boo/lib/audiodev/WASAPI.cpp

552 lines
18 KiB
C++

#include "../win/Win32Common.hpp"
#include "AudioVoiceEngine.hpp"
#include "logvisor/logvisor.hpp"
#include <Mmdeviceapi.h>
#include <Audioclient.h>
#include <mmsystem.h>
#include <iterator>
const CLSID CLSID_MMDeviceEnumerator = __uuidof(MMDeviceEnumerator);
const IID IID_IMMDeviceEnumerator = __uuidof(IMMDeviceEnumerator);
const IID IID_IAudioClient = __uuidof(IAudioClient);
const IID IID_IAudioRenderClient = __uuidof(IAudioRenderClient);
namespace boo
{
static logvisor::Module Log("boo::WASAPI");
struct WASAPIAudioVoiceEngine : BaseAudioVoiceEngine
{
ComPtr<IMMDevice> m_device;
ComPtr<IAudioClient> m_audClient;
ComPtr<IAudioRenderClient> m_renderClient;
WASAPIAudioVoiceEngine()
{
/* Enumerate default audio device */
ComPtr<IMMDeviceEnumerator> pEnumerator;
if (FAILED(CoCreateInstance(CLSID_MMDeviceEnumerator, nullptr,
CLSCTX_ALL, IID_IMMDeviceEnumerator,
&pEnumerator)))
{
Log.report(logvisor::Fatal, L"unable to create MMDeviceEnumerator instance");
return;
}
if (FAILED(pEnumerator->GetDefaultAudioEndpoint(eRender, eConsole, &m_device)))
{
Log.report(logvisor::Fatal, L"unable to obtain default audio device");
m_device.Reset();
return;
}
if (FAILED(m_device->Activate(IID_IAudioClient, CLSCTX_ALL, nullptr, &m_audClient)))
{
Log.report(logvisor::Fatal, L"unable to create audio client from device");
m_device.Reset();
return;
}
WAVEFORMATEXTENSIBLE* pwfx;
if (FAILED(m_audClient->GetMixFormat((WAVEFORMATEX**)&pwfx)))
{
Log.report(logvisor::Fatal, L"unable to obtain audio mix format from device");
m_device.Reset();
return;
}
/* Get channel information */
if ((pwfx->dwChannelMask & (SPEAKER_FRONT_LEFT|SPEAKER_FRONT_RIGHT)) == (SPEAKER_FRONT_LEFT|SPEAKER_FRONT_RIGHT))
{
m_mixInfo.m_channels = AudioChannelSet::Stereo;
if ((pwfx->dwChannelMask & (SPEAKER_BACK_LEFT|SPEAKER_BACK_RIGHT)) == (SPEAKER_BACK_LEFT|SPEAKER_BACK_RIGHT))
{
m_mixInfo.m_channels = AudioChannelSet::Quad;
if ((pwfx->dwChannelMask & (SPEAKER_FRONT_CENTER|SPEAKER_LOW_FREQUENCY)) == (SPEAKER_FRONT_CENTER|SPEAKER_LOW_FREQUENCY))
{
m_mixInfo.m_channels = AudioChannelSet::Surround51;
if ((pwfx->dwChannelMask & (SPEAKER_SIDE_LEFT|SPEAKER_SIDE_RIGHT)) == (SPEAKER_SIDE_LEFT|SPEAKER_SIDE_RIGHT))
{
m_mixInfo.m_channels = AudioChannelSet::Surround71;
}
}
}
}
ChannelMap& chMapOut = m_mixInfo.m_channelMap;
switch (pwfx->Format.nChannels)
{
case 2:
chMapOut.m_channelCount = 2;
chMapOut.m_channels[0] = AudioChannel::FrontLeft;
chMapOut.m_channels[1] = AudioChannel::FrontRight;
break;
case 4:
chMapOut.m_channelCount = 4;
chMapOut.m_channels[0] = AudioChannel::FrontLeft;
chMapOut.m_channels[1] = AudioChannel::FrontRight;
chMapOut.m_channels[2] = AudioChannel::RearLeft;
chMapOut.m_channels[3] = AudioChannel::RearRight;
break;
case 5:
chMapOut.m_channelCount = 5;
