boo/lib/graphicsdev/Vulkan.cpp

3754 lines
148 KiB
C++

#include "boo/graphicsdev/Vulkan.hpp"
#include "boo/IGraphicsContext.hpp"
#include <vector>
#include <array>
#include <cmath>
#include <glslang/Public/ShaderLang.h>
#include <StandAlone/ResourceLimits.h>
#include <SPIRV/GlslangToSpv.h>
#include <SPIRV/disassemble.h>
#include "boo/graphicsdev/GLSLMacros.hpp"
#include "Common.hpp"
#include "xxhash.h"
#include "logvisor/logvisor.hpp"
#undef min
#undef max
#undef None
namespace boo
{
static logvisor::Module Log("boo::Vulkan");
VulkanContext g_VulkanContext;
class VulkanDataFactoryImpl;
struct VulkanShareableShader : IShareableShader<VulkanDataFactoryImpl, VulkanShareableShader>
{
VkDevice m_dev;
VkShaderModule m_shader;
VulkanShareableShader(VulkanDataFactoryImpl& fac, uint64_t srcKey, uint64_t binKey,
VkDevice dev, VkShaderModule s)
: IShareableShader(fac, srcKey, binKey), m_dev(dev), m_shader(s) {}
~VulkanShareableShader() { vk::DestroyShaderModule(m_dev, m_shader, nullptr); }
};
class VulkanDataFactoryImpl : public VulkanDataFactory
{
friend struct VulkanCommandQueue;
friend class VulkanDataFactory::Context;
IGraphicsContext* m_parent;
VulkanContext* m_ctx;
uint32_t m_drawSamples;
static ThreadLocalPtr<struct VulkanData> m_deferredData;
std::unordered_set<struct VulkanData*> m_committedData;
std::unordered_set<struct VulkanPool*> m_committedPools;
std::mutex m_committedMutex;
std::unordered_map<uint64_t, std::unique_ptr<VulkanShareableShader>> m_sharedShaders;
std::vector<int> m_texUnis;
void destroyData(IGraphicsData*);
void destroyPool(IGraphicsBufferPool*);
void destroyAllData();
IGraphicsBufferD* newPoolBuffer(IGraphicsBufferPool *pool, BufferUse use,
size_t stride, size_t count);
void deletePoolBuffer(IGraphicsBufferPool* p, IGraphicsBufferD* buf);
public:
std::unordered_map<uint64_t, uint64_t> m_sourceToBinary;
VulkanDataFactoryImpl(IGraphicsContext* parent, VulkanContext* ctx, uint32_t drawSamples);
~VulkanDataFactoryImpl() {destroyAllData();}
Platform platform() const {return Platform::Vulkan;}
const SystemChar* platformName() const {return _S("Vulkan");}
GraphicsDataToken commitTransaction(const FactoryCommitFunc&);
GraphicsBufferPoolToken newBufferPool();
void _unregisterShareableShader(uint64_t srcKey, uint64_t binKey)
{
if (srcKey)
m_sourceToBinary.erase(srcKey);
m_sharedShaders.erase(binKey);
}
};
static inline void ThrowIfFailed(VkResult res)
{
if (res != VK_SUCCESS)
Log.report(logvisor::Fatal, "%d\n", res);
}
static inline void ThrowIfFalse(bool res)
{
if (!res)
Log.report(logvisor::Fatal, "operation failed\n", res);
}
static VKAPI_ATTR VkBool32 VKAPI_CALL
dbgFunc(VkDebugReportFlagsEXT msgFlags, VkDebugReportObjectTypeEXT objType,
uint64_t srcObject, size_t location, int32_t msgCode,
const char *pLayerPrefix, const char *pMsg, void *pUserData)
{
if (msgFlags & VK_DEBUG_REPORT_ERROR_BIT_EXT) {
Log.report(logvisor::Fatal, "[%s] Code %d : %s", pLayerPrefix, msgCode, pMsg);
} else if (msgFlags & VK_DEBUG_REPORT_WARNING_BIT_EXT) {
Log.report(logvisor::Warning, "[%s] Code %d : %s", pLayerPrefix, msgCode, pMsg);
} else if (msgFlags & VK_DEBUG_REPORT_PERFORMANCE_WARNING_BIT_EXT) {
Log.report(logvisor::Warning, "[%s] Code %d : %s", pLayerPrefix, msgCode, pMsg);
} else if (msgFlags & VK_DEBUG_REPORT_INFORMATION_BIT_EXT) {
Log.report(logvisor::Info, "[%s] Code %d : %s", pLayerPrefix, msgCode, pMsg);
} else if (msgFlags & VK_DEBUG_REPORT_DEBUG_BIT_EXT) {
Log.report(logvisor::Info, "[%s] Code %d : %s", pLayerPrefix, msgCode, pMsg);
}
/*
* false indicates that layer should not bail-out of an
* API call that had validation failures. This may mean that the
* app dies inside the driver due to invalid parameter(s).
* That's what would happen without validation layers, so we'll
* keep that behavior here.
*/
return false;
}
static bool MemoryTypeFromProperties(VulkanContext* ctx, uint32_t typeBits,
VkFlags requirementsMask,
uint32_t *typeIndex)
{
/* Search memtypes to find first index with those properties */
for (uint32_t i = 0; i < 32; i++)
{
if ((typeBits & 1) == 1)
{
/* Type is available, does it match user properties? */
if ((ctx->m_memoryProperties.memoryTypes[i].propertyFlags &
requirementsMask) == requirementsMask) {
*typeIndex = i;
return true;
}
}
typeBits >>= 1;
}
/* No memory types matched, return failure */
return false;
}
static void SetImageLayout(VkCommandBuffer cmd, VkImage image,
VkImageAspectFlags aspectMask,
VkImageLayout old_image_layout,
VkImageLayout new_image_layout,
uint32_t mipCount, uint32_t layerCount)
{
VkImageMemoryBarrier imageMemoryBarrier = {};
imageMemoryBarrier.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;
imageMemoryBarrier.pNext = NULL;
imageMemoryBarrier.srcAccessMask = 0;
imageMemoryBarrier.dstAccessMask = 0;
imageMemoryBarrier.oldLayout = old_image_layout;
imageMemoryBarrier.newLayout = new_image_layout;
imageMemoryBarrier.image = image;
imageMemoryBarrier.subresourceRange.aspectMask = aspectMask;
imageMemoryBarrier.subresourceRange.baseMipLevel = 0;
imageMemoryBarrier.subresourceRange.levelCount = mipCount;
imageMemoryBarrier.subresourceRange.layerCount = layerCount;
imageMemoryBarrier.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
imageMemoryBarrier.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
VkPipelineStageFlags src_stages = VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT;
VkPipelineStageFlags dest_stages = VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT;
switch (old_image_layout)
{
case VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL:
imageMemoryBarrier.srcAccessMask =
VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT | VK_ACCESS_COLOR_ATTACHMENT_READ_BIT;
src_stages = VK_PIPELINE_STAGE_ALL_GRAPHICS_BIT;
break;
case VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL:
imageMemoryBarrier.srcAccessMask = VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT;
src_stages = VK_PIPELINE_STAGE_ALL_GRAPHICS_BIT;
break;
case VK_IMAGE_LAYOUT_PREINITIALIZED:
imageMemoryBarrier.srcAccessMask = VK_ACCESS_HOST_WRITE_BIT;
break;
case VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL:
imageMemoryBarrier.srcAccessMask = VK_ACCESS_TRANSFER_READ_BIT;
src_stages = VK_PIPELINE_STAGE_TRANSFER_BIT;
break;
case VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL:
imageMemoryBarrier.srcAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT;
src_stages = VK_PIPELINE_STAGE_TRANSFER_BIT;
break;
case VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL:
imageMemoryBarrier.srcAccessMask = VK_ACCESS_SHADER_READ_BIT;
src_stages = VK_PIPELINE_STAGE_ALL_GRAPHICS_BIT;
break;
default: break;
}
switch (new_image_layout)
{
case VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL:
imageMemoryBarrier.dstAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT;
dest_stages = VK_PIPELINE_STAGE_TRANSFER_BIT;
break;
case VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL:
imageMemoryBarrier.dstAccessMask = VK_ACCESS_TRANSFER_READ_BIT;
dest_stages = VK_PIPELINE_STAGE_TRANSFER_BIT;
break;
case VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL:
imageMemoryBarrier.dstAccessMask = VK_ACCESS_SHADER_READ_BIT;
dest_stages = VK_PIPELINE_STAGE_ALL_GRAPHICS_BIT;
break;
case VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL:
imageMemoryBarrier.dstAccessMask =
VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT | VK_ACCESS_COLOR_ATTACHMENT_READ_BIT;
dest_stages = VK_PIPELINE_STAGE_ALL_GRAPHICS_BIT;
break;
case VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL:
imageMemoryBarrier.dstAccessMask =
VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT;
dest_stages = VK_PIPELINE_STAGE_ALL_GRAPHICS_BIT;
break;
case VK_IMAGE_LAYOUT_PRESENT_SRC_KHR:
imageMemoryBarrier.dstAccessMask = VK_ACCESS_MEMORY_READ_BIT;
dest_stages = VK_PIPELINE_STAGE_ALL_GRAPHICS_BIT;
break;
default: break;
}
vk::CmdPipelineBarrier(cmd, src_stages, dest_stages, 0, 0, NULL, 0, NULL,
1, &imageMemoryBarrier);
}
static VkResult InitGlobalExtensionProperties(VulkanContext::LayerProperties& layerProps) {
VkExtensionProperties *instance_extensions;
uint32_t instance_extension_count;
VkResult res;
char *layer_name = nullptr;
layer_name = layerProps.properties.layerName;
do {
res = vk::EnumerateInstanceExtensionProperties(
layer_name, &instance_extension_count, nullptr);
if (res)
return res;
if (instance_extension_count == 0) {
return VK_SUCCESS;
}
layerProps.extensions.resize(instance_extension_count);
instance_extensions = layerProps.extensions.data();
res = vk::EnumerateInstanceExtensionProperties(
layer_name, &instance_extension_count, instance_extensions);
} while (res == VK_INCOMPLETE);
return res;
}
/*
* Return 1 (true) if all layer names specified in check_names
* can be found in given layer properties.
*/
static void demo_check_layers(const std::vector<VulkanContext::LayerProperties>& layerProps,
const std::vector<const char*> &layerNames) {
uint32_t check_count = layerNames.size();
uint32_t layer_count = layerProps.size();
for (uint32_t i = 0; i < check_count; i++) {
VkBool32 found = 0;
for (uint32_t j = 0; j < layer_count; j++) {
if (!strcmp(layerNames[i], layerProps[j].properties.layerName)) {
found = 1;
}
}
if (!found) {
Log.report(logvisor::Fatal, "Cannot find layer: %s", layerNames[i]);
}
}
}
void VulkanContext::initVulkan(const char* appName)
{
if (!glslang::InitializeProcess())
Log.report(logvisor::Fatal, "unable to initialize glslang");
uint32_t instanceLayerCount;
VkLayerProperties* vkProps = nullptr;
VkResult res;
/*
* It's possible, though very rare, that the number of
* instance layers could change. For example, installing something
* could include new layers that the loader would pick up
* between the initial query for the count and the
* request for VkLayerProperties. The loader indicates that
* by returning a VK_INCOMPLETE status and will update the
* the count parameter.
* The count parameter will be updated with the number of
* entries loaded into the data pointer - in case the number
* of layers went down or is smaller than the size given.
*/
#ifdef _WIN32
char* vkSdkPath = getenv("VK_SDK_PATH");
if (vkSdkPath)
{
std::string str = "VK_LAYER_PATH=";
str += vkSdkPath;
str += "\\Bin";
_putenv(str.c_str());
}
#else
setenv("VK_LAYER_PATH", "/usr/share/vulkan/explicit_layer.d", 1);
#endif
do {
ThrowIfFailed(vk::EnumerateInstanceLayerProperties(&instanceLayerCount, nullptr));
if (instanceLayerCount == 0)
break;
vkProps = (VkLayerProperties *)realloc(vkProps, instanceLayerCount * sizeof(VkLayerProperties));
res = vk::EnumerateInstanceLayerProperties(&instanceLayerCount, vkProps);
} while (res == VK_INCOMPLETE);
/*
* Now gather the extension list for each instance layer.
