSubresource.layerCount = 1;
copyRegion.imageExtent.width = m_width;
copyRegion.imageExtent.height = m_height;
copyRegion.imageExtent.depth = 1;
copyRegion.bufferOffset = m_cpuOffsets[b];
vk::CmdCopyBufferToImage(cmdBuf, m_cpuBuf, m_gpuTex[b].m_image, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1,
&copyRegion);
/* Set the layout for the texture image from DESTINATION_OPTIMAL to
* SHADER_READ_ONLY */
m_gpuTex[b].toLayout(cmdBuf, VK_IMAGE_ASPECT_COLOR_BIT,
VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL);
m_validSlots |= slot;
}
}
void VulkanTextureD::_setClampMode(TextureClampMode mode) {
MakeSampler(m_q->m_ctx, m_sampler, mode, 1);
for (int i = 0; i < 2; ++i)
m_descInfo[i].sampler = m_sampler;
}
void VulkanTextureD::setClampMode(TextureClampMode mode) {
if (m_clampMode == mode)
return;
m_clampMode = mode;
_setClampMode(mode);
}
void VulkanTextureD::load(const void* data, size_t sz) {
size_t bufSz = std::min(sz, m_cpuSz);
memmove(m_stagingBuf.get(), data, bufSz);
m_validSlots = 0;
}
void* VulkanTextureD::map(size_t sz) {
if (sz > m_cpuSz)
return nullptr;
return m_stagingBuf.get();
}
void VulkanTextureD::unmap() { m_validSlots = 0; }
VulkanDataFactoryImpl::VulkanDataFactoryImpl(IGraphicsContext* parent, VulkanContext* ctx)
: m_parent(parent), m_ctx(ctx) {}
VulkanDataFactory::Context::Context(VulkanDataFactory& parent __BooTraceArgs)
: m_parent(parent), m_data(new VulkanData(static_cast<VulkanDataFactoryImpl&>(parent) __BooTraceArgsUse)) {}
VulkanDataFactory::Context::~Context() {}
boo::ObjToken<IGraphicsBufferS> VulkanDataFactory::Context::newStaticBuffer(BufferUse use, const void* data,
size_t stride, size_t count) {
OPTICK_EVENT();
VulkanDataFactoryImpl& factory = static_cast<VulkanDataFactoryImpl&>(m_parent);
return {new VulkanGraphicsBufferS(m_data, use, factory.m_ctx, data, stride, count)};
}
boo::ObjToken<IGraphicsBufferD> VulkanDataFactory::Context::newDynamicBuffer(BufferUse use, size_t stride,
size_t count) {
OPTICK_EVENT();
VulkanDataFactoryImpl& factory = static_cast<VulkanDataFactoryImpl&>(m_parent);
return {new VulkanGraphicsBufferD<BaseGraphicsData>(m_data, use, factory.m_ctx, stride, count)};
}
boo::ObjToken<ITextureS> VulkanDataFactory::Context::newStaticTexture(size_t width, size_t height, size_t mips,
TextureFormat fmt, TextureClampMode clampMode,
const void* data, size_t sz) {
OPTICK_EVENT();
VulkanDataFactoryImpl& factory = static_cast<VulkanDataFactoryImpl&>(m_parent);
return {new VulkanTextureS(m_data, factory.m_ctx, width, height, mips, fmt, clampMode, data, sz)};
}
boo::ObjToken<ITextureSA> VulkanDataFactory::Context::newStaticArrayTexture(size_t width, size_t height, size_t layers,
size_t mips, TextureFormat fmt,
TextureClampMode clampMode,
const void* data, size_t sz) {
OPTICK_EVENT();
VulkanDataFactoryImpl& factory = static_cast<VulkanDataFactoryImpl&>(m_parent);
return {new VulkanTextureSA(m_data, factory.m_ctx, width, height, layers, mips, fmt, clampMode, data, sz)};
}
boo::ObjToken<ITextureD> VulkanDataFactory::Context::newDynamicTexture(size_t width, size_t height, TextureFormat fmt,
TextureClampMode clampMode) {
OPTICK_EVENT();
VulkanDataFactoryImpl& factory = static_cast<VulkanDataFactoryImpl&>(m_parent);