chMapOut.m_channels[0] = AudioChannel::FrontLeft;
chMapOut.m_channels[1] = AudioChannel::FrontRight;
chMapOut.m_channels[2] = AudioChannel::FrontCenter;
chMapOut.m_channels[3] = AudioChannel::RearLeft;
chMapOut.m_channels[4] = AudioChannel::RearRight;
break;
case 6:
chMapOut.m_channelCount = 6;
chMapOut.m_channels[0] = AudioChannel::FrontLeft;
chMapOut.m_channels[1] = AudioChannel::FrontRight;
chMapOut.m_channels[2] = AudioChannel::FrontCenter;
chMapOut.m_channels[3] = AudioChannel::LFE;
chMapOut.m_channels[4] = AudioChannel::RearLeft;
chMapOut.m_channels[5] = AudioChannel::RearRight;
break;
case 8:
chMapOut.m_channelCount = 8;
chMapOut.m_channels[0] = AudioChannel::FrontLeft;
chMapOut.m_channels[1] = AudioChannel::FrontRight;
chMapOut.m_channels[2] = AudioChannel::FrontCenter;
chMapOut.m_channels[3] = AudioChannel::LFE;
chMapOut.m_channels[4] = AudioChannel::RearLeft;
chMapOut.m_channels[5] = AudioChannel::RearRight;
chMapOut.m_channels[6] = AudioChannel::SideLeft;
chMapOut.m_channels[7] = AudioChannel::SideRight;
break;
default:
Log.report(logvisor::Warning, "unknown channel layout %u; using stereo", pwfx->Format.nChannels);
chMapOut.m_channelCount = 2;
chMapOut.m_channels[0] = AudioChannel::FrontLeft;
chMapOut.m_channels[1] = AudioChannel::FrontRight;
break;
}
/* Initialize audio client */
if (FAILED(m_audClient->Initialize(
AUDCLNT_SHAREMODE_SHARED,
0,
1000000,
0,
(WAVEFORMATEX*)pwfx,
nullptr)))
{
Log.report(logvisor::Fatal, L"unable to initialize audio client");
m_device.Reset();
CoTaskMemFree(pwfx);
return;
}
m_mixInfo.m_sampleRate = pwfx->Format.nSamplesPerSec;
m_5msFrames = (m_mixInfo.m_sampleRate * 5 / 500 + 1) / 2;
if (pwfx->Format.wFormatTag == WAVE_FORMAT_PCM ||
(pwfx->Format.wFormatTag == WAVE_FORMAT_EXTENSIBLE && pwfx->SubFormat == KSDATAFORMAT_SUBTYPE_PCM))
{
if (pwfx->Format.wBitsPerSample == 16)
{
m_mixInfo.m_sampleFormat = SOXR_INT16_I;
m_mixInfo.m_bitsPerSample = 16;
}
else if (pwfx->Format.wBitsPerSample == 32)
{
m_mixInfo.m_sampleFormat = SOXR_INT32_I;
m_mixInfo.m_bitsPerSample = 32;
}
else
{
Log.report(logvisor::Fatal, L"unsupported bits-per-sample %d", pwfx->Format.wBitsPerSample);
m_device.Reset();
return;
}
}
else if (pwfx->Format.wFormatTag == WAVE_FORMAT_IEEE_FLOAT ||
(pwfx->Format.wFormatTag == WAVE_FORMAT_EXTENSIBLE && pwfx->SubFormat == KSDATAFORMAT_SUBTYPE_IEEE_FLOAT))
{
if (pwfx->Format.wBitsPerSample == 32)
{
m_mixInfo.m_sampleFormat = SOXR_FLOAT32_I;
m_mixInfo.m_bitsPerSample = 32;
}
else
{
Log.report(logvisor::Fatal, L"unsupported floating-point bits-per-sample %d", pwfx->Format.wBitsPerSample);
m_device.Reset();
return;
}
}
CoTaskMemFree(pwfx);
UINT32 bufferFrameCount;
if (FAILED(m_audClient->GetBufferSize(&bufferFrameCount)))
{
Log.report(logvisor::Fatal, L"unable to get audio buffer frame count");