*/
for (uint32_t i=0 ; i<instanceLayerCount ; ++i)
{
LayerProperties layerProps;
layerProps.properties = vkProps[i];
ThrowIfFailed(InitGlobalExtensionProperties(layerProps));
m_instanceLayerProperties.push_back(layerProps);
}
free(vkProps);
/* need platform surface extensions */
m_instanceExtensionNames.push_back(VK_KHR_SURFACE_EXTENSION_NAME);
#ifdef _WIN32
m_instanceExtensionNames.push_back(VK_KHR_WIN32_SURFACE_EXTENSION_NAME);
#else
m_instanceExtensionNames.push_back(VK_KHR_XCB_SURFACE_EXTENSION_NAME);
#endif
/* need swapchain device extension */
m_deviceExtensionNames.push_back(VK_KHR_SWAPCHAIN_EXTENSION_NAME);
#ifndef NDEBUG
m_layerNames.push_back("VK_LAYER_LUNARG_core_validation");
m_layerNames.push_back("VK_LAYER_LUNARG_object_tracker");
m_layerNames.push_back("VK_LAYER_LUNARG_parameter_validation");
m_layerNames.push_back("VK_LAYER_LUNARG_swapchain");
m_layerNames.push_back("VK_LAYER_GOOGLE_threading");
#endif
demo_check_layers(m_instanceLayerProperties, m_layerNames);
#ifndef NDEBUG
/* Enable debug callback extension */
m_instanceExtensionNames.push_back(VK_EXT_DEBUG_REPORT_EXTENSION_NAME);
#endif
/* create the instance */
VkApplicationInfo appInfo = {};
appInfo.sType = VK_STRUCTURE_TYPE_APPLICATION_INFO;
appInfo.pNext = nullptr;
appInfo.pApplicationName = appName;
appInfo.applicationVersion = 1;
appInfo.pEngineName = "Boo";
appInfo.engineVersion = 1;
appInfo.apiVersion = VK_API_VERSION_1_0;
VkInstanceCreateInfo instInfo = {};
instInfo.sType = VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO;
instInfo.pNext = nullptr;
instInfo.flags = 0;
instInfo.pApplicationInfo = &appInfo;
instInfo.enabledLayerCount = m_layerNames.size();
instInfo.ppEnabledLayerNames = m_layerNames.size()
? m_layerNames.data()
: nullptr;
instInfo.enabledExtensionCount = m_instanceExtensionNames.size();
instInfo.ppEnabledExtensionNames = m_instanceExtensionNames.data();
VkResult instRes = vk::CreateInstance(&instInfo, nullptr, &m_instance);
if (instRes != VK_SUCCESS)
{
#ifdef _WIN32
MessageBoxW(nullptr, L"Error creating Vulkan instance\n\n"
L"The Vulkan runtime is installed, but there are no supported "
L"hardware vendor interfaces present",
L"Vulkan Error", MB_OK | MB_ICONERROR);
#else
Log.report(logvisor::Fatal, "The Vulkan runtime is installed, but there are no supported "
"hardware vendor interfaces present");
#endif
exit(1);
}
#ifndef NDEBUG
VkDebugReportCallbackEXT debugReportCallback;
PFN_vkCreateDebugReportCallbackEXT createDebugReportCallback =
(PFN_vkCreateDebugReportCallbackEXT)vk::GetInstanceProcAddr(m_instance, "vkCreateDebugReportCallbackEXT");
if (!createDebugReportCallback)
Log.report(logvisor::Fatal, "GetInstanceProcAddr: Unable to find vkCreateDebugReportCallbackEXT function.");
VkDebugReportCallbackCreateInfoEXT debugCreateInfo = {};
debugCreateInfo.sType = VK_STRUCTURE_TYPE_DEBUG_REPORT_CREATE_INFO_EXT;
debugCreateInfo.pNext = nullptr;
debugCreateInfo.flags = VK_DEBUG_REPORT_ERROR_BIT_EXT | VK_DEBUG_REPORT_WARNING_BIT_EXT;
debugCreateInfo.pfnCallback = dbgFunc;
debugCreateInfo.pUserData = nullptr;
ThrowIfFailed(createDebugReportCallback(m_instance, &debugCreateInfo, nullptr, &debugReportCallback));
#endif
}
bool VulkanContext::enumerateDevices()
{
uint32_t gpuCount = 1;
ThrowIfFailed(vk::EnumeratePhysicalDevices(m_instance, &gpuCount, nullptr));
if (!gpuCount)
return false;
m_gpus.resize(gpuCount);
ThrowIfFailed(vk::EnumeratePhysicalDevices(m_instance, &gpuCount, m_gpus.data()));
if (!gpuCount)
return false;
vk::GetPhysicalDeviceQueueFamilyProperties(m_gpus[0], &m_queueCount, nullptr);
if (!m_queueCount)
return false;
m_queueProps.resize(m_queueCount);
vk::GetPhysicalDeviceQueueFamilyProperties(m_gpus[0], &m_queueCount, m_queueProps.data());
if (!m_queueCount)
return false;
/* This is as good a place as any to do this */
vk::GetPhysicalDeviceMemoryProperties(m_gpus[0], &m_memoryProperties);
vk::GetPhysicalDeviceProperties(m_gpus[0], &m_gpuProps);
return true;
}
void VulkanContext::initDevice()
{
if (m_graphicsQueueFamilyIndex == UINT32_MAX)
Log.report(logvisor::Fatal,
"VulkanContext::m_graphicsQueueFamilyIndex hasn't been initialized");
/* create the device and queues */
VkDeviceQueueCreateInfo queueInfo = {};
float queuePriorities[1] = {0.0};
queueInfo.sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO;
queueInfo.pNext = nullptr;
queueInfo.queueCount = 1;
queueInfo.pQueuePriorities = queuePriorities;
queueInfo.queueFamilyIndex = m_graphicsQueueFamilyIndex;
VkDeviceCreateInfo deviceInfo = {};
deviceInfo.sType = VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO;
deviceInfo.pNext = nullptr;
deviceInfo.queueCreateInfoCount = 1;
deviceInfo.pQueueCreateInfos = &queueInfo;
deviceInfo.enabledLayerCount = m_layerNames.size();
deviceInfo.ppEnabledLayerNames =
deviceInfo.enabledLayerCount ? m_layerNames.data() : nullptr;
deviceInfo.enabledExtensionCount = m_deviceExtensionNames.size();
deviceInfo.ppEnabledExtensionNames =
deviceInfo.enabledExtensionCount ? m_deviceExtensionNames.data() : nullptr;
deviceInfo.pEnabledFeatures = nullptr;
ThrowIfFailed(vk::CreateDevice(m_gpus[0], &deviceInfo, nullptr, &m_dev));
}
void VulkanContext::initSwapChain(VulkanContext::Window& windowCtx, VkSurfaceKHR surface, VkFormat format, VkColorSpaceKHR colorspace)
{
m_displayFormat = format;
VkSurfaceCapabilitiesKHR surfCapabilities;
ThrowIfFailed(vk::GetPhysicalDeviceSurfaceCapabilitiesKHR(m_gpus[0], surface, &surfCapabilities));
uint32_t presentModeCount;
ThrowIfFailed(vk::GetPhysicalDeviceSurfacePresentModesKHR(m_gpus[0], surface, &presentModeCount, nullptr));
std::unique_ptr<VkPresentModeKHR[]> presentModes(new VkPresentModeKHR[presentModeCount]);
ThrowIfFailed(vk::GetPhysicalDeviceSurfacePresentModesKHR(m_gpus[0], surface, &presentModeCount, presentModes.get()));
VkExtent2D swapChainExtent;
// width and height are either both -1, or both not -1.
if (surfCapabilities.currentExtent.width == (uint32_t)-1)
{
// If the surface size is undefined, the size is set to
// the size of the images requested.
swapChainExtent.width = 50;
swapChainExtent.height = 50;
}
else
{
// If the surface size is defined, the swap chain size must match
swapChainExtent = surfCapabilities.currentExtent;
}
// If mailbox mode is available, use it, as is the lowest-latency non-
// tearing mode. If not, try IMMEDIATE which will usually be available,
// and is fastest (though it tears). If not, fall back to FIFO which is
// always available.
VkPresentModeKHR swapchainPresentMode = VK_PRESENT_MODE_FIFO_KHR;
for (size_t i=0 ; i<presentModeCount ; ++i)
{
if (presentModes[i] == VK_PRESENT_MODE_MAILBOX_KHR)
{
swapchainPresentMode = VK_PRESENT_MODE_MAILBOX_KHR;
break;
}
if ((swapchainPresentMode != VK_PRESENT_MODE_MAILBOX_KHR) &&
(presentModes[i] == VK_PRESENT_MODE_IMMEDIATE_KHR))
{
swapchainPresentMode = VK_PRESENT_MODE_IMMEDIATE_KHR;
}
}
// Determine the number of VkImage's to use in the swap chain (we desire to
// own only 1 image at a time, besides the images being displayed and
// queued for display):
uint32_t desiredNumberOfSwapChainImages = surfCapabilities.minImageCount + 1;
if ((surfCapabilities.maxImageCount > 0) &&
(desiredNumberOfSwapChainImages > surfCapabilities.maxImageCount))
{
// Application must settle for fewer images than desired:
desiredNumberOfSwapChainImages = surfCapabilities.maxImageCount;
}
VkSurfaceTransformFlagBitsKHR preTransform;
if (surfCapabilities.supportedTransforms & VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR)
preTransform = VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR;
else
preTransform = surfCapabilities.currentTransform;
VkSwapchainCreateInfoKHR swapChainInfo = {};
swapChainInfo.sType = VK_STRUCTURE_TYPE_SWAPCHAIN_CREATE_INFO_KHR;
swapChainInfo.pNext = nullptr;
swapChainInfo.surface = surface;
swapChainInfo.minImageCount = desiredNumberOfSwapChainImages;
swapChainInfo.imageFormat = format;
swapChainInfo.imageExtent.width = swapChainExtent.width;
swapChainInfo.imageExtent.height = swapChainExtent.height;
swapChainInfo.preTransform = preTransform;
swapChainInfo.compositeAlpha = VK_COMPOSITE_ALPHA_OPAQUE_BIT_KHR;
swapChainInfo.imageArrayLayers = 1;
swapChainInfo.presentMode = swapchainPresentMode;
swapChainInfo.oldSwapchain = nullptr;
swapChainInfo.clipped = true;
swapChainInfo.imageColorSpace = colorspace;
swapChainInfo.imageUsage = VK_IMAGE_USAGE_TRANSFER_DST_BIT;
swapChainInfo.imageSharingMode = VK_SHARING_MODE_EXCLUSIVE;
swapChainInfo.queueFamilyIndexCount = 0;
swapChainInfo.pQueueFamilyIndices = nullptr;
Window::SwapChain& sc = windowCtx.m_swapChains[windowCtx.m_activeSwapChain];
ThrowIfFailed(vk::CreateSwapchainKHR(m_dev, &swapChainInfo, nullptr, &sc.m_swapChain));
sc.m_format = format;
uint32_t swapchainImageCount;
ThrowIfFailed(vk::GetSwapchainImagesKHR(m_dev, sc.m_swapChain, &swapchainImageCount, nullptr));
std::unique_ptr<VkImage[]> swapchainImages(new VkImage[swapchainImageCount]);
ThrowIfFailed(vk::GetSwapchainImagesKHR(m_dev, sc.m_swapChain, &swapchainImageCount, swapchainImages.get()));
// Going to need a command buffer to send the memory barriers in
// set_image_layout but we couldn't have created one before we knew
// what our graphics_queue_family_index is, but now that we have it,
// create the command buffer
VkCommandPoolCreateInfo cmdPoolInfo = {};
cmdPoolInfo.sType = VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO;
cmdPoolInfo.pNext = nullptr;
cmdPoolInfo.queueFamilyIndex = m_graphicsQueueFamilyIndex;
cmdPoolInfo.flags = VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT;
ThrowIfFailed(vk::CreateCommandPool(m_dev, &cmdPoolInfo, nullptr, &m_loadPool));
VkCommandBufferAllocateInfo cmd = {};
cmd.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO;
cmd.pNext = nullptr;
cmd.commandPool = m_loadPool;
cmd.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY;
cmd.commandBufferCount = 1;
ThrowIfFailed(vk::AllocateCommandBuffers(m_dev, &cmd, &m_loadCmdBuf));
vk::GetDeviceQueue(m_dev, m_graphicsQueueFamilyIndex, 0, &m_queue);
/* Begin load command buffer here */
VkCommandBufferBeginInfo cmdBufBeginInfo = {};
cmdBufBeginInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO;
cmdBufBeginInfo.flags = 0;
ThrowIfFailed(vk::BeginCommandBuffer(m_loadCmdBuf, &cmdBufBeginInfo));
/* Create shared linear sampler */
VkSamplerCreateInfo samplerInfo = {};
samplerInfo.sType = VK_STRUCTURE_TYPE_SAMPLER_CREATE_INFO;
samplerInfo.pNext = nullptr;
samplerInfo.magFilter = VK_FILTER_LINEAR;
samplerInfo.minFilter = VK_FILTER_LINEAR;
samplerInfo.mipmapMode = VK_SAMPLER_MIPMAP_MODE_LINEAR;
samplerInfo.addressModeU = VK_SAMPLER_ADDRESS_MODE_REPEAT;
samplerInfo.addressModeV = VK_SAMPLER_ADDRESS_MODE_REPEAT;
samplerInfo.addressModeW = VK_SAMPLER_ADDRESS_MODE_REPEAT;
samplerInfo.maxAnisotropy = 1.f;
ThrowIfFailed(vk::CreateSampler(m_dev, &samplerInfo, nullptr, &m_linearSampler));
/* images */
sc.m_bufs.resize(swapchainImageCount);
for (uint32_t i=0 ; i<swapchainImageCount ; ++i)
{
Window::SwapChain::Buffer& buf = sc.m_bufs[i];
buf.m_image = swapchainImages[i];
}
}
void VulkanContext::resizeSwapChain(VulkanContext::Window& windowCtx, VkSurfaceKHR surface,
VkFormat format, VkColorSpaceKHR colorspace,
const SWindowRect& rect)
{
std::unique_lock<std::mutex> lk(m_resizeLock);
m_deferredResizes.emplace(windowCtx, surface, format, colorspace, rect);
}
bool VulkanContext::_resizeSwapChains()
{
std::unique_lock<std::mutex> lk(m_resizeLock);
if (m_deferredResizes.empty())
return false;
while (m_deferredResizes.size())
{
SwapChainResize& resize = m_deferredResizes.front();
VkSurfaceCapabilitiesKHR surfCapabilities;
ThrowIfFailed(vk::GetPhysicalDeviceSurfaceCapabilitiesKHR(m_gpus[0], resize.m_surface, &surfCapabilities));
uint32_t presentModeCount;
ThrowIfFailed(vk::GetPhysicalDeviceSurfacePresentModesKHR(m_gpus[0], resize.m_surface, &presentModeCount, nullptr));
std::unique_ptr<VkPresentModeKHR[]> presentModes(new VkPresentModeKHR[presentModeCount]);
ThrowIfFailed(vk::GetPhysicalDeviceSurfacePresentModesKHR(m_gpus[0], resize.m_surface, &presentModeCount, presentModes.get()));
VkExtent2D swapChainExtent;
// width and height are either both -1, or both not -1.
if (surfCapabilities.currentExtent.width == (uint32_t)-1)
{
// If the surface size is undefined, the size is set to
// the size of the images requested.
swapChainExtent.width = 50;
swapChainExtent.height = 50;
}
else
{
// If the surface size is defined, the swap chain size must match
swapChainExtent = surfCapabilities.currentExtent;
}
// If mailbox mode is available, use it, as is the lowest-latency non-
// tearing mode. If not, try IMMEDIATE which will usually be available,
// and is fastest (though it tears). If not, fall back to FIFO which is
// always available.