VulkanCommandQueue* q = static_cast<VulkanCommandQueue*>(factory.m_parent->getCommandQueue());
return {new VulkanTextureD(m_data, q, width, height, fmt, clampMode)};
}
boo::ObjToken<ITextureR> VulkanDataFactory::Context::newRenderTexture(size_t width, size_t height,
TextureClampMode clampMode, size_t colorBindCount,
size_t depthBindCount) {
OPTICK_EVENT();
VulkanDataFactoryImpl& factory = static_cast<VulkanDataFactoryImpl&>(m_parent);
VulkanCommandQueue* q = static_cast<VulkanCommandQueue*>(factory.m_parent->getCommandQueue());
return {new VulkanTextureR(m_data, q, width, height, clampMode, colorBindCount, depthBindCount)};
}
ObjToken<ITextureCubeR> VulkanDataFactory::Context::newCubeRenderTexture(size_t width, size_t mips) {
OPTICK_EVENT();
VulkanDataFactoryImpl& factory = static_cast<VulkanDataFactoryImpl&>(m_parent);
VulkanCommandQueue* q = static_cast<VulkanCommandQueue*>(factory.m_parent->getCommandQueue());
return {new VulkanTextureCubeR(m_data, q, width, mips)};
}
ObjToken<IShaderStage> VulkanDataFactory::Context::newShaderStage(const uint8_t* data, size_t size,
PipelineStage stage) {
OPTICK_EVENT();
VulkanDataFactoryImpl& factory = static_cast<VulkanDataFactoryImpl&>(m_parent);
if (stage == PipelineStage::Control || stage == PipelineStage::Evaluation) {
if (!factory.m_ctx->m_features.tessellationShader)
Log.report(logvisor::Fatal, FMT_STRING("Device does not support tessellation shaders"));
}
return {new VulkanShaderStage(m_data, factory.m_ctx, data, size, stage)};
}
ObjToken<IShaderPipeline> VulkanDataFactory::Context::newShaderPipeline(
ObjToken<IShaderStage> vertex, ObjToken<IShaderStage> fragment, ObjToken<IShaderStage> geometry,
ObjToken<IShaderStage> control, ObjToken<IShaderStage> evaluation, const VertexFormatInfo& vtxFmt,
const AdditionalPipelineInfo& additionalInfo, bool asynchronous) {
OPTICK_EVENT();
VulkanDataFactoryImpl& factory = static_cast<VulkanDataFactoryImpl&>(m_parent);
if (control || evaluation) {
if (!factory.m_ctx->m_features.tessellationShader)
Log.report(logvisor::Fatal, FMT_STRING("Device does not support tessellation shaders"));
if (additionalInfo.patchSize > factory.m_ctx->m_gpuProps.limits.maxTessellationPatchSize)
Log.report(logvisor::Fatal, FMT_STRING("Device supports {} patch vertices, {} requested"),
int(factory.m_ctx->m_gpuProps.limits.maxTessellationPatchSize), int(additionalInfo.patchSize));
}
return {new VulkanShaderPipeline(m_data, factory.m_ctx, vertex, fragment, geometry, control, evaluation,
VK_NULL_HANDLE, vtxFmt, additionalInfo, asynchronous)};
}
boo::ObjToken<IShaderDataBinding> VulkanDataFactory::Context::newShaderDataBinding(
const boo::ObjToken<IShaderPipeline>& pipeline, const boo::ObjToken<IGraphicsBuffer>& vbuf,
const boo::ObjToken<IGraphicsBuffer>& instVbuf, const boo::ObjToken<IGraphicsBuffer>& ibuf, size_t ubufCount,
const boo::ObjToken<IGraphicsBuffer>* ubufs, const PipelineStage* /*ubufStages*/, const size_t* ubufOffs,
const size_t* ubufSizes, size_t texCount, const boo::ObjToken<ITexture>* texs, const int* bindIdxs,
const bool* bindDepth, size_t baseVert, size_t baseInst) {
OPTICK_EVENT();
VulkanDataFactoryImpl& factory = static_cast<VulkanDataFactoryImpl&>(m_parent);
return {new VulkanShaderDataBinding(m_data, factory, pipeline, vbuf, instVbuf, ibuf, ubufCount, ubufs, ubufOffs,