m_device.Reset();
return;
}
m_mixInfo.m_periodFrames = bufferFrameCount;
if (FAILED(m_audClient->GetService(IID_IAudioRenderClient, &m_renderClient)))
{
Log.report(logvisor::Fatal, L"unable to create audio render client");
m_device.Reset();
return;
}
}
bool m_started = false;
void pumpAndMixVoices()
{
UINT32 numFramesPadding;
if (FAILED(m_audClient->GetCurrentPadding(&numFramesPadding)))
{
Log.report(logvisor::Fatal, L"unable to get available buffer frames");
return;
}
size_t frames = m_mixInfo.m_periodFrames - numFramesPadding;
if (frames <= 0)
return;
BYTE* bufOut;
if (FAILED(m_renderClient->GetBuffer(frames, &bufOut)))
{
Log.report(logvisor::Fatal, L"unable to map audio buffer");
return;
}
DWORD flags = 0;
switch (m_mixInfo.m_sampleFormat)
{
case SOXR_INT16_I:
_pumpAndMixVoices(frames, reinterpret_cast<int16_t*>(bufOut));
break;
case SOXR_INT32_I:
_pumpAndMixVoices(frames, reinterpret_cast<int32_t*>(bufOut));
break;
case SOXR_FLOAT32_I:
_pumpAndMixVoices(frames, reinterpret_cast<float*>(bufOut));
break;
default:
flags = AUDCLNT_BUFFERFLAGS_SILENT;
break;
}
if (FAILED(m_renderClient->ReleaseBuffer(frames, flags)))
{
Log.report(logvisor::Fatal, L"unable to unmap audio buffer");
return;
}
if (!m_started)
{
if (FAILED(m_audClient->Start()))
{
Log.report(logvisor::Fatal, L"unable to start audio client");
m_device.Reset();
return;
}
m_started = true;
}
}
std::vector<std::pair<std::string, std::string>> enumerateMIDIDevices() const
{
std::vector<std::pair<std::string, std::string>> ret;
UINT numInDevices = midiInGetNumDevs();
UINT numOutDevices = midiOutGetNumDevs();
ret.reserve(numInDevices + numOutDevices);
for (UINT i=0 ; i<numInDevices ; ++i)
{
char name[256];
snprintf(name, 256, "in%u", i);
MIDIINCAPS caps;
if (FAILED(midiInGetDevCaps(i, &caps, sizeof(caps))))
continue;
#ifdef UNICODE
int sizeNeeded = WideCharToMultiByte(CP_UTF8, 0, caps.szPname, -1, nullptr, 0, nullptr, nullptr);
std::string strTo(sizeNeeded, 0);
WideCharToMultiByte(CP_UTF8, 0, caps.szPname, -1, &strTo[0], sizeNeeded, nullptr, nullptr);
ret.push_back(std::make_pair(std::string(name), std::move(strTo)));
#else
ret.push_back(std::make_pair(std::string(name), std::string(caps.szPname)));
#endif
}
for (UINT i=0 ; i<numOutDevices ; ++i)
{
char name[256];
snprintf(name, 256, "out%u", i);
MIDIOUTCAPS caps;
if (FAILED(midiOutGetDevCaps(i, &caps, sizeof(caps))))
continue;
#ifdef UNICODE
int sizeNeeded = WideCharToMultiByte(CP_UTF8, 0, caps.szPname, -1, nullptr, 0, nullptr, nullptr);
std::string strTo(sizeNeeded, 0);
WideCharToMultiByte(CP_UTF8, 0, caps.szPname, -1, &strTo[0], sizeNeeded, nullptr, nullptr);
ret.push_back(std::make_pair(std::string(name), std::move(strTo)));
#else
ret.push_back(std::make_pair(std::string(name), std::string(caps.szPname)));
#endif
}
return ret;