VkPresentModeKHR swapchainPresentMode = VK_PRESENT_MODE_FIFO_KHR;
for (size_t i=0 ; i<presentModeCount ; ++i)
{
if (presentModes[i] == VK_PRESENT_MODE_MAILBOX_KHR)
{
swapchainPresentMode = VK_PRESENT_MODE_MAILBOX_KHR;
break;
}
if ((swapchainPresentMode != VK_PRESENT_MODE_MAILBOX_KHR) &&
(presentModes[i] == VK_PRESENT_MODE_IMMEDIATE_KHR))
{
swapchainPresentMode = VK_PRESENT_MODE_IMMEDIATE_KHR;
}
}
// Determine the number of VkImage's to use in the swap chain (we desire to
// own only 1 image at a time, besides the images being displayed and
// queued for display):
uint32_t desiredNumberOfSwapChainImages = surfCapabilities.minImageCount + 1;
if ((surfCapabilities.maxImageCount > 0) &&
(desiredNumberOfSwapChainImages > surfCapabilities.maxImageCount))
{
// Application must settle for fewer images than desired:
desiredNumberOfSwapChainImages = surfCapabilities.maxImageCount;
}
VkSurfaceTransformFlagBitsKHR preTransform;
if (surfCapabilities.supportedTransforms & VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR)
preTransform = VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR;
else
preTransform = surfCapabilities.currentTransform;
Window::SwapChain& oldSc = resize.m_windowCtx.m_swapChains[resize.m_windowCtx.m_activeSwapChain];
VkSwapchainCreateInfoKHR swapChainInfo = {};
swapChainInfo.sType = VK_STRUCTURE_TYPE_SWAPCHAIN_CREATE_INFO_KHR;
swapChainInfo.pNext = nullptr;
swapChainInfo.surface = resize.m_surface;
swapChainInfo.minImageCount = desiredNumberOfSwapChainImages;
swapChainInfo.imageFormat = resize.m_format;
swapChainInfo.imageExtent.width = swapChainExtent.width;
swapChainInfo.imageExtent.height = swapChainExtent.height;
swapChainInfo.preTransform = preTransform;
swapChainInfo.compositeAlpha = VK_COMPOSITE_ALPHA_OPAQUE_BIT_KHR;
swapChainInfo.imageArrayLayers = 1;
swapChainInfo.presentMode = swapchainPresentMode;
swapChainInfo.oldSwapchain = oldSc.m_swapChain;
swapChainInfo.clipped = true;
swapChainInfo.imageColorSpace = resize.m_colorspace;
swapChainInfo.imageUsage = VK_IMAGE_USAGE_TRANSFER_DST_BIT;
swapChainInfo.imageSharingMode = VK_SHARING_MODE_EXCLUSIVE;
swapChainInfo.queueFamilyIndexCount = 0;
swapChainInfo.pQueueFamilyIndices = nullptr;
resize.m_windowCtx.m_activeSwapChain ^= 1;
Window::SwapChain& sc = resize.m_windowCtx.m_swapChains[resize.m_windowCtx.m_activeSwapChain];
sc.destroy(m_dev);
ThrowIfFailed(vk::CreateSwapchainKHR(m_dev, &swapChainInfo, nullptr, &sc.m_swapChain));
sc.m_format = resize.m_format;
uint32_t swapchainImageCount;
ThrowIfFailed(vk::GetSwapchainImagesKHR(m_dev, sc.m_swapChain, &swapchainImageCount, nullptr));
std::unique_ptr<VkImage[]> swapchainImages(new VkImage[swapchainImageCount]);
ThrowIfFailed(vk::GetSwapchainImagesKHR(m_dev, sc.m_swapChain, &swapchainImageCount, swapchainImages.get()));
/* images */
sc.m_bufs.resize(swapchainImageCount);
for (uint32_t i=0 ; i<swapchainImageCount ; ++i)
{
Window::SwapChain::Buffer& buf = sc.m_bufs[i];
buf.m_image = swapchainImages[i];
}
m_deferredResizes.pop();
}
return true;
}
struct VulkanData : IGraphicsDataPriv
{
VulkanContext* m_ctx;
VkDeviceMemory m_bufMem = VK_NULL_HANDLE;
VkDeviceMemory m_texMem = VK_NULL_HANDLE;
std::vector<std::unique_ptr<class VulkanShaderPipeline>> m_SPs;
std::vector<std::unique_ptr<struct VulkanShaderDataBinding>> m_SBinds;
std::vector<std::unique_ptr<class VulkanGraphicsBufferS>> m_SBufs;
std::vector<std::unique_ptr<class VulkanGraphicsBufferD>> m_DBufs;
std::vector<std::unique_ptr<class VulkanTextureS>> m_STexs;
std::vector<std::unique_ptr<class VulkanTextureSA>> m_SATexs;
std::vector<std::unique_ptr<class VulkanTextureD>> m_DTexs;
std::vector<std::unique_ptr<class VulkanTextureR>> m_RTexs;
std::vector<std::unique_ptr<struct VulkanVertexFormat>> m_VFmts;
bool m_dead = false;
VulkanData(VulkanContext* ctx) : m_ctx(ctx) {}
~VulkanData()
{
if (m_bufMem)
vk::FreeMemory(m_ctx->m_dev, m_bufMem, nullptr);
if (m_texMem)
vk::FreeMemory(m_ctx->m_dev, m_texMem, nullptr);
}
};
struct VulkanPoolItem : IGraphicsDataPriv
{
VulkanContext* m_ctx;
VkDeviceMemory m_bufMem = VK_NULL_HANDLE;
std::unique_ptr<class VulkanGraphicsBufferD> m_buf;
bool m_dead = false;
VulkanPoolItem(VulkanContext* ctx) : m_ctx(ctx) {}
~VulkanPoolItem()
{
if (m_bufMem)
vk::FreeMemory(m_ctx->m_dev, m_bufMem, nullptr);
}
};
struct VulkanPool : IGraphicsBufferPool
{
std::unordered_set<VulkanPoolItem*> m_items;
bool m_dead = false;
~VulkanPool()
{
for (auto& item : m_items)
item->decrement();
}
void clearDeadBuffers()
{
for (auto it = m_items.begin() ; it != m_items.end() ;)
{
if ((*it)->m_dead)
{
(*it)->decrement();
it = m_items.erase(it);
continue;
}
++it;
}
}
};
static const VkBufferUsageFlagBits USE_TABLE[] =
{
VkBufferUsageFlagBits(0),
VK_BUFFER_USAGE_VERTEX_BUFFER_BIT,
VK_BUFFER_USAGE_INDEX_BUFFER_BIT,
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT
};
class VulkanGraphicsBufferS : public IGraphicsBufferS
{
friend class VulkanDataFactory;
friend struct VulkanCommandQueue;
VulkanContext* m_ctx;
size_t m_sz;
std::unique_ptr<uint8_t[]> m_stagingBuf;
VulkanGraphicsBufferS(IGraphicsData* parent, BufferUse use, VulkanContext* ctx,
const void* data, size_t stride, size_t count)
: IGraphicsBufferS(parent), m_ctx(ctx), m_stride(stride), m_count(count), m_sz(stride * count),
m_stagingBuf(new uint8_t[m_sz]), m_uniform(use == BufferUse::Uniform)
{
memmove(m_stagingBuf.get(), data, m_sz);
VkBufferCreateInfo bufInfo = {};
bufInfo.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
bufInfo.pNext = nullptr;
bufInfo.usage = USE_TABLE[int(use)];
bufInfo.size = m_sz;
bufInfo.queueFamilyIndexCount = 0;
bufInfo.pQueueFamilyIndices = nullptr;
bufInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
bufInfo.flags = 0;
ThrowIfFailed(vk::CreateBuffer(ctx->m_dev, &bufInfo, nullptr, &m_bufferInfo.buffer));
m_bufferInfo.offset = 0;
m_bufferInfo.range = m_sz;
}
public:
size_t size() const {return m_sz;}
size_t m_stride;
size_t m_count;
VkDescriptorBufferInfo m_bufferInfo;
VkDeviceSize m_memOffset;
bool m_uniform = false;
~VulkanGraphicsBufferS()
{
vk::DestroyBuffer(m_ctx->m_dev, m_bufferInfo.buffer, nullptr);
}
VkDeviceSize sizeForGPU(VulkanContext* ctx, uint32_t& memTypeBits, VkDeviceSize offset)
{
if (m_uniform)
{
size_t minOffset = std::max(VkDeviceSize(256),
ctx->m_gpuProps.limits.minUniformBufferOffsetAlignment);
offset = (offset + minOffset - 1) & ~(minOffset - 1);
}
VkMemoryRequirements memReqs;
vk::GetBufferMemoryRequirements(ctx->m_dev, m_bufferInfo.buffer, &memReqs);
memTypeBits &= memReqs.memoryTypeBits;
m_memOffset = offset;
offset += m_sz;
offset = (offset + memReqs.alignment - 1) & ~(memReqs.alignment - 1);
return offset;
}
void placeForGPU(VulkanContext* ctx, VkDeviceMemory mem, uint8_t* buf)
{
memmove(buf + m_memOffset, m_stagingBuf.get(), m_sz);
m_stagingBuf.reset();
ThrowIfFailed(vk::BindBufferMemory(ctx->m_dev, m_bufferInfo.buffer, mem, m_memOffset));
}
};
class VulkanGraphicsBufferD : public IGraphicsBufferD
{
friend class VulkanDataFactory;
friend class VulkanDataFactoryImpl;
friend struct VulkanCommandQueue;
struct VulkanCommandQueue* m_q;
size_t m_cpuSz;
std::unique_ptr<uint8_t[]> m_cpuBuf;
int m_validSlots = 0;
VulkanGraphicsBufferD(IGraphicsData* parent, VulkanCommandQueue* q, BufferUse use,
VulkanContext* ctx, size_t stride, size_t count)
: IGraphicsBufferD(parent), m_q(q), m_stride(stride), m_count(count),
m_cpuSz(stride * count), m_cpuBuf(new uint8_t[m_cpuSz]),
m_uniform(use == BufferUse::Uniform)
{
VkBufferCreateInfo bufInfo = {};
bufInfo.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
bufInfo.pNext = nullptr;
bufInfo.usage = USE_TABLE[int(use)];
bufInfo.size = m_cpuSz;
bufInfo.queueFamilyIndexCount = 0;
bufInfo.pQueueFamilyIndices = nullptr;
bufInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
bufInfo.flags = 0;
ThrowIfFailed(vk::CreateBuffer(ctx->m_dev, &bufInfo, nullptr, &m_bufferInfo[0].buffer));
ThrowIfFailed(vk::CreateBuffer(ctx->m_dev, &bufInfo, nullptr, &m_bufferInfo[1].buffer));
m_bufferInfo[0].offset = 0;
m_bufferInfo[0].range = m_cpuSz;
m_bufferInfo[1].offset = 0;
m_bufferInfo[1].range = m_cpuSz;
}
void update(int b);
public:
size_t m_stride;
size_t m_count;
VkDeviceMemory m_mem;
VkDeviceSize m_memOffset[2];
VkDescriptorBufferInfo m_bufferInfo[2];
bool m_uniform = false;
~VulkanGraphicsBufferD();
void load(const void* data, size_t sz);
void* map(size_t sz);
void unmap();
VkDeviceSize sizeForGPU(VulkanContext* ctx, uint32_t& memTypeBits, VkDeviceSize offset)
{
for (int i=0 ; i<2 ; ++i)
{
if (m_uniform)
{
size_t minOffset = std::max(VkDeviceSize(256),
ctx->m_gpuProps.limits.minUniformBufferOffsetAlignment);
offset = (offset + minOffset - 1) & ~(minOffset - 1);
}
VkMemoryRequirements memReqs;
vk::GetBufferMemoryRequirements(ctx->m_dev, m_bufferInfo[i].buffer, &memReqs);
memTypeBits &= memReqs.memoryTypeBits;
m_memOffset[i] = offset;
offset += memReqs.size;
offset = (offset + memReqs.alignment - 1) & ~(memReqs.alignment - 1);
}
return offset;
}
void placeForGPU(VulkanContext* ctx, VkDeviceMemory mem)
{
m_mem = mem;
ThrowIfFailed(vk::BindBufferMemory(ctx->m_dev, m_bufferInfo[0].buffer, mem, m_memOffset[0]));
ThrowIfFailed(vk::BindBufferMemory(ctx->m_dev, m_bufferInfo[1].buffer, mem, m_memOffset[1]));
}
};
class VulkanTextureS : public ITextureS
{
friend class VulkanDataFactory;
VulkanContext* m_ctx;
TextureFormat m_fmt;
size_t m_sz;
size_t m_width, m_height, m_mips;
VkFormat m_vkFmt;
int m_pixelPitchNum = 1;
int m_pixelPitchDenom = 1;
VulkanTextureS(IGraphicsData* parent, VulkanContext* ctx,
size_t width, size_t height, size_t mips,
TextureFormat fmt, const void* data, size_t sz)
: ITextureS(parent), m_ctx(ctx), m_fmt(fmt), m_sz(sz), m_width(width), m_height(height), m_mips(mips)
{
VkFormat pfmt;
switch (fmt)
{
case TextureFormat::RGBA8:
pfmt = VK_FORMAT_R8G8B8A8_UNORM;
m_pixelPitchNum = 4;
break;
case TextureFormat::I8:
pfmt = VK_FORMAT_R8_UNORM;
break;
case TextureFormat::DXT1:
pfmt = VK_FORMAT_BC1_RGBA_UNORM_BLOCK;
m_pixelPitchNum = 1;
m_pixelPitchDenom = 2;
break;
default:
Log.report(logvisor::Fatal, "unsupported tex format");
}
m_vkFmt = pfmt;
/* create cpu image buffer */
VkBufferCreateInfo bufCreateInfo = {};
bufCreateInfo.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
bufCreateInfo.size = sz;
bufCreateInfo.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT;
bufCreateInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
ThrowIfFailed(vk::CreateBuffer(ctx->m_dev, &bufCreateInfo, nullptr, &m_cpuBuf));
VkMemoryRequirements memReqs;
vk::GetBufferMemoryRequirements(ctx->m_dev, m_cpuBuf, &memReqs);
VkMemoryAllocateInfo memAlloc = {};
memAlloc.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
memAlloc.pNext = nullptr;
memAlloc.memoryTypeIndex = 0;
memAlloc.allocationSize = memReqs.size;
ThrowIfFalse(MemoryTypeFromProperties(ctx, memReqs.memoryTypeBits,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT,
&memAlloc.memoryTypeIndex));
/* allocate memory */
ThrowIfFailed(vk::AllocateMemory(ctx->m_dev, &memAlloc, nullptr, &m_cpuMem));
/* bind memory */
ThrowIfFailed(vk::BindBufferMemory(ctx->m_dev, m_cpuBuf, m_cpuMem, 0));
/* map memory and copy data */
uint8_t* mappedData;
ThrowIfFailed(vk::MapMemory(ctx->m_dev, m_cpuMem, 0, memReqs.size, 0, reinterpret_cast<void**>(&mappedData)));
memmove(mappedData, data, sz);
vk::UnmapMemory(ctx->m_dev, m_cpuMem);
/* create gpu image */
VkImageCreateInfo texCreateInfo = {};
texCreateInfo.sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO;
texCreateInfo.imageType = VK_IMAGE_TYPE_2D;
texCreateInfo.format = pfmt;
texCreateInfo.mipLevels = mips;
texCreateInfo.arrayLayers = 1;
texCreateInfo.samples = VK_SAMPLE_COUNT_1_BIT;
texCreateInfo.tiling = VK_IMAGE_TILING_OPTIMAL;
texCreateInfo.usage = VK_IMAGE_USAGE_SAMPLED_BIT;
texCreateInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
texCreateInfo.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
texCreateInfo.extent = { uint32_t(m_width), uint32_t(m_height), 1 };
texCreateInfo.usage = VK_IMAGE_USAGE_TRANSFER_DST_BIT | VK_IMAGE_USAGE_SAMPLED_BIT;
ThrowIfFailed(vk::CreateImage(ctx->m_dev, &texCreateInfo, nullptr, &m_gpuTex));
m_descInfo.sampler = ctx->m_linearSampler;
m_descInfo.imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
}
public:
VkBuffer m_cpuBuf;
VkDeviceMemory m_cpuMem;
VkImage m_gpuTex;
VkImageView m_gpuView = VK_NULL_HANDLE;
VkDescriptorImageInfo m_descInfo;
VkDeviceSize m_gpuOffset;
~VulkanTextureS()
{
vk::DestroyImageView(m_ctx->m_dev, m_gpuView, nullptr);
vk::DestroyImage(m_ctx->m_dev, m_gpuTex, nullptr);
if (m_cpuBuf)
vk::DestroyBuffer(m_ctx->m_dev, m_cpuBuf, nullptr);
if (m_cpuMem)
vk::FreeMemory(m_ctx->m_dev, m_cpuMem, nullptr);
}
void deleteUploadObjects()
{
vk::DestroyBuffer(m_ctx->m_dev, m_cpuBuf, nullptr);
m_cpuBuf = VK_NULL_HANDLE;