ubufSizes, texCount, texs, bindIdxs, bindDepth, baseVert, baseInst)};
}
void VulkanDataFactoryImpl::commitTransaction(
const std::function<bool(IGraphicsDataFactory::Context&)>& trans __BooTraceArgs) {
Context ctx(*this __BooTraceArgsUse);
if (!trans(ctx))
return;
VulkanData* data = ctx.m_data.cast<VulkanData>();
/* Start asynchronous shader compiles */
if (data->m_SPs)
for (IShaderPipeline& p : *data->m_SPs) {
auto& cp = static_cast<VulkanShaderPipeline&>(p);
if (cp.m_asynchronous)
m_pipelineQueue.addPipeline({&p});
}
/* size up resources */
VkDeviceSize constantMemSizes[3] = {};
VkDeviceSize texMemSize = 0;
if (data->m_SBufs)
for (IGraphicsBufferS& buf : *data->m_SBufs) {
auto& cbuf = static_cast<VulkanGraphicsBufferS&>(buf);
if (cbuf.m_use == BufferUse::Null)
continue;
VkDeviceSize& sz = constantMemSizes[int(cbuf.m_use) - 1];
sz = cbuf.sizeForGPU(m_ctx, sz);
}
if (data->m_DBufs)
for (IGraphicsBufferD& buf : *data->m_DBufs) {
auto& cbuf = static_cast<VulkanGraphicsBufferD<BaseGraphicsData>&>(buf);
if (cbuf.m_use == BufferUse::Null)
continue;
VkDeviceSize& sz = constantMemSizes[int(cbuf.m_use) - 1];
sz = cbuf.sizeForGPU(m_ctx, sz);
}
if (data->m_DTexs)
for (ITextureD& tex : *data->m_DTexs) {
auto& ctex = static_cast<VulkanTextureD&>(tex);
texMemSize = ctex.sizeForGPU(m_ctx, texMemSize);
}
std::unique_lock<std::mutex> qlk(m_ctx->m_queueLock);
/* allocate memory and place buffers */
for (int i = 0; i < 3; ++i) {
if (constantMemSizes[i]) {
AllocatedBuffer& poolBuf = data->m_constantBuffers[i];
VkBufferCreateInfo createInfo = {};
createInfo.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
createInfo.size = constantMemSizes[i];
createInfo.usage = USE_TABLE[i + 1];
createInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
uint8_t* mappedData = reinterpret_cast<uint8_t*>(poolBuf.createCPUtoGPU(m_ctx, &createInfo));
if (data->m_SBufs)
for (IGraphicsBufferS& buf : *data->m_SBufs) {
auto& cbuf = static_cast<VulkanGraphicsBufferS&>(buf);
if (int(cbuf.m_use) - 1 != i)
continue;
cbuf.placeForGPU(poolBuf.m_buffer, mappedData);
}
if (data->m_DBufs)
for (IGraphicsBufferD& buf : *data->m_DBufs) {
auto& cbuf = static_cast<VulkanGraphicsBufferD<BaseGraphicsData>&>(buf);
if (int(cbuf.m_use) - 1 != i)
continue;
cbuf.placeForGPU(poolBuf.m_buffer, mappedData);
}
}
}
/* place static textures */
if (data->m_STexs) {
OPTICK_EVENT("m_STexs place static textures");
for (ITextureS& tex : *data->m_STexs)
static_cast<VulkanTextureS&>(tex).placeForGPU(m_ctx);
}
if (data->m_SATexs) {
OPTICK_EVENT("m_SATexs place static textures");
for (ITextureSA& tex : *data->m_SATexs)
static_cast<VulkanTextureSA&>(tex).placeForGPU(m_ctx);
}
/* allocate memory and place dynamic textures */
if (texMemSize) {
OPTICK_EVENT("place dynamic textures");
AllocatedBuffer& poolBuf = data->m_texStagingBuffer;
VkBufferCreateInfo createInfo = {};
createInfo.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
createInfo.size = texMemSize;
createInfo.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT;
createInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
uint8_t* mappedData = reinterpret_cast<uint8_t*>(poolBuf.createCPUtoGPU(m_ctx, &createInfo));
if (data->m_DTexs)
for (ITextureD& tex : *data->m_DTexs)