}
static void MIDIReceiveProc(HMIDIIN hMidiIn,
UINT wMsg,
IMIDIReceiver* dwInstance,
DWORD_PTR dwParam1,
DWORD_PTR dwParam2)
{
if (wMsg == MIM_DATA)
{
uint8_t (&ptr)[3] = reinterpret_cast<uint8_t(&)[3]>(dwParam1);
std::vector<uint8_t> bytes(std::cbegin(ptr), std::cend(ptr));
dwInstance->m_receiver(std::move(bytes));
}
}
struct MIDIIn : public IMIDIIn
{
HMIDIIN m_midi = 0;
MIDIIn(bool virt, ReceiveFunctor&& receiver)
: IMIDIIn(virt, std::move(receiver)) {}
~MIDIIn()
{
midiInClose(m_midi);
}
std::string description() const
{
UINT id = 0;
midiInGetID(m_midi, &id);
MIDIINCAPS caps;
if (FAILED(midiInGetDevCaps(id, &caps, sizeof(caps))))
return {};
#ifdef UNICODE
int sizeNeeded = WideCharToMultiByte(CP_UTF8, 0, caps.szPname, -1, nullptr, 0, nullptr, nullptr);
std::string strTo(sizeNeeded, 0);
WideCharToMultiByte(CP_UTF8, 0, caps.szPname, -1, &strTo[0], sizeNeeded, nullptr, nullptr);
return strTo;
#else
return caps.szPname;
#endif
}
};
struct MIDIOut : public IMIDIOut
{
HMIDIOUT m_midi = 0;
HMIDISTRM m_strm = 0;
uint8_t m_buf[512];
MIDIHDR m_hdr = {};
MIDIOut(bool virt) : IMIDIOut(virt) {}
void prepare()
{
UINT id = 0;
midiOutGetID(m_midi, &id);
m_hdr.lpData = reinterpret_cast<LPSTR>(m_buf);
m_hdr.dwBufferLength = 512;
m_hdr.dwFlags = MHDR_ISSTRM;
midiOutPrepareHeader(m_midi, &m_hdr, sizeof(m_hdr));
midiStreamOpen(&m_strm, &id, 1, NULL, NULL, CALLBACK_NULL);
}
~MIDIOut()
{
midiStreamClose(m_strm);
midiOutUnprepareHeader(m_midi, &m_hdr, sizeof(m_hdr));
midiOutClose(m_midi);
}
std::string description() const
{
UINT id = 0;
midiOutGetID(m_midi, &id);
MIDIOUTCAPS caps;
if (FAILED(midiOutGetDevCaps(id, &caps, sizeof(caps))))
return {};
#ifdef UNICODE
int sizeNeeded = WideCharToMultiByte(CP_UTF8, 0, caps.szPname, -1, nullptr, 0, nullptr, nullptr);
std::string strTo(sizeNeeded, 0);
WideCharToMultiByte(CP_UTF8, 0, caps.szPname, -1, &strTo[0], sizeNeeded, nullptr, nullptr);
return strTo;
#else
return caps.szPname;
#endif
}
size_t send(const void* buf, size_t len) const
{
memcpy(((MIDIOut*)this)->m_buf, buf, std::min(len, size_t(512)));
((MIDIOut*)this)->m_hdr.dwBytesRecorded = len;
midiStreamOut(m_strm, LPMIDIHDR(&m_hdr), sizeof(m_hdr));
return len;
}
};
struct MIDIInOut : public IMIDIInOut
{
HMIDIIN m_midiIn = 0;
HMIDIOUT m_midiOut = 0;
HMIDISTRM m_strm = 0;
uint8_t m_buf[512];
MIDIHDR m_hdr = {};
MIDIInOut(bool virt, ReceiveFunctor&& receiver)
: IMIDIInOut(virt, std::move(receiver)) {}
void prepare()
{
UINT id = 0;
midiOutGetID(m_midiOut, &id);
m_hdr.lpData = reinterpret_cast<LPSTR>(m_buf);
m_hdr.dwBufferLength = 512;
m_hdr.dwFlags = MHDR_ISSTRM;
midiOutPrepareHeader(m_midiOut, &m_hdr, sizeof(m_hdr));
midiStreamOpen(&m_strm, &id, 1, NULL, NULL, CALLBACK_NULL);
}
~MIDIInOut()
{
midiInClose(m_midiIn);
midiStreamClose(m_strm);