vk::FreeMemory(m_ctx->m_dev, m_cpuMem, nullptr);
m_cpuMem = VK_NULL_HANDLE;
}
VkDeviceSize sizeForGPU(VulkanContext* ctx, uint32_t& memTypeBits, VkDeviceSize offset)
{
VkMemoryRequirements memReqs;
vk::GetImageMemoryRequirements(ctx->m_dev, m_gpuTex, &memReqs);
memTypeBits &= memReqs.memoryTypeBits;
m_gpuOffset = offset;
offset += memReqs.size;
offset = (offset + memReqs.alignment - 1) & ~(memReqs.alignment - 1);
return offset;
}
void placeForGPU(VulkanContext* ctx, VkDeviceMemory mem)
{
/* bind memory */
ThrowIfFailed(vk::BindImageMemory(ctx->m_dev, m_gpuTex, mem, m_gpuOffset));
/* create image view */
VkImageViewCreateInfo viewInfo = {};
viewInfo.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO;
viewInfo.pNext = nullptr;
viewInfo.image = m_gpuTex;
viewInfo.viewType = VK_IMAGE_VIEW_TYPE_2D;
viewInfo.format = m_vkFmt;
viewInfo.components.r = VK_COMPONENT_SWIZZLE_R;
viewInfo.components.g = VK_COMPONENT_SWIZZLE_G;
viewInfo.components.b = VK_COMPONENT_SWIZZLE_B;
viewInfo.components.a = VK_COMPONENT_SWIZZLE_A;
viewInfo.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
viewInfo.subresourceRange.baseMipLevel = 0;
viewInfo.subresourceRange.levelCount = m_mips;
viewInfo.subresourceRange.baseArrayLayer = 0;
viewInfo.subresourceRange.layerCount = 1;
ThrowIfFailed(vk::CreateImageView(ctx->m_dev, &viewInfo, nullptr, &m_gpuView));
m_descInfo.imageView = m_gpuView;
/* Since we're going to blit to the texture image, set its layout to
* DESTINATION_OPTIMAL */
SetImageLayout(ctx->m_loadCmdBuf, m_gpuTex, VK_IMAGE_ASPECT_COLOR_BIT,
VK_IMAGE_LAYOUT_UNDEFINED,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, m_mips, 1);
VkBufferImageCopy copyRegions[16] = {};
size_t width = m_width;
size_t height = m_height;
size_t regionCount = std::min(size_t(16), m_mips);
size_t offset = 0;
for (int i=0 ; i<regionCount ; ++i)
{
size_t srcRowPitch = width * m_pixelPitchNum / m_pixelPitchDenom;
copyRegions[i].imageSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
copyRegions[i].imageSubresource.mipLevel = i;
copyRegions[i].imageSubresource.baseArrayLayer = 0;
copyRegions[i].imageSubresource.layerCount = 1;
copyRegions[i].imageExtent.width = width;
copyRegions[i].imageExtent.height = height;
copyRegions[i].imageExtent.depth = 1;
copyRegions[i].bufferOffset = offset;
if (width > 1)
width /= 2;
if (height > 1)
height /= 2;
offset += srcRowPitch;
}
/* Put the copy command into the command buffer */
vk::CmdCopyBufferToImage(ctx->m_loadCmdBuf,
m_cpuBuf,
m_gpuTex,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
regionCount,
copyRegions);
/* Set the layout for the texture image from DESTINATION_OPTIMAL to
* SHADER_READ_ONLY */
SetImageLayout(ctx->m_loadCmdBuf, m_gpuTex, VK_IMAGE_ASPECT_COLOR_BIT,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL, m_mips, 1);
}
TextureFormat format() const {return m_fmt;}
};
class VulkanTextureSA : public ITextureSA
{
friend class VulkanDataFactory;
VulkanContext* m_ctx;
TextureFormat m_fmt;
size_t m_sz;
size_t m_width, m_height, m_layers, m_mips;
VkFormat m_vkFmt;
int m_pixelPitchNum = 1;
int m_pixelPitchDenom = 1;
VulkanTextureSA(IGraphicsData* parent, VulkanContext* ctx,
size_t width, size_t height, size_t layers,
size_t mips, TextureFormat fmt, const void* data, size_t sz)
: ITextureSA(parent), m_ctx(ctx), m_fmt(fmt), m_width(width),
m_height(height), m_layers(layers), m_mips(mips), m_sz(sz)
{
VkFormat pfmt;
switch (fmt)
{
case TextureFormat::RGBA8:
pfmt = VK_FORMAT_R8G8B8A8_UNORM;
m_pixelPitchNum = 4;
break;
case TextureFormat::I8:
pfmt = VK_FORMAT_R8_UNORM;
break;
default:
Log.report(logvisor::Fatal, "unsupported tex format");
}
m_vkFmt = pfmt;
/* create cpu image buffer */
VkBufferCreateInfo bufCreateInfo = {};
bufCreateInfo.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
bufCreateInfo.size = sz;
bufCreateInfo.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT;
bufCreateInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
ThrowIfFailed(vk::CreateBuffer(ctx->m_dev, &bufCreateInfo, nullptr, &m_cpuBuf));
VkMemoryRequirements memReqs;
vk::GetBufferMemoryRequirements(ctx->m_dev, m_cpuBuf, &memReqs);
VkMemoryAllocateInfo memAlloc = {};
memAlloc.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
memAlloc.pNext = nullptr;
memAlloc.memoryTypeIndex = 0;
memAlloc.allocationSize = memReqs.size;
ThrowIfFalse(MemoryTypeFromProperties(ctx, memReqs.memoryTypeBits,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT,
&memAlloc.memoryTypeIndex));
/* allocate memory */
ThrowIfFailed(vk::AllocateMemory(ctx->m_dev, &memAlloc, nullptr, &m_cpuMem));
/* bind memory */
ThrowIfFailed(vk::BindBufferMemory(ctx->m_dev, m_cpuBuf, m_cpuMem, 0));
/* map memory and copy data */
uint8_t* mappedData;
ThrowIfFailed(vk::MapMemory(ctx->m_dev, m_cpuMem, 0, memReqs.size, 0, reinterpret_cast<void**>(&mappedData)));
memmove(mappedData, data, sz);
vk::UnmapMemory(ctx->m_dev, m_cpuMem);
/* create gpu image */
VkImageCreateInfo texCreateInfo = {};
texCreateInfo.sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO;
texCreateInfo.imageType = VK_IMAGE_TYPE_2D;
texCreateInfo.format = pfmt;
texCreateInfo.mipLevels = mips;
texCreateInfo.arrayLayers = layers;
texCreateInfo.samples = VK_SAMPLE_COUNT_1_BIT;
texCreateInfo.tiling = VK_IMAGE_TILING_OPTIMAL;
texCreateInfo.usage = VK_IMAGE_USAGE_SAMPLED_BIT;
texCreateInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
texCreateInfo.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
texCreateInfo.extent = { uint32_t(m_width), uint32_t(m_height), 1 };
texCreateInfo.usage = VK_IMAGE_USAGE_TRANSFER_DST_BIT | VK_IMAGE_USAGE_SAMPLED_BIT;
ThrowIfFailed(vk::CreateImage(ctx->m_dev, &texCreateInfo, nullptr, &m_gpuTex));
m_descInfo.sampler = ctx->m_linearSampler;
m_descInfo.imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
}
public:
VkBuffer m_cpuBuf;
VkDeviceMemory m_cpuMem;
VkImage m_gpuTex;
VkImageView m_gpuView = VK_NULL_HANDLE;
VkDescriptorImageInfo m_descInfo;
VkDeviceSize m_gpuOffset;
~VulkanTextureSA()
{
vk::DestroyImageView(m_ctx->m_dev, m_gpuView, nullptr);
vk::DestroyImage(m_ctx->m_dev, m_gpuTex, nullptr);
if (m_cpuBuf)
vk::DestroyBuffer(m_ctx->m_dev, m_cpuBuf, nullptr);
if (m_cpuMem)
vk::FreeMemory(m_ctx->m_dev, m_cpuMem, nullptr);
}
void deleteUploadObjects()
{
vk::DestroyBuffer(m_ctx->m_dev, m_cpuBuf, nullptr);
m_cpuBuf = VK_NULL_HANDLE;
vk::FreeMemory(m_ctx->m_dev, m_cpuMem, nullptr);
m_cpuMem = VK_NULL_HANDLE;
}
VkDeviceSize sizeForGPU(VulkanContext* ctx, uint32_t& memTypeBits, VkDeviceSize offset)
{
VkMemoryRequirements memReqs;
vk::GetImageMemoryRequirements(ctx->m_dev, m_gpuTex, &memReqs);
memTypeBits &= memReqs.memoryTypeBits;
m_gpuOffset = offset;
offset += memReqs.size;
offset = (offset + memReqs.alignment - 1) & ~(memReqs.alignment - 1);
return offset;
}
void placeForGPU(VulkanContext* ctx, VkDeviceMemory mem)
{
/* bind memory */
ThrowIfFailed(vk::BindImageMemory(ctx->m_dev, m_gpuTex, mem, m_gpuOffset));
/* create image view */
VkImageViewCreateInfo viewInfo = {};
viewInfo.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO;
viewInfo.pNext = nullptr;
viewInfo.image = m_gpuTex;
viewInfo.viewType = (m_layers > 1) ? VK_IMAGE_VIEW_TYPE_2D_ARRAY : VK_IMAGE_VIEW_TYPE_2D;
viewInfo.format = m_vkFmt;
viewInfo.components.r = VK_COMPONENT_SWIZZLE_R;
viewInfo.components.g = VK_COMPONENT_SWIZZLE_G;
viewInfo.components.b = VK_COMPONENT_SWIZZLE_B;
viewInfo.components.a = VK_COMPONENT_SWIZZLE_A;
viewInfo.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
viewInfo.subresourceRange.baseMipLevel = 0;
viewInfo.subresourceRange.levelCount = m_mips;
viewInfo.subresourceRange.baseArrayLayer = 0;
viewInfo.subresourceRange.layerCount = m_layers;
ThrowIfFailed(vk::CreateImageView(ctx->m_dev, &viewInfo, nullptr, &m_gpuView));
m_descInfo.imageView = m_gpuView;
/* Since we're going to blit to the texture image, set its layout to
* DESTINATION_OPTIMAL */
SetImageLayout(ctx->m_loadCmdBuf, m_gpuTex, VK_IMAGE_ASPECT_COLOR_BIT,
VK_IMAGE_LAYOUT_UNDEFINED,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, m_mips, m_layers);
VkBufferImageCopy copyRegions[16] = {};
size_t width = m_width;
size_t height = m_height;
size_t regionCount = std::min(size_t(16), m_mips);
size_t offset = 0;
for (int i=0 ; i<regionCount ; ++i)
{
size_t srcRowPitch = width * m_layers * m_pixelPitchNum / m_pixelPitchDenom;
copyRegions[i].imageSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
copyRegions[i].imageSubresource.mipLevel = i;
copyRegions[i].imageSubresource.baseArrayLayer = 0;
copyRegions[i].imageSubresource.layerCount = m_layers;
copyRegions[i].imageExtent.width = width;
copyRegions[i].imageExtent.height = height;
copyRegions[i].imageExtent.depth = 1;
copyRegions[i].bufferOffset = offset;
if (width > 1)
width /= 2;
if (height > 1)
height /= 2;
offset += srcRowPitch;
}
/* Put the copy command into the command buffer */
vk::CmdCopyBufferToImage(ctx->m_loadCmdBuf,
m_cpuBuf,
m_gpuTex,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
regionCount,
copyRegions);
/* Set the layout for the texture image from DESTINATION_OPTIMAL to
* SHADER_READ_ONLY */
SetImageLayout(ctx->m_loadCmdBuf, m_gpuTex, VK_IMAGE_ASPECT_COLOR_BIT,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL, m_mips, m_layers);
}
TextureFormat format() const {return m_fmt;}
size_t layers() const {return m_layers;}
};
class VulkanTextureD : public ITextureD
{
friend class VulkanDataFactory;
friend struct VulkanCommandQueue;
size_t m_width;
size_t m_height;
TextureFormat m_fmt;
VulkanCommandQueue* m_q;
std::unique_ptr<uint8_t[]> m_stagingBuf;
size_t m_cpuSz;
VkDeviceSize m_srcRowPitch;
VkDeviceSize m_cpuOffsets[2];
VkFormat m_vkFmt;
int m_validSlots = 0;
VulkanTextureD(IGraphicsData* parent, VulkanCommandQueue* q, VulkanContext* ctx,
size_t width, size_t height, TextureFormat fmt)
: ITextureD(parent), m_width(width), m_height(height), m_fmt(fmt), m_q(q)
{
VkFormat pfmt;
switch (fmt)
{
case TextureFormat::RGBA8:
pfmt = VK_FORMAT_R8G8B8A8_UNORM;
m_srcRowPitch = width * 4;
m_cpuSz = m_srcRowPitch * height;
break;
case TextureFormat::I8:
pfmt = VK_FORMAT_R8_UNORM;
m_srcRowPitch = width;
m_cpuSz = m_srcRowPitch * height;
break;
default:
Log.report(logvisor::Fatal, "unsupported tex format");
}
m_vkFmt = pfmt;
m_stagingBuf.reset(new uint8_t[m_cpuSz]);
/* create buffers */
VkBufferCreateInfo bufCreateInfo = {};
bufCreateInfo.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
bufCreateInfo.size = m_cpuSz;
bufCreateInfo.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT;
bufCreateInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
/* compute size for host-mappable images */
VkMemoryAllocateInfo memAlloc = {};
memAlloc.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
memAlloc.pNext = nullptr;
memAlloc.memoryTypeIndex = 0;
memAlloc.allocationSize = 0;
uint32_t memTypeBits = ~0;
for (int i=0 ; i<2 ; ++i)
{
m_cpuOffsets[i] = memAlloc.allocationSize;
/* create cpu buffer */
ThrowIfFailed(vk::CreateBuffer(ctx->m_dev, &bufCreateInfo, nullptr, &m_cpuBuf[i]));
VkMemoryRequirements memReqs;
vk::GetBufferMemoryRequirements(ctx->m_dev, m_cpuBuf[i], &memReqs);
memAlloc.allocationSize += memReqs.size;
memAlloc.allocationSize = (memAlloc.allocationSize + memReqs.alignment - 1) & ~(memReqs.alignment - 1);
memTypeBits &= memReqs.memoryTypeBits;
}
ThrowIfFalse(MemoryTypeFromProperties(ctx, memTypeBits,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT,
&memAlloc.memoryTypeIndex));
/* allocate memory */
ThrowIfFailed(vk::AllocateMemory(ctx->m_dev, &memAlloc, nullptr, &m_cpuMem));
VkImageCreateInfo texCreateInfo = {};
texCreateInfo.sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO;
texCreateInfo.pNext = nullptr;
texCreateInfo.imageType = VK_IMAGE_TYPE_2D;
texCreateInfo.format = pfmt;
texCreateInfo.extent.width = width;
texCreateInfo.extent.height = height;
texCreateInfo.extent.depth = 1;
texCreateInfo.mipLevels = 1;
texCreateInfo.arrayLayers = 1;
texCreateInfo.samples = VK_SAMPLE_COUNT_1_BIT;
texCreateInfo.tiling = VK_IMAGE_TILING_OPTIMAL;
texCreateInfo.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
texCreateInfo.usage = VK_IMAGE_USAGE_TRANSFER_DST_BIT | VK_IMAGE_USAGE_SAMPLED_BIT;
texCreateInfo.queueFamilyIndexCount = 0;
texCreateInfo.pQueueFamilyIndices = nullptr;
texCreateInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
texCreateInfo.flags = 0;
for (int i=0 ; i<2 ; ++i)
{
/* bind cpu memory */
ThrowIfFailed(vk::BindBufferMemory(ctx->m_dev, m_cpuBuf[i], m_cpuMem, m_cpuOffsets[i]));
/* create gpu image */
ThrowIfFailed(vk::CreateImage(ctx->m_dev, &texCreateInfo, nullptr, &m_gpuTex[i]));
m_descInfo[i].sampler = ctx->m_linearSampler;
m_descInfo[i].imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
}
}
void update(int b);
public:
VkBuffer m_cpuBuf[2];
VkDeviceMemory m_cpuMem;