static_cast<VulkanTextureD&>(tex).placeForGPU(m_ctx, poolBuf.m_buffer, mappedData);
}
/* initialize bind texture layout */
if (data->m_RTexs)
for (ITextureR& tex : *data->m_RTexs)
static_cast<VulkanTextureR&>(tex).initializeBindLayouts(m_ctx);
{
/* Execute static uploads */
OPTICK_EVENT("vk::EndCommandBuffer");
ThrowIfFailed(vk::EndCommandBuffer(m_ctx->m_loadCmdBuf));
}
{
/* Take exclusive lock here and submit queue */
OPTICK_EVENT("vk::QueueWaitIdle");
ThrowIfFailed(vk::QueueWaitIdle(m_ctx->m_queue));
}
{
OPTICK_EVENT("vk::QueueSubmit");
VkSubmitInfo submitInfo = {};
submitInfo.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;
submitInfo.commandBufferCount = 1;
submitInfo.pCommandBuffers = &m_ctx->m_loadCmdBuf;
ThrowIfFailed(vk::QueueSubmit(m_ctx->m_queue, 1, &submitInfo, VK_NULL_HANDLE));
}
/* Commit data bindings (create descriptor sets) */
if (data->m_SBinds) {
OPTICK_EVENT("Commit data bindings");
for (IShaderDataBinding& bind : *data->m_SBinds)
static_cast<VulkanShaderDataBinding&>(bind).commit(m_ctx);
}
{
/* Wait for uploads to complete */
OPTICK_EVENT("vk::QueueWaitIdle");
ThrowIfFailed(vk::QueueWaitIdle(m_ctx->m_queue));
qlk.unlock();
}
{
/* Reset command buffer */
OPTICK_EVENT("vk::ResetCommandBuffer");
ThrowIfFailed(vk::ResetCommandBuffer(m_ctx->m_loadCmdBuf, 0));
}
{
OPTICK_EVENT("vk::BeginCommandBuffer");
VkCommandBufferBeginInfo cmdBufBeginInfo = {};
cmdBufBeginInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO;
cmdBufBeginInfo.flags = VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT;
ThrowIfFailed(vk::BeginCommandBuffer(m_ctx->m_loadCmdBuf, &cmdBufBeginInfo));
}
/* Delete upload objects */
if (data->m_STexs) {
OPTICK_EVENT("m_STexs deleteUploadObjects");
for (ITextureS& tex : *data->m_STexs)
static_cast<VulkanTextureS&>(tex).deleteUploadObjects();
}
if (data->m_SATexs) {
OPTICK_EVENT("m_SATexs deleteUploadObjects");
for (ITextureSA& tex : *data->m_SATexs)
static_cast<VulkanTextureSA&>(tex).deleteUploadObjects();
}
}
boo::ObjToken<IGraphicsBufferD> VulkanDataFactoryImpl::newPoolBuffer(BufferUse use, size_t stride,
size_t count __BooTraceArgs) {
boo::ObjToken<BaseGraphicsPool> pool(new VulkanPool(*this __BooTraceArgsUse));
VulkanPool* cpool = pool.cast<VulkanPool>();
VulkanGraphicsBufferD<BaseGraphicsPool>* retval =
new VulkanGraphicsBufferD<BaseGraphicsPool>(pool, use, m_ctx, stride, count);
VkDeviceSize size = retval->sizeForGPU(m_ctx, 0);
/* allocate memory */
if (size) {
AllocatedBuffer& poolBuf = cpool->m_constantBuffer;
VkBufferCreateInfo createInfo = {};
createInfo.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
createInfo.size = size;
createInfo.usage = USE_TABLE[int(use)];
createInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
uint8_t* mappedData = reinterpret_cast<uint8_t*>(poolBuf.createCPUtoGPU(m_ctx, &createInfo));
retval->placeForGPU(poolBuf.m_buffer, mappedData);
}
return {retval};
}
void VulkanCommandQueue::_commitImageLayouts() {
VulkanDataFactoryImpl* gfxF = static_cast<VulkanDataFactoryImpl*>(m_parent->getDataFactory());
if (gfxF->m_dataHead) {
for (BaseGraphicsData& d : *gfxF->m_dataHead) {
if (d.m_RTexs)
for (ITextureR& t : *d.m_RTexs)
static_cast<VulkanTextureR&>(t).commitLayouts();
if (d.m_CubeRTexs)
for (ITextureCubeR& t : *d.m_CubeRTexs)