midiOutUnprepareHeader(m_midiOut, &m_hdr, sizeof(m_hdr));
midiOutClose(m_midiOut);
}
std::string description() const
{
UINT id = 0;
midiOutGetID(m_midiOut, &id);
MIDIOUTCAPS caps;
if (FAILED(midiOutGetDevCaps(id, &caps, sizeof(caps))))
return {};
#ifdef UNICODE
int sizeNeeded = WideCharToMultiByte(CP_UTF8, 0, caps.szPname, -1, nullptr, 0, nullptr, nullptr);
std::string strTo(sizeNeeded, 0);
WideCharToMultiByte(CP_UTF8, 0, caps.szPname, -1, &strTo[0], sizeNeeded, nullptr, nullptr);
return strTo;
#else
return caps.szPname;
#endif
}
size_t send(const void* buf, size_t len) const
{
memcpy(((MIDIOut*)this)->m_buf, buf, std::min(len, size_t(512)));
((MIDIOut*)this)->m_hdr.dwBytesRecorded = len;
midiStreamOut(m_strm, LPMIDIHDR(&m_hdr), sizeof(m_hdr));
return len;
}
};
std::unique_ptr<IMIDIIn> newVirtualMIDIIn(ReceiveFunctor&& receiver)
{
return {};
}
std::unique_ptr<IMIDIOut> newVirtualMIDIOut()
{
return {};
}
std::unique_ptr<IMIDIInOut> newVirtualMIDIInOut(ReceiveFunctor&& receiver)
{
return {};
}
std::unique_ptr<IMIDIIn> newRealMIDIIn(const char* name, ReceiveFunctor&& receiver)
{
if (strcmp(name, "in"))
return {};
long id = strtol(name + 2, nullptr, 10);
std::unique_ptr<IMIDIIn> ret = std::make_unique<MIDIIn>(false, std::move(receiver));
if (!ret)
return {};
if (FAILED(midiInOpen(&static_cast<MIDIIn&>(*ret).m_midi, id, DWORD_PTR(MIDIReceiveProc),
DWORD_PTR(static_cast<IMIDIReceiver*>(ret.get())), CALLBACK_FUNCTION)))
return {};
return ret;
}
std::unique_ptr<IMIDIOut> newRealMIDIOut(const char* name)
{
if (strcmp(name, "out"))
return {};
long id = strtol(name + 3, nullptr, 10);
std::unique_ptr<IMIDIOut> ret = std::make_unique<MIDIOut>(false);
if (!ret)
return {};
if (FAILED(midiOutOpen(&static_cast<MIDIOut&>(*ret).m_midi, id, NULL,
NULL, CALLBACK_NULL)))
return {};
static_cast<MIDIOut&>(*ret).prepare();
return ret;
}
std::unique_ptr<IMIDIInOut> newRealMIDIInOut(const char* name, ReceiveFunctor&& receiver)
{
const char* in = strstr(name, "in");
const char* out = strstr(name, "out");
if (!in || !out)
return {};
long inId = strtol(in + 2, nullptr, 10);
long outId = strtol(out + 3, nullptr, 10);
std::unique_ptr<IMIDIInOut> ret = std::make_unique<MIDIInOut>(false, std::move(receiver));
if (!ret)
return {};
if (FAILED(midiInOpen(&static_cast<MIDIInOut&>(*ret).m_midiIn, inId, DWORD_PTR(MIDIReceiveProc),
DWORD_PTR(static_cast<IMIDIReceiver*>(ret.get())), CALLBACK_FUNCTION)))
return {};
if (FAILED(midiOutOpen(&static_cast<MIDIInOut&>(*ret).m_midiOut, outId, NULL,
NULL, CALLBACK_NULL)))
return {};
static_cast<MIDIInOut&>(*ret).prepare();
return ret;
}
};
std::unique_ptr<IAudioVoiceEngine> NewAudioVoiceEngine()
{
std::unique_ptr<IAudioVoiceEngine> ret = std::make_unique<WASAPIAudioVoiceEngine>();
if (!static_cast<WASAPIAudioVoiceEngine&>(*ret).m_device)
return {};
return ret;
}
}