VkImage m_gpuTex[2];
VkImageView m_gpuView[2];
VkDeviceSize m_gpuOffset[2];
VkDescriptorImageInfo m_descInfo[2];
~VulkanTextureD();
void load(const void* data, size_t sz);
void* map(size_t sz);
void unmap();
VkDeviceSize sizeForGPU(VulkanContext* ctx, uint32_t& memTypeBits, VkDeviceSize offset)
{
for (int i=0 ; i<2 ; ++i)
{
VkMemoryRequirements memReqs;
vk::GetImageMemoryRequirements(ctx->m_dev, m_gpuTex[i], &memReqs);
memTypeBits &= memReqs.memoryTypeBits;
m_gpuOffset[i] = offset;
offset += memReqs.size;
offset = (offset + memReqs.alignment - 1) & ~(memReqs.alignment - 1);
}
return offset;
}
void placeForGPU(VulkanContext* ctx, VkDeviceMemory mem)
{
VkImageViewCreateInfo viewInfo = {};
viewInfo.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO;
viewInfo.pNext = nullptr;
viewInfo.image = nullptr;
viewInfo.viewType = VK_IMAGE_VIEW_TYPE_2D;
viewInfo.format = m_vkFmt;
viewInfo.components.r = VK_COMPONENT_SWIZZLE_R;
viewInfo.components.g = VK_COMPONENT_SWIZZLE_G;
viewInfo.components.b = VK_COMPONENT_SWIZZLE_B;
viewInfo.components.a = VK_COMPONENT_SWIZZLE_A;
viewInfo.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
viewInfo.subresourceRange.baseMipLevel = 0;
viewInfo.subresourceRange.levelCount = 1;
viewInfo.subresourceRange.baseArrayLayer = 0;
viewInfo.subresourceRange.layerCount = 1;
for (int i=0 ; i<2 ; ++i)
{
/* bind memory */
ThrowIfFailed(vk::BindImageMemory(ctx->m_dev, m_gpuTex[i], mem, m_gpuOffset[i]));
/* create image view */
viewInfo.image = m_gpuTex[i];
ThrowIfFailed(vk::CreateImageView(ctx->m_dev, &viewInfo, nullptr, &m_gpuView[i]));
m_descInfo[i].imageView = m_gpuView[i];
}
}
TextureFormat format() const {return m_fmt;}
};
#define MAX_BIND_TEXS 4
class VulkanTextureR : public ITextureR
{
friend class VulkanDataFactory;
friend struct VulkanCommandQueue;
size_t m_width = 0;
size_t m_height = 0;
size_t m_samples = 0;
size_t m_colorBindCount;
size_t m_depthBindCount;
void Setup(VulkanContext* ctx, size_t width, size_t height, size_t samples,
size_t colorBindCount, size_t depthBindCount)
{
/* no-ops on first call */
doDestroy();
m_layout = VK_IMAGE_LAYOUT_UNDEFINED;
/* color target */
VkImageCreateInfo texCreateInfo = {};
texCreateInfo.sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO;
texCreateInfo.pNext = nullptr;
texCreateInfo.imageType = VK_IMAGE_TYPE_2D;
texCreateInfo.format = ctx->m_displayFormat;
texCreateInfo.extent.width = width;
texCreateInfo.extent.height = height;
texCreateInfo.extent.depth = 1;
texCreateInfo.mipLevels = 1;
texCreateInfo.arrayLayers = 1;
texCreateInfo.samples = VkSampleCountFlagBits(samples);
texCreateInfo.tiling = VK_IMAGE_TILING_OPTIMAL;
texCreateInfo.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
texCreateInfo.usage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT | VK_IMAGE_USAGE_TRANSFER_SRC_BIT;
texCreateInfo.queueFamilyIndexCount = 0;
texCreateInfo.pQueueFamilyIndices = nullptr;
texCreateInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
texCreateInfo.flags = 0;
ThrowIfFailed(vk::CreateImage(ctx->m_dev, &texCreateInfo, nullptr, &m_colorTex));
/* depth target */
texCreateInfo.format = VK_FORMAT_D24_UNORM_S8_UINT;
texCreateInfo.usage = VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT | VK_IMAGE_USAGE_TRANSFER_SRC_BIT;
ThrowIfFailed(vk::CreateImage(ctx->m_dev, &texCreateInfo, nullptr, &m_depthTex));
/* tally total memory requirements */
VkMemoryRequirements memReqs;
VkMemoryAllocateInfo memAlloc = {};
memAlloc.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
memAlloc.pNext = nullptr;
memAlloc.memoryTypeIndex = 0;
memAlloc.allocationSize = 0;
uint32_t memTypeBits = ~0;
VkDeviceSize gpuOffsets[2];
VkDeviceSize colorOffsets[MAX_BIND_TEXS];
VkDeviceSize depthOffsets[MAX_BIND_TEXS];
vk::GetImageMemoryRequirements(ctx->m_dev, m_colorTex, &memReqs);
gpuOffsets[0] = memAlloc.allocationSize;
memAlloc.allocationSize += memReqs.size;
memAlloc.allocationSize = (memAlloc.allocationSize + memReqs.alignment - 1) & ~(memReqs.alignment - 1);
memTypeBits &= memReqs.memoryTypeBits;
vk::GetImageMemoryRequirements(ctx->m_dev, m_depthTex, &memReqs);
gpuOffsets[1] = memAlloc.allocationSize;
memAlloc.allocationSize += memReqs.size;
memAlloc.allocationSize = (memAlloc.allocationSize + memReqs.alignment - 1) & ~(memReqs.alignment - 1);
memTypeBits &= memReqs.memoryTypeBits;
for (size_t i=0 ; i<colorBindCount ; ++i)
{
m_colorBindLayout[i] = VK_IMAGE_LAYOUT_UNDEFINED;
texCreateInfo.format = ctx->m_displayFormat;
texCreateInfo.usage = VK_IMAGE_USAGE_SAMPLED_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT;
ThrowIfFailed(vk::CreateImage(ctx->m_dev, &texCreateInfo, nullptr, &m_colorBindTex[i]));
vk::GetImageMemoryRequirements(ctx->m_dev, m_colorBindTex[i], &memReqs);
colorOffsets[i] = memAlloc.allocationSize;
memAlloc.allocationSize += memReqs.size;
memAlloc.allocationSize = (memAlloc.allocationSize + memReqs.alignment - 1) & ~(memReqs.alignment - 1);
memTypeBits &= memReqs.memoryTypeBits;
m_colorBindDescInfo[i].sampler = ctx->m_linearSampler;
m_colorBindDescInfo[i].imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
}
for (size_t i=0 ; i<depthBindCount ; ++i)
{
m_depthBindLayout[i] = VK_IMAGE_LAYOUT_UNDEFINED;
texCreateInfo.format = VK_FORMAT_D24_UNORM_S8_UINT;
texCreateInfo.usage = VK_IMAGE_USAGE_SAMPLED_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT;
ThrowIfFailed(vk::CreateImage(ctx->m_dev, &texCreateInfo, nullptr, &m_depthBindTex[i]));
vk::GetImageMemoryRequirements(ctx->m_dev, m_depthBindTex[i], &memReqs);
depthOffsets[i] = memAlloc.allocationSize;
memAlloc.allocationSize += memReqs.size;
memAlloc.allocationSize = (memAlloc.allocationSize + memReqs.alignment - 1) & ~(memReqs.alignment - 1);
memTypeBits &= memReqs.memoryTypeBits;
m_depthBindDescInfo[i].sampler = ctx->m_linearSampler;
m_depthBindDescInfo[i].imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
}
ThrowIfFalse(MemoryTypeFromProperties(ctx, memTypeBits, 0, &memAlloc.memoryTypeIndex));
/* allocate memory */
ThrowIfFailed(vk::AllocateMemory(ctx->m_dev, &memAlloc, nullptr, &m_gpuMem));
uint8_t* mappedData;
ThrowIfFailed(vk::MapMemory(ctx->m_dev, m_gpuMem, 0, memAlloc.allocationSize, 0, reinterpret_cast<void**>(&mappedData)));
memset(mappedData, 0, memAlloc.allocationSize);
vk::UnmapMemory(ctx->m_dev, m_gpuMem);
/* bind memory */
ThrowIfFailed(vk::BindImageMemory(ctx->m_dev, m_colorTex, m_gpuMem, gpuOffsets[0]));
ThrowIfFailed(vk::BindImageMemory(ctx->m_dev, m_depthTex, m_gpuMem, gpuOffsets[1]));
/* Create resource views */
VkImageViewCreateInfo viewCreateInfo = {};
viewCreateInfo.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO;
viewCreateInfo.pNext = nullptr;
viewCreateInfo.image = m_colorTex;
viewCreateInfo.viewType = VK_IMAGE_VIEW_TYPE_2D;
viewCreateInfo.format = ctx->m_displayFormat;
viewCreateInfo.components.r = VK_COMPONENT_SWIZZLE_R;
viewCreateInfo.components.g = VK_COMPONENT_SWIZZLE_G;
viewCreateInfo.components.b = VK_COMPONENT_SWIZZLE_B;
viewCreateInfo.components.a = VK_COMPONENT_SWIZZLE_A;
viewCreateInfo.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
viewCreateInfo.subresourceRange.baseMipLevel = 0;
viewCreateInfo.subresourceRange.levelCount = 1;
viewCreateInfo.subresourceRange.baseArrayLayer = 0;
viewCreateInfo.subresourceRange.layerCount = 1;
ThrowIfFailed(vk::CreateImageView(ctx->m_dev, &viewCreateInfo, nullptr, &m_colorView));
viewCreateInfo.image = m_depthTex;
viewCreateInfo.format = VK_FORMAT_D24_UNORM_S8_UINT;
viewCreateInfo.subresourceRange.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT;
ThrowIfFailed(vk::CreateImageView(ctx->m_dev, &viewCreateInfo, nullptr, &m_depthView));
for (size_t i=0 ; i<colorBindCount ; ++i)
{
ThrowIfFailed(vk::BindImageMemory(ctx->m_dev, m_colorBindTex[i], m_gpuMem, colorOffsets[i]));
viewCreateInfo.image = m_colorBindTex[i];
viewCreateInfo.format = ctx->m_displayFormat;
viewCreateInfo.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
ThrowIfFailed(vk::CreateImageView(ctx->m_dev, &viewCreateInfo, nullptr, &m_colorBindView[i]));
m_colorBindDescInfo[i].imageView = m_colorBindView[i];
}
for (size_t i=0 ; i<depthBindCount ; ++i)
{
ThrowIfFailed(vk::BindImageMemory(ctx->m_dev, m_depthBindTex[i], m_gpuMem, depthOffsets[i]));
viewCreateInfo.image = m_depthBindTex[i];
viewCreateInfo.format = VK_FORMAT_D24_UNORM_S8_UINT;
viewCreateInfo.subresourceRange.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT;
ThrowIfFailed(vk::CreateImageView(ctx->m_dev, &viewCreateInfo, nullptr, &m_depthBindView[i]));
m_depthBindDescInfo[i].imageView = m_depthBindView[i];
}
/* framebuffer */
VkFramebufferCreateInfo fbCreateInfo = {};
fbCreateInfo.sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO;
fbCreateInfo.pNext = nullptr;
fbCreateInfo.renderPass = ctx->m_pass;
fbCreateInfo.attachmentCount = 2;
fbCreateInfo.width = width;
fbCreateInfo.height = height;
fbCreateInfo.layers = 1;
VkImageView attachments[2] = {m_colorView, m_depthView};
fbCreateInfo.pAttachments = attachments;
ThrowIfFailed(vk::CreateFramebuffer(ctx->m_dev, &fbCreateInfo, nullptr, &m_framebuffer));
m_passBeginInfo.sType = VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO;
m_passBeginInfo.pNext = nullptr;
m_passBeginInfo.renderPass = ctx->m_pass;
m_passBeginInfo.framebuffer = m_framebuffer;
m_passBeginInfo.renderArea.offset.x = 0;
m_passBeginInfo.renderArea.offset.y = 0;
m_passBeginInfo.renderArea.extent.width = width;
m_passBeginInfo.renderArea.extent.height = height;
m_passBeginInfo.clearValueCount = 0;
m_passBeginInfo.pClearValues = nullptr;
}
VulkanCommandQueue* m_q;
VulkanTextureR(IGraphicsData* parent, VulkanContext* ctx, VulkanCommandQueue* q,
size_t width, size_t height, size_t samples,
size_t colorBindCount, size_t depthBindCount)
: ITextureR(parent), m_q(q), m_width(width), m_height(height), m_samples(samples),
m_colorBindCount(colorBindCount),
m_depthBindCount(depthBindCount)
{
if (colorBindCount > MAX_BIND_TEXS)
Log.report(logvisor::Fatal, "too many color bindings for render texture");
if (depthBindCount > MAX_BIND_TEXS)
Log.report(logvisor::Fatal, "too many depth bindings for render texture");
if (samples == 0) m_samples = 1;
Setup(ctx, width, height, samples, colorBindCount, depthBindCount);
}
public:
size_t samples() const {return m_samples;}
VkDeviceMemory m_gpuMem = VK_NULL_HANDLE;
VkImage m_colorTex = VK_NULL_HANDLE;
VkImageView m_colorView = VK_NULL_HANDLE;
VkImage m_depthTex = VK_NULL_HANDLE;
VkImageView m_depthView = VK_NULL_HANDLE;
VkImage m_colorBindTex[MAX_BIND_TEXS] = {};
VkImageView m_colorBindView[MAX_BIND_TEXS] = {};
VkDescriptorImageInfo m_colorBindDescInfo[MAX_BIND_TEXS] = {};
VkImage m_depthBindTex[MAX_BIND_TEXS] = {};
VkImageView m_depthBindView[MAX_BIND_TEXS] = {};
VkDescriptorImageInfo m_depthBindDescInfo[MAX_BIND_TEXS] = {};
VkFramebuffer m_framebuffer = VK_NULL_HANDLE;
VkRenderPassBeginInfo m_passBeginInfo = {};
VkImageLayout m_layout = VK_IMAGE_LAYOUT_UNDEFINED;
VkImageLayout m_colorBindLayout[MAX_BIND_TEXS] = {};
VkImageLayout m_depthBindLayout[MAX_BIND_TEXS] = {};
void doDestroy();
~VulkanTextureR();
void resize(VulkanContext* ctx, size_t width, size_t height)
{
if (width < 1)
width = 1;
if (height < 1)
height = 1;
m_width = width;
m_height = height;
Setup(ctx, width, height, m_samples, m_colorBindCount, m_depthBindCount);
}
};
static const size_t SEMANTIC_SIZE_TABLE[] =
{
0,
12,
16,
12,
16,
16,
4,
8,
16,
16,
16
};
static const VkFormat SEMANTIC_TYPE_TABLE[] =
{
VK_FORMAT_UNDEFINED,
VK_FORMAT_R32G32B32_SFLOAT,
VK_FORMAT_R32G32B32A32_SFLOAT,
VK_FORMAT_R32G32B32_SFLOAT,
VK_FORMAT_R32G32B32A32_SFLOAT,
VK_FORMAT_R32G32B32A32_SFLOAT,
VK_FORMAT_R8G8B8A8_UNORM,
VK_FORMAT_R32G32_SFLOAT,
VK_FORMAT_R32G32B32A32_SFLOAT,
VK_FORMAT_R32G32B32A32_SFLOAT,
VK_FORMAT_R32G32B32A32_SFLOAT
};
struct VulkanVertexFormat : IVertexFormat
{
VkVertexInputBindingDescription m_bindings[2];
std::unique_ptr<VkVertexInputAttributeDescription[]> m_attributes;
VkPipelineVertexInputStateCreateInfo m_info;
size_t m_stride = 0;
size_t m_instStride = 0;
VulkanVertexFormat(IGraphicsData* parent, size_t elementCount,
const VertexElementDescriptor* elements)
: IVertexFormat(parent), m_attributes(new VkVertexInputAttributeDescription[elementCount])
{
m_info.sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO;
m_info.pNext = nullptr;
m_info.flags = 0;
m_info.vertexBindingDescriptionCount = 0;
m_info.pVertexBindingDescriptions = m_bindings;
m_info.vertexAttributeDescriptionCount = elementCount;
m_info.pVertexAttributeDescriptions = m_attributes.get();
for (size_t i=0 ; i<elementCount ; ++i)
{
const VertexElementDescriptor* elemin = &elements[i];
VkVertexInputAttributeDescription& attribute = m_attributes[i];
int semantic = int(elemin->semantic & boo::VertexSemantic::SemanticMask);
attribute.location = i;