static_cast<VulkanTextureCubeR&>(t).commitLayouts();
}
}
}
void VulkanCommandQueue::_rollbackImageLayouts() {
VulkanDataFactoryImpl* gfxF = static_cast<VulkanDataFactoryImpl*>(m_parent->getDataFactory());
if (gfxF->m_dataHead) {
for (BaseGraphicsData& d : *gfxF->m_dataHead) {
if (d.m_RTexs)
for (ITextureR& t : *d.m_RTexs)
static_cast<VulkanTextureR&>(t).rollbackLayouts();
if (d.m_CubeRTexs)
for (ITextureCubeR& t : *d.m_CubeRTexs)
static_cast<VulkanTextureCubeR&>(t).rollbackLayouts();
}
}
}
void VulkanCommandQueue::execute() {
if (!m_running)
return;
SCOPED_GRAPHICS_DEBUG_GROUP(this, "VulkanCommandQueue::execute", {1.f, 0.f, 0.f, 1.f});
/* Stage dynamic uploads */
{
OPTICK_EVENT("Stage dynamic uploads");
VulkanDataFactoryImpl* gfxF = static_cast<VulkanDataFactoryImpl*>(m_parent->getDataFactory());
std::unique_lock<std::recursive_mutex> datalk(gfxF->m_dataMutex);
if (gfxF->m_dataHead) {
for (BaseGraphicsData& d : *gfxF->m_dataHead) {
if (d.m_DBufs)
for (IGraphicsBufferD& b : *d.m_DBufs)
static_cast<VulkanGraphicsBufferD<BaseGraphicsData>&>(b).update(m_fillBuf);
if (d.m_DTexs)
for (ITextureD& t : *d.m_DTexs)
static_cast<VulkanTextureD&>(t).update(m_fillBuf);
}
}
if (gfxF->m_poolHead) {
for (BaseGraphicsPool& p : *gfxF->m_poolHead) {
if (p.m_DBufs)
for (IGraphicsBufferD& b : *p.m_DBufs)
static_cast<VulkanGraphicsBufferD<BaseGraphicsData>&>(b).update(m_fillBuf);
}
}
datalk.unlock();
}
/* Perform dynamic uploads */
{
OPTICK_EVENT("Perform dynamic uploads");
std::unique_lock<std::mutex> lk(m_ctx->m_queueLock);
if (!m_dynamicNeedsReset) {
vk::EndCommandBuffer(m_dynamicCmdBufs[m_fillBuf]);
vk::WaitForFences(m_ctx->m_dev, 1, &m_dynamicBufFence, VK_FALSE, -1);
vk::ResetFences(m_ctx->m_dev, 1, &m_dynamicBufFence);
VkSubmitInfo submitInfo = {};
submitInfo.pNext = nullptr;
submitInfo.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;
submitInfo.waitSemaphoreCount = 0;
submitInfo.pWaitSemaphores = nullptr;
submitInfo.pWaitDstStageMask = nullptr;
submitInfo.commandBufferCount = 1;
submitInfo.pCommandBuffers = &m_dynamicCmdBufs[m_fillBuf];
submitInfo.signalSemaphoreCount = 0;
submitInfo.pSignalSemaphores = nullptr;
ThrowIfFailed(vk::QueueSubmit(m_ctx->m_queue, 1, &submitInfo, m_dynamicBufFence));
}
}
vk::CmdEndRenderPass(m_cmdBufs[m_fillBuf]);
m_boundTarget.reset();
{
OPTICK_EVENT("Check on fence");
/* Check on fence */
if (m_submitted && vk::GetFenceStatus(m_ctx->m_dev, m_drawCompleteFence) == VK_NOT_READY) {
/* Abandon this list (renderer too slow) */
resetCommandBuffer();
_rollbackImageLayouts();
m_dynamicNeedsReset = true;
m_resolveDispSource = nullptr;
/* Clear dead data */
m_drawResTokens[m_fillBuf].clear();
return;
}
m_submitted = false;
}
{
OPTICK_EVENT("vk::ResetFences");
vk::ResetFences(m_ctx->m_dev, 1, &m_drawCompleteFence);
}
/* Perform texture and swap-chain resizes */
if (m_ctx->_resizeSwapChains() || m_texResizes.size() || m_cubeTexResizes.size()) {
for (const auto& resize : m_texResizes)
resize.first->resize(m_ctx, resize.second.first, resize.second.second);
m_texResizes.clear();
for (const auto& resize : m_cubeTexResizes)
resize.first->resize(m_ctx, resize.second.first, resize.second.second);
m_cubeTexResizes.clear();
resetCommandBuffer();
_rollbackImageLayouts();
m_dynamicNeedsReset = true;
m_resolveDispSource = nullptr;