attribute.format = SEMANTIC_TYPE_TABLE[semantic];
if ((elemin->semantic & boo::VertexSemantic::Instanced) != boo::VertexSemantic::None)
{
attribute.binding = 1;
attribute.offset = m_instStride;
m_instStride += SEMANTIC_SIZE_TABLE[semantic];
}
else
{
attribute.binding = 0;
attribute.offset = m_stride;
m_stride += SEMANTIC_SIZE_TABLE[semantic];
}
}
if (m_stride)
{
m_bindings[0].binding = 0;
m_bindings[0].stride = m_stride;
m_bindings[0].inputRate = VK_VERTEX_INPUT_RATE_VERTEX;
++m_info.vertexBindingDescriptionCount;
}
if (m_instStride)
{
m_bindings[m_info.vertexBindingDescriptionCount].binding = 1;
m_bindings[m_info.vertexBindingDescriptionCount].stride = m_instStride;
m_bindings[m_info.vertexBindingDescriptionCount].inputRate = VK_VERTEX_INPUT_RATE_INSTANCE;
++m_info.vertexBindingDescriptionCount;
}
}
};
static const VkPrimitiveTopology PRIMITIVE_TABLE[] =
{
VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST,
VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP
};
static const VkBlendFactor BLEND_FACTOR_TABLE[] =
{
VK_BLEND_FACTOR_ZERO,
VK_BLEND_FACTOR_ONE,
VK_BLEND_FACTOR_SRC_COLOR,
VK_BLEND_FACTOR_ONE_MINUS_SRC_COLOR,
VK_BLEND_FACTOR_DST_COLOR,
VK_BLEND_FACTOR_ONE_MINUS_DST_COLOR,
VK_BLEND_FACTOR_SRC_ALPHA,
VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA,
VK_BLEND_FACTOR_DST_ALPHA,
VK_BLEND_FACTOR_ONE_MINUS_DST_ALPHA,
VK_BLEND_FACTOR_SRC1_COLOR,
VK_BLEND_FACTOR_ONE_MINUS_SRC1_COLOR
};
class VulkanShaderPipeline : public IShaderPipeline
{
friend class VulkanDataFactory;
friend struct VulkanShaderDataBinding;
VulkanContext* m_ctx;
VkPipelineCache m_pipelineCache;
const VulkanVertexFormat* m_vtxFmt;
VulkanShareableShader::Token m_vert;
VulkanShareableShader::Token m_frag;
VulkanShaderPipeline(IGraphicsData* parent,
VulkanContext* ctx,
VulkanShareableShader::Token&& vert,
VulkanShareableShader::Token&& frag,
VkPipelineCache pipelineCache,
const VulkanVertexFormat* vtxFmt,
BlendFactor srcFac, BlendFactor dstFac, Primitive prim,
ZTest depthTest, bool depthWrite, bool colorWrite,
bool alphaWrite, CullMode culling)
: IShaderPipeline(parent), m_ctx(ctx), m_pipelineCache(pipelineCache), m_vtxFmt(vtxFmt),
m_vert(std::move(vert)), m_frag(std::move(frag))
{
VkCullModeFlagBits cullMode;
switch (culling)
{
case CullMode::None:
default:
cullMode = VK_CULL_MODE_NONE;
break;
case CullMode::Backface:
cullMode = VK_CULL_MODE_BACK_BIT;
break;
case CullMode::Frontface:
cullMode = VK_CULL_MODE_FRONT_BIT;
break;
}
VkDynamicState dynamicStateEnables[VK_DYNAMIC_STATE_RANGE_SIZE] = {};
VkPipelineDynamicStateCreateInfo dynamicState = {};
dynamicState.sType = VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO;
dynamicState.pNext = nullptr;
dynamicState.pDynamicStates = dynamicStateEnables;
dynamicState.dynamicStateCount = 0;
VkPipelineShaderStageCreateInfo stages[2] = {};
stages[0].sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO;
stages[0].pNext = nullptr;
stages[0].flags = 0;
stages[0].stage = VK_SHADER_STAGE_VERTEX_BIT;
stages[0].module = m_vert.get().m_shader;
stages[0].pName = "main";
stages[0].pSpecializationInfo = nullptr;
stages[1].sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO;
stages[1].pNext = nullptr;
stages[1].flags = 0;
stages[1].stage = VK_SHADER_STAGE_FRAGMENT_BIT;
stages[1].module = m_frag.get().m_shader;
stages[1].pName = "main";
stages[1].pSpecializationInfo = nullptr;
VkPipelineInputAssemblyStateCreateInfo assemblyInfo = {};
assemblyInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO;
assemblyInfo.pNext = nullptr;
assemblyInfo.flags = 0;
assemblyInfo.topology = PRIMITIVE_TABLE[int(prim)];
assemblyInfo.primitiveRestartEnable = VK_FALSE;
VkPipelineViewportStateCreateInfo viewportInfo = {};
viewportInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO;
viewportInfo.pNext = nullptr;
viewportInfo.flags = 0;
viewportInfo.viewportCount = 1;
viewportInfo.pViewports = nullptr;
viewportInfo.scissorCount = 1;
viewportInfo.pScissors = nullptr;
dynamicStateEnables[dynamicState.dynamicStateCount++] = VK_DYNAMIC_STATE_VIEWPORT;
dynamicStateEnables[dynamicState.dynamicStateCount++] = VK_DYNAMIC_STATE_SCISSOR;
VkPipelineRasterizationStateCreateInfo rasterizationInfo = {};
rasterizationInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO;
rasterizationInfo.pNext = nullptr;
rasterizationInfo.flags = 0;
rasterizationInfo.depthClampEnable = VK_FALSE;
rasterizationInfo.rasterizerDiscardEnable = VK_FALSE;
rasterizationInfo.polygonMode = VK_POLYGON_MODE_FILL;
rasterizationInfo.cullMode = cullMode;
rasterizationInfo.frontFace = VK_FRONT_FACE_COUNTER_CLOCKWISE;
rasterizationInfo.depthBiasEnable = VK_FALSE;
rasterizationInfo.lineWidth = 1.f;
VkPipelineMultisampleStateCreateInfo multisampleInfo = {};
multisampleInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO;
multisampleInfo.pNext = nullptr;
multisampleInfo.flags = 0;
multisampleInfo.rasterizationSamples = VK_SAMPLE_COUNT_1_BIT;
VkPipelineDepthStencilStateCreateInfo depthStencilInfo = {};
depthStencilInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_DEPTH_STENCIL_STATE_CREATE_INFO;
depthStencilInfo.pNext = nullptr;
depthStencilInfo.flags = 0;
depthStencilInfo.depthTestEnable = depthTest != ZTest::None;
depthStencilInfo.depthWriteEnable = depthWrite;
depthStencilInfo.front.compareOp = VK_COMPARE_OP_ALWAYS;
depthStencilInfo.back.compareOp = VK_COMPARE_OP_ALWAYS;
switch (depthTest)
{
case ZTest::None:
default:
depthStencilInfo.depthCompareOp = VK_COMPARE_OP_ALWAYS;
break;
case ZTest::LEqual:
depthStencilInfo.depthCompareOp = VK_COMPARE_OP_LESS_OR_EQUAL;
break;
case ZTest::Greater:
depthStencilInfo.depthCompareOp = VK_COMPARE_OP_GREATER;
break;
case ZTest::Equal:
depthStencilInfo.depthCompareOp = VK_COMPARE_OP_EQUAL;
break;
}
VkPipelineColorBlendAttachmentState colorAttachment = {};
colorAttachment.blendEnable = dstFac != BlendFactor::Zero;
if (srcFac == BlendFactor::Subtract || dstFac == BlendFactor::Subtract)
{
colorAttachment.srcColorBlendFactor = VK_BLEND_FACTOR_DST_COLOR;
colorAttachment.dstColorBlendFactor = VK_BLEND_FACTOR_SRC_COLOR;
colorAttachment.colorBlendOp = VK_BLEND_OP_SUBTRACT;
}
else
{
colorAttachment.srcColorBlendFactor = BLEND_FACTOR_TABLE[int(srcFac)];
colorAttachment.dstColorBlendFactor = BLEND_FACTOR_TABLE[int(dstFac)];
colorAttachment.colorBlendOp = VK_BLEND_OP_ADD;
}
colorAttachment.srcAlphaBlendFactor = VK_BLEND_FACTOR_ONE;
colorAttachment.dstAlphaBlendFactor = VK_BLEND_FACTOR_ZERO;
colorAttachment.alphaBlendOp = VK_BLEND_OP_ADD;
colorAttachment.colorWriteMask =
(colorWrite ? (VK_COLOR_COMPONENT_R_BIT |
VK_COLOR_COMPONENT_G_BIT |
VK_COLOR_COMPONENT_B_BIT) : 0) |
(alphaWrite ? VK_COLOR_COMPONENT_A_BIT : 0);
VkPipelineColorBlendStateCreateInfo colorBlendInfo = {};
colorBlendInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO;
colorBlendInfo.pNext = nullptr;
colorBlendInfo.flags = 0;
colorBlendInfo.logicOpEnable = VK_FALSE;
colorBlendInfo.attachmentCount = 1;
colorBlendInfo.pAttachments = &colorAttachment;
VkGraphicsPipelineCreateInfo pipelineCreateInfo = {};
pipelineCreateInfo.sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO;
pipelineCreateInfo.pNext = nullptr;
pipelineCreateInfo.flags = 0;
pipelineCreateInfo.stageCount = 2;
pipelineCreateInfo.pStages = stages;
pipelineCreateInfo.pVertexInputState = &vtxFmt->m_info;
pipelineCreateInfo.pInputAssemblyState = &assemblyInfo;
pipelineCreateInfo.pViewportState = &viewportInfo;
pipelineCreateInfo.pRasterizationState = &rasterizationInfo;
pipelineCreateInfo.pMultisampleState = &multisampleInfo;
pipelineCreateInfo.pDepthStencilState = &depthStencilInfo;
pipelineCreateInfo.pColorBlendState = &colorBlendInfo;
pipelineCreateInfo.pDynamicState = &dynamicState;
pipelineCreateInfo.layout = ctx->m_pipelinelayout;
pipelineCreateInfo.renderPass = ctx->m_pass;
ThrowIfFailed(vk::CreateGraphicsPipelines(ctx->m_dev, pipelineCache, 1, &pipelineCreateInfo,
nullptr, &m_pipeline));
}
public:
VkPipeline m_pipeline;
~VulkanShaderPipeline()
{
vk::DestroyPipeline(m_ctx->m_dev, m_pipeline, nullptr);
if (m_pipelineCache)
vk::DestroyPipelineCache(m_ctx->m_dev, m_pipelineCache, nullptr);
}
VulkanShaderPipeline& operator=(const VulkanShaderPipeline&) = delete;
VulkanShaderPipeline(const VulkanShaderPipeline&) = delete;
};
static VkDeviceSize SizeBufferForGPU(IGraphicsBuffer* buf, VulkanContext* ctx,
uint32_t& memTypeBits, VkDeviceSize offset)
{
if (buf->dynamic())
return static_cast<VulkanGraphicsBufferD*>(buf)->sizeForGPU(ctx, memTypeBits, offset);
else
return static_cast<VulkanGraphicsBufferS*>(buf)->sizeForGPU(ctx, memTypeBits, offset);
}
static VkDeviceSize SizeTextureForGPU(ITexture* tex, VulkanContext* ctx,
uint32_t& memTypeBits, VkDeviceSize offset)
{
switch (tex->type())
{
case TextureType::Dynamic:
return static_cast<VulkanTextureD*>(tex)->sizeForGPU(ctx, memTypeBits, offset);
case TextureType::Static:
return static_cast<VulkanTextureS*>(tex)->sizeForGPU(ctx, memTypeBits, offset);
case TextureType::StaticArray:
return static_cast<VulkanTextureSA*>(tex)->sizeForGPU(ctx, memTypeBits, offset);
default: break;
}
return offset;
}
static void PlaceTextureForGPU(ITexture* tex, VulkanContext* ctx, VkDeviceMemory mem)
{
switch (tex->type())
{
case TextureType::Dynamic:
static_cast<VulkanTextureD*>(tex)->placeForGPU(ctx, mem);
break;
case TextureType::Static:
static_cast<VulkanTextureS*>(tex)->placeForGPU(ctx, mem);
break;
case TextureType::StaticArray:
static_cast<VulkanTextureSA*>(tex)->placeForGPU(ctx, mem);
break;
default: break;
}
}
static const VkDescriptorBufferInfo* GetBufferGPUResource(const IGraphicsBuffer* buf, int idx)
{
if (buf->dynamic())
{
const VulkanGraphicsBufferD* cbuf = static_cast<const VulkanGraphicsBufferD*>(buf);
return &cbuf->m_bufferInfo[idx];
}
else
{
const VulkanGraphicsBufferS* cbuf = static_cast<const VulkanGraphicsBufferS*>(buf);
return &cbuf->m_bufferInfo;
}
}
static const VkDescriptorImageInfo* GetTextureGPUResource(const ITexture* tex, int idx, int bindIdx, bool depth)
{
switch (tex->type())
{
case TextureType::Dynamic:
{
const VulkanTextureD* ctex = static_cast<const VulkanTextureD*>(tex);
return &ctex->m_descInfo[idx];
}
case TextureType::Static:
{
const VulkanTextureS* ctex = static_cast<const VulkanTextureS*>(tex);
return &ctex->m_descInfo;
}
case TextureType::StaticArray:
{
const VulkanTextureSA* ctex = static_cast<const VulkanTextureSA*>(tex);
return &ctex->m_descInfo;
}
case TextureType::Render:
{
const VulkanTextureR* ctex = static_cast<const VulkanTextureR*>(tex);
return depth ? &ctex->m_depthBindDescInfo[bindIdx] : &ctex->m_colorBindDescInfo[bindIdx];
}
default: break;
}
return nullptr;
}
struct VulkanShaderDataBinding : IShaderDataBindingPriv
{
VulkanContext* m_ctx;
VulkanShaderPipeline* m_pipeline;
IGraphicsBuffer* m_vbuf;
IGraphicsBuffer* m_instVbuf;
IGraphicsBuffer* m_ibuf;
size_t m_ubufCount;
std::unique_ptr<IGraphicsBuffer*[]> m_ubufs;
std::vector<std::array<VkDescriptorBufferInfo, 2>> m_ubufOffs;
size_t m_texCount;
VkImageView m_knownViewHandles[2][8] = {};
struct BindTex
{
ITexture* tex;
int idx;
bool depth;
};
std::unique_ptr<BindTex[]> m_texs;
VkBuffer m_vboBufs[2][2] = {{},{}};
VkDeviceSize m_vboOffs[2][2] = {{},{}};
VkBuffer m_iboBufs[2] = {};
VkDeviceSize m_iboOffs[2] = {};
VkDescriptorPool m_descPool = VK_NULL_HANDLE;
VkDescriptorSet m_descSets[2] = {};
size_t m_vertOffset;
size_t m_instOffset;
#ifndef NDEBUG
/* Debugging aids */
bool m_committed = false;
#endif
VulkanShaderDataBinding(VulkanData* d,
VulkanContext* ctx,
IShaderPipeline* pipeline,
IGraphicsBuffer* vbuf, IGraphicsBuffer* instVbuf, IGraphicsBuffer* ibuf,
size_t ubufCount, IGraphicsBuffer** ubufs,
const size_t* ubufOffs, const size_t* ubufSizes,
size_t texCount, ITexture** texs,
const int* bindIdxs, const bool* depthBinds,
size_t baseVert, size_t baseInst)
: IShaderDataBindingPriv(d),
m_ctx(ctx),
m_pipeline(static_cast<VulkanShaderPipeline*>(pipeline)),
m_vbuf(vbuf),
m_instVbuf(instVbuf),
m_ibuf(ibuf),
m_ubufCount(ubufCount),
m_ubufs(new IGraphicsBuffer*[ubufCount]),
m_texCount(texCount),
m_texs(new BindTex[texCount])
{
m_vertOffset = baseVert * m_pipeline->m_vtxFmt->m_stride;
m_instOffset = baseInst * m_pipeline->m_vtxFmt->m_instStride;
if (ubufOffs && ubufSizes)
{
m_ubufOffs.reserve(ubufCount);
for (size_t i=0 ; i<ubufCount ; ++i)
{
#ifndef NDEBUG
if (ubufOffs[i] % 256)
Log.report(logvisor::Fatal, "non-256-byte-aligned uniform-offset %d provided to newShaderDataBinding", int(i));
#endif
std::array<VkDescriptorBufferInfo, 2> fillArr;
fillArr.fill({VK_NULL_HANDLE, ubufOffs[i], (ubufSizes[i] + 255) & ~255});
m_ubufOffs.push_back(fillArr);
}
}
for (size_t i=0 ; i<ubufCount ; ++i)
{
#ifndef NDEBUG
if (!ubufs[i])
Log.report(logvisor::Fatal, "null uniform-buffer %d provided to newShaderDataBinding", int(i));
#endif
m_ubufs[i] = ubufs[i];
}
for (size_t i=0 ; i<texCount ; ++i)
{
m_texs[i].tex = texs[i];
m_texs[i].idx = bindIdxs ? bindIdxs[i] : 0;
m_texs[i].depth = depthBinds ? depthBinds[i] : 0;
}
size_t totalDescs = ubufCount + texCount;
if (totalDescs > 0)
{
VkDescriptorPoolSize poolSizes[2] = {};
VkDescriptorPoolCreateInfo descriptorPoolInfo = {};
descriptorPoolInfo.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_CREATE_INFO;
descriptorPoolInfo.pNext = nullptr;
descriptorPoolInfo.maxSets = 2;
descriptorPoolInfo.poolSizeCount = 2;
descriptorPoolInfo.pPoolSizes = poolSizes;
poolSizes[0].type = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER;
poolSizes[0].descriptorCount = BOO_GLSL_MAX_UNIFORM_COUNT * 2;
poolSizes[1].type = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER;
poolSizes[1].descriptorCount = BOO_GLSL_MAX_TEXTURE_COUNT * 2;
ThrowIfFailed(vk::CreateDescriptorPool(ctx->m_dev, &descriptorPoolInfo, nullptr, &m_descPool));
VkDescriptorSetLayout layouts[] = {ctx->m_descSetLayout, ctx->m_descSetLayout};
VkDescriptorSetAllocateInfo descAllocInfo;
descAllocInfo.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO;
descAllocInfo.pNext = nullptr;
descAllocInfo.descriptorPool = m_descPool;
descAllocInfo.descriptorSetCount = 2;
descAllocInfo.pSetLayouts = layouts;
ThrowIfFailed(vk::AllocateDescriptorSets(ctx->m_dev, &descAllocInfo, m_descSets));
}
}
~VulkanShaderDataBinding()
{
vk::DestroyDescriptorPool(m_ctx->m_dev, m_descPool, nullptr);
}
void commit(VulkanContext* ctx)
{
VkWriteDescriptorSet writes[(BOO_GLSL_MAX_UNIFORM_COUNT + BOO_GLSL_MAX_TEXTURE_COUNT) * 2] = {};
size_t totalWrites = 0;
for (int b=0 ; b<2 ; ++b)
{
if (m_vbuf)
{
const VkDescriptorBufferInfo* vbufInfo = GetBufferGPUResource(m_vbuf, b);
m_vboBufs[b][0] = vbufInfo->buffer;
m_vboOffs[b][0] = vbufInfo->offset + m_vertOffset;
}
if (m_instVbuf)
{
const VkDescriptorBufferInfo* vbufInfo = GetBufferGPUResource(m_instVbuf, b);
m_vboBufs[b][1] = vbufInfo->buffer;
m_vboOffs[b][1] = vbufInfo->offset + m_instOffset;
}
if (m_ibuf)
{
const VkDescriptorBufferInfo* ibufInfo = GetBufferGPUResource(m_ibuf, b);
m_iboBufs[b] = ibufInfo->buffer;
m_iboOffs[b] = ibufInfo->offset;
}
size_t binding = 0;
if (m_ubufOffs.size())
{
for (size_t i=0 ; i<BOO_GLSL_MAX_UNIFORM_COUNT ; ++i)
{
if (i<m_ubufCount)
{
VkDescriptorBufferInfo& modInfo = m_ubufOffs[i][b];
if (modInfo.range)
{
writes[totalWrites].sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
writes[totalWrites].pNext = nullptr;
writes[totalWrites].dstSet = m_descSets[b];
writes[totalWrites].descriptorCount = 1;
writes[totalWrites].descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER;
const VkDescriptorBufferInfo* origInfo = GetBufferGPUResource(m_ubufs[i], b);
modInfo.buffer = origInfo->buffer;
modInfo.offset += origInfo->offset;
writes[totalWrites].pBufferInfo = &modInfo;
writes[totalWrites].dstArrayElement = 0;
writes[totalWrites].dstBinding = binding;
++totalWrites;
}
}
++binding;
}
}
else
{
for (size_t i=0 ; i<BOO_GLSL_MAX_UNIFORM_COUNT ; ++i)
{
if (i<m_ubufCount)
{
writes[totalWrites].sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
writes[totalWrites].pNext = nullptr;
writes[totalWrites].dstSet = m_descSets[b];
writes[totalWrites].descriptorCount = 1;
writes[totalWrites].descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER;
writes[totalWrites].pBufferInfo = GetBufferGPUResource(m_ubufs[i], b);
writes[totalWrites].dstArrayElement = 0;
writes[totalWrites].dstBinding = binding;
++totalWrites;
}
++binding;
}
}
for (size_t i=0 ; i<BOO_GLSL_MAX_TEXTURE_COUNT ; ++i)
{
if (i<m_texCount && m_texs[i].tex)
{
writes[totalWrites].sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
writes[totalWrites].pNext = nullptr;
writes[totalWrites].dstSet = m_descSets[b];
writes[totalWrites].descriptorCount = 1;
writes[totalWrites].descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER;
writes[totalWrites].pImageInfo = GetTextureGPUResource(m_texs[i].tex, b, m_texs[i].idx, m_texs[i].depth);
writes[totalWrites].dstArrayElement = 0;
writes[totalWrites].dstBinding = binding;
m_knownViewHandles[b][i] = writes[totalWrites].pImageInfo->imageView;
++totalWrites;
}
++binding;
}
}
if (totalWrites)
vk::UpdateDescriptorSets(ctx->m_dev, totalWrites, writes, 0, nullptr);
#ifndef NDEBUG
m_committed = true;
#endif
}
void bind(VkCommandBuffer cmdBuf, int b)
{
#ifndef NDEBUG
if (!m_committed)
Log.report(logvisor::Fatal,
"attempted to use uncommitted VulkanShaderDataBinding");
#endif
/* Ensure resized texture bindings are re-bound */
size_t binding = BOO_GLSL_MAX_UNIFORM_COUNT;
VkWriteDescriptorSet writes[BOO_GLSL_MAX_TEXTURE_COUNT] = {};
size_t totalWrites = 0;
for (size_t i=0 ; i<BOO_GLSL_MAX_TEXTURE_COUNT ; ++i)
{
if (i<m_texCount && m_texs[i].tex)
{
const VkDescriptorImageInfo* resComp = GetTextureGPUResource(m_texs[i].tex, b, m_texs[i].idx, m_texs[i].depth);
if (resComp->imageView != m_knownViewHandles[b][i])
{
writes[totalWrites].sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
writes[totalWrites].pNext = nullptr;
writes[totalWrites].dstSet = m_descSets[b];
writes[totalWrites].descriptorCount = 1;
writes[totalWrites].descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER;
writes[totalWrites].pImageInfo = resComp;
writes[totalWrites].dstArrayElement = 0;
writes[totalWrites].dstBinding = binding;
++totalWrites;
m_knownViewHandles[b][i] = resComp->imageView;
}
}
++binding;
}
if (totalWrites)
vk::UpdateDescriptorSets(m_ctx->m_dev, totalWrites, writes, 0, nullptr);
vk::CmdBindPipeline(cmdBuf, VK_PIPELINE_BIND_POINT_GRAPHICS, m_pipeline->m_pipeline);
if (m_descSets[b])
vk::CmdBindDescriptorSets(cmdBuf, VK_PIPELINE_BIND_POINT_GRAPHICS, m_ctx->m_pipelinelayout,
0, 1, &m_descSets[b], 0, nullptr);
if (m_vbuf && m_instVbuf)
vk::CmdBindVertexBuffers(cmdBuf, 0, 2, m_vboBufs[b], m_vboOffs[b]);
else if (m_vbuf)
vk::CmdBindVertexBuffers(cmdBuf, 0, 1, m_vboBufs[b], m_vboOffs[b]);
else if (m_instVbuf)
vk::CmdBindVertexBuffers(cmdBuf, 1, 1, &m_vboBufs[b][1], &m_vboOffs[b][1]);
if (m_ibuf)
vk::CmdBindIndexBuffer(cmdBuf, m_iboBufs[b], m_iboOffs[b], VK_INDEX_TYPE_UINT32);
}
};
struct VulkanCommandQueue : IGraphicsCommandQueue
{
Platform platform() const {return IGraphicsDataFactory::Platform::Vulkan;}
const SystemChar* platformName() const {return _S("Vulkan");}
VulkanContext* m_ctx;
VulkanContext::Window* m_windowCtx;
IGraphicsContext* m_parent;
VkCommandPool m_cmdPool;
VkCommandBuffer m_cmdBufs[2];
VkSemaphore m_swapChainReadySem = VK_NULL_HANDLE;
VkSemaphore m_drawCompleteSem = VK_NULL_HANDLE;
VkFence m_drawCompleteFence;
VkCommandPool m_dynamicCmdPool;
VkCommandBuffer m_dynamicCmdBufs[2];
VkFence m_dynamicBufFence;
bool m_running = true;
bool m_dynamicNeedsReset = false;
bool m_submitted = false;
size_t m_fillBuf = 0;
size_t m_drawBuf = 0;
void resetCommandBuffer()
{
ThrowIfFailed(vk::ResetCommandBuffer(m_cmdBufs[m_fillBuf], 0));
VkCommandBufferBeginInfo cmdBufBeginInfo = {};
cmdBufBeginInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO;
cmdBufBeginInfo.flags = 0;
ThrowIfFailed(vk::BeginCommandBuffer(m_cmdBufs[m_fillBuf], &cmdBufBeginInfo));
}
void resetDynamicCommandBuffer()
{
ThrowIfFailed(vk::ResetCommandBuffer(m_dynamicCmdBufs[m_fillBuf], 0));
VkCommandBufferBeginInfo cmdBufBeginInfo = {};
cmdBufBeginInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO;
cmdBufBeginInfo.flags = 0;
ThrowIfFailed(vk::BeginCommandBuffer(m_dynamicCmdBufs[m_fillBuf], &cmdBufBeginInfo));
m_dynamicNeedsReset = false;
}
void stallDynamicUpload()
{
if (m_dynamicNeedsReset)
{
ThrowIfFailed(vk::WaitForFences(m_ctx->m_dev, 1, &m_dynamicBufFence, VK_FALSE, -1));
resetDynamicCommandBuffer();
}
}
VulkanCommandQueue(VulkanContext* ctx, VulkanContext::Window* windowCtx, IGraphicsContext* parent)
: m_ctx(ctx), m_windowCtx(windowCtx), m_parent(parent)
{
VkCommandPoolCreateInfo poolInfo = {};
poolInfo.sType = VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO;
poolInfo.flags = VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT;
poolInfo.queueFamilyIndex = m_ctx->m_graphicsQueueFamilyIndex;
ThrowIfFailed(vk::CreateCommandPool(ctx->m_dev, &poolInfo, nullptr, &m_cmdPool));
ThrowIfFailed(vk::CreateCommandPool(ctx->m_dev, &poolInfo, nullptr, &m_dynamicCmdPool));
VkCommandBufferAllocateInfo allocInfo = {};
allocInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO;
allocInfo.commandPool = m_cmdPool;
allocInfo.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY;
allocInfo.commandBufferCount = 2;
VkCommandBufferBeginInfo cmdBufBeginInfo = {};
cmdBufBeginInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO;
cmdBufBeginInfo.flags = 0;
ThrowIfFailed(vk::AllocateCommandBuffers(m_ctx->m_dev, &allocInfo, m_cmdBufs));
ThrowIfFailed(vk::BeginCommandBuffer(m_cmdBufs[0], &cmdBufBeginInfo));
allocInfo.commandPool = m_dynamicCmdPool;
ThrowIfFailed(vk::AllocateCommandBuffers(m_ctx->m_dev, &allocInfo, m_dynamicCmdBufs));
ThrowIfFailed(vk::BeginCommandBuffer(m_dynamicCmdBufs[0], &cmdBufBeginInfo));
VkSemaphoreCreateInfo semInfo = {};
semInfo.sType = VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO;
ThrowIfFailed(vk::CreateSemaphore(ctx->m_dev, &semInfo, nullptr, &m_swapChainReadySem));
ThrowIfFailed(vk::CreateSemaphore(ctx->m_dev, &semInfo, nullptr, &m_drawCompleteSem));
VkFenceCreateInfo fenceInfo = {};
fenceInfo.sType = VK_STRUCTURE_TYPE_FENCE_CREATE_INFO;
fenceInfo.flags = VK_FENCE_CREATE_SIGNALED_BIT;
ThrowIfFailed(vk::CreateFence(m_ctx->m_dev, &fenceInfo, nullptr, &m_drawCompleteFence));
ThrowIfFailed(vk::CreateFence(m_ctx->m_dev, &fenceInfo, nullptr, &m_dynamicBufFence));
}
void stopRenderer()
{
m_running = false;
vk::WaitForFences(m_ctx->m_dev, 1, &m_drawCompleteFence, VK_FALSE, -1);
}
~VulkanCommandQueue()
{
if (m_running)
stopRenderer();
vk::DestroyFence(m_ctx->m_dev, m_dynamicBufFence, nullptr);
vk::DestroyFence(m_ctx->m_dev, m_drawCompleteFence, nullptr);
vk::DestroySemaphore(m_ctx->m_dev, m_drawCompleteSem, nullptr);
vk::DestroySemaphore(m_ctx->m_dev, m_swapChainReadySem, nullptr);
vk::DestroyCommandPool(m_ctx->m_dev, m_dynamicCmdPool, nullptr);
vk::DestroyCommandPool(m_ctx->m_dev, m_cmdPool, nullptr);
}
void setShaderDataBinding(IShaderDataBinding* binding)
{
VulkanShaderDataBinding* cbind = static_cast<VulkanShaderDataBinding*>(binding);
cbind->bind(m_cmdBufs[m_fillBuf], m_fillBuf);
}
VulkanTextureR* m_boundTarget = nullptr;
void setRenderTarget(ITextureR* target)
{
VulkanTextureR* ctarget = static_cast<VulkanTextureR*>(target);
VkCommandBuffer cmdBuf = m_cmdBufs[m_fillBuf];
if (m_boundTarget != target)
{
if (m_boundTarget)
{
SetImageLayout(cmdBuf, m_boundTarget->m_colorTex, VK_IMAGE_ASPECT_COLOR_BIT,
VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, 1, 1);
SetImageLayout(cmdBuf, m_boundTarget->m_depthTex, VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT,
VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, 1, 1);
}
SetImageLayout(cmdBuf, ctarget->m_colorTex, VK_IMAGE_ASPECT_COLOR_BIT,
ctarget->m_layout, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL, 1, 1);
SetImageLayout(cmdBuf, ctarget->m_depthTex, VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT,
ctarget->m_layout, VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL, 1, 1);
ctarget->m_layout = VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL;
m_boundTarget = ctarget;
}
vk::CmdBeginRenderPass(cmdBuf, &ctarget->m_passBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
}
void setViewport(const SWindowRect& rect, float znear, float zfar)
{
if (m_boundTarget)
{
VkViewport vp = {float(rect.location[0]),
float(std::max(0, int(m_boundTarget->m_height) - rect.location[1] - rect.size[1])),
float(rect.size[0]), float(rect.size[1]), znear, zfar};
vk::CmdSetViewport(m_cmdBufs[m_fillBuf], 0, 1, &vp);
}
}
void setScissor(const SWindowRect& rect)
{
if (m_boundTarget)
{
VkRect2D vkrect =
{
{int32_t(rect.location[0]),
int32_t(std::max(0, int(m_boundTarget->m_height) - rect.location[1] - rect.size[1]))},
{uint32_t(rect.size[0]), uint32_t(rect.size[1])}
};
vk::CmdSetScissor(m_cmdBufs[m_fillBuf], 0, 1, &vkrect);
}
}
std::unordered_map<VulkanTextureR*, std::pair<size_t, size_t>> m_texResizes;
void resizeRenderTexture(ITextureR* tex, size_t width, size_t height)
{
VulkanTextureR* ctex = static_cast<VulkanTextureR*>(tex);
m_texResizes[ctex] = std::make_pair(width, height);
}
void schedulePostFrameHandler(std::function<void(void)>&& func)
{
func();
}
float m_clearColor[4] = {0.0,0.0,0.0,0.0};
void setClearColor(const float rgba[4])
{
m_clearColor[0] = rgba[0];
m_clearColor[1] = rgba[1];
m_clearColor[2] = rgba[2];
m_clearColor[3] = rgba[3];
}
void clearTarget(bool render=true, bool depth=true)
{
if (!m_boundTarget)
return;
VkClearAttachment clr[2] = {};
VkClearRect rect = {};
rect.layerCount = 1;
rect.rect.extent.width = m_boundTarget->m_width;