return;
}
/* Clear dead data */
m_drawResTokens[m_drawBuf].clear();
m_drawBuf = m_fillBuf;
m_fillBuf ^= 1;
/* Queue the command buffer for execution */
VkPipelineStageFlags pipeStageFlags = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
VkSubmitInfo submitInfo = {};
submitInfo.pNext = nullptr;
submitInfo.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;
submitInfo.waitSemaphoreCount = 0;
submitInfo.pWaitSemaphores = nullptr;
submitInfo.pWaitDstStageMask = &pipeStageFlags;
submitInfo.commandBufferCount = 1;
submitInfo.pCommandBuffers = &m_cmdBufs[m_drawBuf];
submitInfo.signalSemaphoreCount = 0;
submitInfo.pSignalSemaphores = nullptr;
if (_resolveDisplay()) {
submitInfo.waitSemaphoreCount = 1;
submitInfo.pWaitSemaphores = &m_swapChainReadySem;
submitInfo.signalSemaphoreCount = 1;
submitInfo.pSignalSemaphores = &m_drawCompleteSem;
}
{
OPTICK_EVENT("vk::QueueSubmit");
ThrowIfFailed(vk::EndCommandBuffer(m_cmdBufs[m_drawBuf]));
ThrowIfFailed(vk::QueueSubmit(m_ctx->m_queue, 1, &submitInfo, m_drawCompleteFence));
}
m_submitted = true;
if (submitInfo.signalSemaphoreCount) {
VulkanContext::Window::SwapChain& thisSc = m_windowCtx->m_swapChains[m_windowCtx->m_activeSwapChain];
VkPresentInfoKHR present;
present.sType = VK_STRUCTURE_TYPE_PRESENT_INFO_KHR;
present.pNext = nullptr;
present.swapchainCount = 1;
present.pSwapchains = &thisSc.m_swapChain;
present.pImageIndices = &thisSc.m_backBuf;
present.waitSemaphoreCount = 1;
present.pWaitSemaphores = &m_drawCompleteSem;
present.pResults = nullptr;
OPTICK_GPU_FLIP(&thisSc.m_swapChain);
VkResult res = vk::QueuePresentKHR(m_ctx->m_queue, &present);
if (res == VK_ERROR_OUT_OF_DATE_KHR) {
// ignore, resize deferred
} else {
ThrowIfFailed(res);
}
}
resetCommandBuffer();
resetDynamicCommandBuffer();
_commitImageLayouts();
}
std::unique_ptr<IGraphicsCommandQueue> _NewVulkanCommandQueue(VulkanContext* ctx, VulkanContext::Window* windowCtx,
IGraphicsContext* parent) {
return std::make_unique<VulkanCommandQueue>(ctx, windowCtx, parent);
}
std::unique_ptr<IGraphicsDataFactory> _NewVulkanDataFactory(IGraphicsContext* parent, VulkanContext* ctx) {
return std::make_unique<VulkanDataFactoryImpl>(parent, ctx);
}
static const EShLanguage ShaderTypes[] = {EShLangVertex, EShLangVertex, EShLangFragment,
EShLangGeometry, EShLangTessControl, EShLangTessEvaluation};
std::vector<uint8_t> VulkanDataFactory::CompileGLSL(const char* source, PipelineStage stage) {
EShLanguage lang = ShaderTypes[int(stage)];
const EShMessages messages = EShMessages(EShMsgSpvRules | EShMsgVulkanRules);
glslang::TShader shader(lang);
shader.setStrings(&source, 1);
if (!shader.parse(&glslang::DefaultTBuiltInResource, 110, false, messages)) {
fmt::print(FMT_STRING("{}\n"), source);
Log.report(logvisor::Fatal, FMT_STRING("unable to compile shader\n{}"), shader.getInfoLog());
}
glslang::TProgram prog;
prog.addShader(&shader);
if (!prog.link(messages)) {
Log.report(logvisor::Fatal, FMT_STRING("unable to link shader program\n{}"), prog.getInfoLog());
}
std::vector<unsigned int> out;
glslang::GlslangToSpv(*prog.getIntermediate(lang), out);
// spv::Disassemble(std::cerr, out);
std::vector<uint8_t> ret(out.size() * 4);
memcpy(ret.data(), out.data(), ret.size());
return ret;
}
} // namespace boo