rect.rect.extent.height = m_boundTarget->m_height;
if (render && depth)
{
clr[0].clearValue.color.float32[0] = m_clearColor[0];
clr[0].clearValue.color.float32[1] = m_clearColor[1];
clr[0].clearValue.color.float32[2] = m_clearColor[2];
clr[0].clearValue.color.float32[3] = m_clearColor[3];
clr[0].aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
clr[1].aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT;
clr[1].clearValue.depthStencil.depth = 1.f;
vk::CmdClearAttachments(m_cmdBufs[m_fillBuf], 2, clr, 1, &rect);
}
else if (render)
{
clr[0].clearValue.color.float32[0] = m_clearColor[0];
clr[0].clearValue.color.float32[1] = m_clearColor[1];
clr[0].clearValue.color.float32[2] = m_clearColor[2];
clr[0].clearValue.color.float32[3] = m_clearColor[3];
clr[0].aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
vk::CmdClearAttachments(m_cmdBufs[m_fillBuf], 1, clr, 1, &rect);
}
else if (depth)
{
clr[0].aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT;
clr[0].clearValue.depthStencil.depth = 1.f;
vk::CmdClearAttachments(m_cmdBufs[m_fillBuf], 1, clr, 1, &rect);
}
}
void draw(size_t start, size_t count)
{
vk::CmdDraw(m_cmdBufs[m_fillBuf], count, 1, start, 0);
}
void drawIndexed(size_t start, size_t count)
{
vk::CmdDrawIndexed(m_cmdBufs[m_fillBuf], count, 1, start, 0, 0);
}
void drawInstances(size_t start, size_t count, size_t instCount)
{
vk::CmdDraw(m_cmdBufs[m_fillBuf], count, instCount, start, 0);
}
void drawInstancesIndexed(size_t start, size_t count, size_t instCount)
{
vk::CmdDrawIndexed(m_cmdBufs[m_fillBuf], count, instCount, start, 0, 0);
}
ITextureR* m_resolveDispSource = nullptr;
void resolveDisplay(ITextureR* source)
{
m_resolveDispSource = source;
}
bool _resolveDisplay()
{
if (!m_resolveDispSource)
return false;
VulkanContext::Window::SwapChain& sc = m_windowCtx->m_swapChains[m_windowCtx->m_activeSwapChain];
if (!sc.m_swapChain)
return false;
VkCommandBuffer cmdBuf = m_cmdBufs[m_drawBuf];
VulkanTextureR* csource = static_cast<VulkanTextureR*>(m_resolveDispSource);
ThrowIfFailed(vk::AcquireNextImageKHR(m_ctx->m_dev, sc.m_swapChain, UINT64_MAX,
m_swapChainReadySem, nullptr, &sc.m_backBuf));
VulkanContext::Window::SwapChain::Buffer& dest = sc.m_bufs[sc.m_backBuf];
SetImageLayout(cmdBuf, dest.m_image, VK_IMAGE_ASPECT_COLOR_BIT,
VK_IMAGE_LAYOUT_UNDEFINED, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1, 1);
if (m_resolveDispSource == m_boundTarget)
SetImageLayout(cmdBuf, csource->m_colorTex, VK_IMAGE_ASPECT_COLOR_BIT,
VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, 1, 1);
if (csource->m_samples > 1)
{
VkImageResolve resolveInfo = {};
resolveInfo.srcSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
resolveInfo.srcSubresource.mipLevel = 0;
resolveInfo.srcSubresource.baseArrayLayer = 0;
resolveInfo.srcSubresource.layerCount = 1;
resolveInfo.dstSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
resolveInfo.dstSubresource.mipLevel = 0;
resolveInfo.dstSubresource.baseArrayLayer = 0;
resolveInfo.dstSubresource.layerCount = 1;
resolveInfo.extent.width = csource->m_width;
resolveInfo.extent.height = csource->m_height;
resolveInfo.extent.depth = 1;
vk::CmdResolveImage(cmdBuf,
csource->m_colorTex, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,
dest.m_image, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
1, &resolveInfo);
}
else
{
VkImageCopy copyInfo = {};
copyInfo.srcSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
copyInfo.srcSubresource.mipLevel = 0;
copyInfo.srcSubresource.baseArrayLayer = 0;
copyInfo.srcSubresource.layerCount = 1;
copyInfo.dstSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
copyInfo.dstSubresource.mipLevel = 0;
copyInfo.dstSubresource.baseArrayLayer = 0;
copyInfo.dstSubresource.layerCount = 1;
copyInfo.extent.width = csource->m_width;
copyInfo.extent.height = csource->m_height;
copyInfo.extent.depth = 1;
vk::CmdCopyImage(cmdBuf,
csource->m_colorTex, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,
dest.m_image, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
1, &copyInfo);
}
SetImageLayout(cmdBuf, dest.m_image, VK_IMAGE_ASPECT_COLOR_BIT,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, VK_IMAGE_LAYOUT_PRESENT_SRC_KHR, 1, 1);
dest.m_layout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR;
if (m_resolveDispSource == m_boundTarget)
SetImageLayout(cmdBuf, csource->m_colorTex, VK_IMAGE_ASPECT_COLOR_BIT,
VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL, 1, 1);
m_resolveDispSource = nullptr;
return true;
}
void resolveBindTexture(ITextureR* texture, const SWindowRect& rect, bool tlOrigin,
int bindIdx, bool color, bool depth)
{
VkCommandBuffer cmdBuf = m_cmdBufs[m_fillBuf];
VulkanTextureR* ctexture = static_cast<VulkanTextureR*>(texture);
vk::CmdEndRenderPass(cmdBuf);
VkImageCopy copyInfo = {};
SWindowRect intersectRect = rect.intersect(SWindowRect(0, 0, ctexture->m_width, ctexture->m_height));
copyInfo.srcOffset.y = tlOrigin ? intersectRect.location[1] :
(ctexture->m_height - intersectRect.size[1] - intersectRect.location[1]);
copyInfo.srcOffset.x = intersectRect.location[0];
copyInfo.dstOffset = copyInfo.srcOffset;
copyInfo.extent.width = intersectRect.size[0];
copyInfo.extent.height = intersectRect.size[1];
copyInfo.extent.depth = 1;
copyInfo.dstSubresource.mipLevel = 0;
copyInfo.dstSubresource.baseArrayLayer = 0;
copyInfo.dstSubresource.layerCount = 1;
copyInfo.srcSubresource.mipLevel = 0;
copyInfo.srcSubresource.baseArrayLayer = 0;
copyInfo.srcSubresource.layerCount = 1;
if (color && ctexture->m_colorBindCount)
{
if (ctexture == m_boundTarget)
SetImageLayout(cmdBuf, ctexture->m_colorTex, VK_IMAGE_ASPECT_COLOR_BIT,
VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, 1, 1);
SetImageLayout(cmdBuf, ctexture->m_colorBindTex[bindIdx], VK_IMAGE_ASPECT_COLOR_BIT,
ctexture->m_colorBindLayout[bindIdx], VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1, 1);
copyInfo.srcSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
copyInfo.dstSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
vk::CmdCopyImage(cmdBuf,
ctexture->m_colorTex, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,
ctexture->m_colorBindTex[bindIdx], VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
1, &copyInfo);
if (ctexture == m_boundTarget)
SetImageLayout(cmdBuf, ctexture->m_colorTex, VK_IMAGE_ASPECT_COLOR_BIT,
VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL, 1, 1);
SetImageLayout(cmdBuf, ctexture->m_colorBindTex[bindIdx], VK_IMAGE_ASPECT_COLOR_BIT,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL, 1, 1);
ctexture->m_colorBindLayout[bindIdx] = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
}
if (depth && ctexture->m_depthBindCount)
{
if (ctexture == m_boundTarget)
SetImageLayout(cmdBuf, ctexture->m_depthTex, VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT,
VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, 1, 1);
SetImageLayout(cmdBuf, ctexture->m_depthBindTex[bindIdx], VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT,
ctexture->m_depthBindLayout[bindIdx], VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1, 1);
copyInfo.srcSubresource.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT;
copyInfo.dstSubresource.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT;
vk::CmdCopyImage(cmdBuf,
ctexture->m_depthTex, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,
ctexture->m_depthBindTex[bindIdx], VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
1, &copyInfo);
if (ctexture == m_boundTarget)
SetImageLayout(cmdBuf, ctexture->m_depthTex, VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT,
VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL, 1, 1);
SetImageLayout(cmdBuf, ctexture->m_depthBindTex[bindIdx], VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL, 1, 1);
ctexture->m_depthBindLayout[bindIdx] = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
}
vk::CmdBeginRenderPass(cmdBuf, &m_boundTarget->m_passBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
}
void execute();
};
VulkanGraphicsBufferD::~VulkanGraphicsBufferD()
{
vk::DestroyBuffer(m_q->m_ctx->m_dev, m_bufferInfo[0].buffer, nullptr);
vk::DestroyBuffer(m_q->m_ctx->m_dev, m_bufferInfo[1].buffer, nullptr);
}
VulkanTextureD::~VulkanTextureD()
{
vk::DestroyImageView(m_q->m_ctx->m_dev, m_gpuView[0], nullptr);
vk::DestroyImageView(m_q->m_ctx->m_dev, m_gpuView[1], nullptr);
vk::DestroyBuffer(m_q->m_ctx->m_dev, m_cpuBuf[0], nullptr);
vk::DestroyBuffer(m_q->m_ctx->m_dev, m_cpuBuf[1], nullptr);
vk::DestroyImage(m_q->m_ctx->m_dev, m_gpuTex[0], nullptr);
vk::DestroyImage(m_q->m_ctx->m_dev, m_gpuTex[1], nullptr);
vk::FreeMemory(m_q->m_ctx->m_dev, m_cpuMem, nullptr);
}
void VulkanTextureR::doDestroy()
{
if (m_framebuffer)
{
vk::DestroyFramebuffer(m_q->m_ctx->m_dev, m_framebuffer, nullptr);
m_framebuffer = VK_NULL_HANDLE;
}
if (m_colorView)
{
vk::DestroyImageView(m_q->m_ctx->m_dev, m_colorView, nullptr);
m_colorView = VK_NULL_HANDLE;
}
if (m_colorTex)
{
vk::DestroyImage(m_q->m_ctx->m_dev, m_colorTex, nullptr);
m_colorTex = VK_NULL_HANDLE;
}
if (m_depthView)
{
vk::DestroyImageView(m_q->m_ctx->m_dev, m_depthView, nullptr);
m_depthView = VK_NULL_HANDLE;
}
if (m_depthTex)
{
vk::DestroyImage(m_q->m_ctx->m_dev, m_depthTex, nullptr);
m_depthTex = VK_NULL_HANDLE;
}
for (size_t i=0 ; i<MAX_BIND_TEXS ; ++i)
if (m_colorBindView[i])
{
vk::DestroyImageView(m_q->m_ctx->m_dev, m_colorBindView[i], nullptr);
m_colorBindView[i] = VK_NULL_HANDLE;
}
for (size_t i=0 ; i<MAX_BIND_TEXS ; ++i)
if (m_colorBindTex[i])
{
vk::DestroyImage(m_q->m_ctx->m_dev, m_colorBindTex[i], nullptr);
m_colorBindTex[i] = VK_NULL_HANDLE;
}
for (size_t i=0 ; i<MAX_BIND_TEXS ; ++i)
if (m_depthBindView[i])
{
vk::DestroyImageView(m_q->m_ctx->m_dev, m_depthBindView[i], nullptr);
m_depthBindView[i] = VK_NULL_HANDLE;
}
for (size_t i=0 ; i<MAX_BIND_TEXS ; ++i)
if (m_depthBindTex[i])
{
vk::DestroyImage(m_q->m_ctx->m_dev, m_depthBindTex[i], nullptr);
m_depthBindTex[i] = VK_NULL_HANDLE;
}
if (m_gpuMem)
{
vk::FreeMemory(m_q->m_ctx->m_dev, m_gpuMem, nullptr);
m_gpuMem = VK_NULL_HANDLE;
}
}
VulkanTextureR::~VulkanTextureR()
{
vk::DestroyFramebuffer(m_q->m_ctx->m_dev, m_framebuffer, nullptr);
vk::DestroyImageView(m_q->m_ctx->m_dev, m_colorView, nullptr);
vk::DestroyImage(m_q->m_ctx->m_dev, m_colorTex, nullptr);
vk::DestroyImageView(m_q->m_ctx->m_dev, m_depthView, nullptr);
vk::DestroyImage(m_q->m_ctx->m_dev, m_depthTex, nullptr);
for (size_t i=0 ; i<MAX_BIND_TEXS ; ++i)
if (m_colorBindView[i])
vk::DestroyImageView(m_q->m_ctx->m_dev, m_colorBindView[i], nullptr);
for (size_t i=0 ; i<MAX_BIND_TEXS ; ++i)
if (m_colorBindTex[i])
vk::DestroyImage(m_q->m_ctx->m_dev, m_colorBindTex[i], nullptr);
for (size_t i=0 ; i<MAX_BIND_TEXS ; ++i)
if (m_depthBindView[i])
vk::DestroyImageView(m_q->m_ctx->m_dev, m_depthBindView[i], nullptr);
for (size_t i=0 ; i<MAX_BIND_TEXS ; ++i)
if (m_depthBindTex[i])
vk::DestroyImage(m_q->m_ctx->m_dev, m_depthBindTex[i], nullptr);
vk::FreeMemory(m_q->m_ctx->m_dev, m_gpuMem, nullptr);
if (m_q->m_boundTarget == this)
m_q->m_boundTarget = nullptr;
}
void VulkanGraphicsBufferD::update(int b)
{
int slot = 1 << b;
if ((slot & m_validSlots) == 0)
{
void* ptr;
ThrowIfFailed(vk::MapMemory(m_q->m_ctx->m_dev, m_mem,
m_memOffset[b], m_cpuSz, 0, &ptr));
memmove(ptr, m_cpuBuf.get(), m_cpuSz);
vk::UnmapMemory(m_q->m_ctx->m_dev, m_mem);
m_validSlots |= slot;
}
}
void VulkanGraphicsBufferD::load(const void* data, size_t sz)
{
size_t bufSz = std::min(sz, m_cpuSz);
memmove(m_cpuBuf.get(), data, bufSz);
m_validSlots = 0;
}
void* VulkanGraphicsBufferD::map(size_t sz)
{
if (sz > m_cpuSz)
return nullptr;
return m_cpuBuf.get();
}
void VulkanGraphicsBufferD::unmap()
{
m_validSlots = 0;
}
void VulkanTextureD::update(int b)
{
int slot = 1 << b;
if ((slot & m_validSlots) == 0)
{
m_q->stallDynamicUpload();
VkCommandBuffer cmdBuf = m_q->m_dynamicCmdBufs[b];
/* map memory and copy staging data */
uint8_t* mappedData;
ThrowIfFailed(vk::MapMemory(m_q->m_ctx->m_dev, m_cpuMem, m_cpuOffsets[b], m_cpuSz, 0, reinterpret_cast<void**>(&mappedData)));
memmove(mappedData, m_stagingBuf.get(), m_cpuSz);
vk::UnmapMemory(m_q->m_ctx->m_dev, m_cpuMem);
SetImageLayout(cmdBuf, m_gpuTex[b], VK_IMAGE_ASPECT_COLOR_BIT,
VK_IMAGE_LAYOUT_UNDEFINED,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1, 1);
/* Put the copy command into the command buffer */
VkBufferImageCopy copyRegion = {};
copyRegion.imageSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
copyRegion.imageSubresource.mipLevel = 0;
copyRegion.imageSubresource.baseArrayLayer = 0;
copyRegion.imageSubresource.layerCount = 1;
copyRegion.imageExtent.width = m_width;
copyRegion.imageExtent.height = m_height;
copyRegion.imageExtent.depth = 1;
copyRegion.bufferOffset = 0;
vk::CmdCopyBufferToImage(cmdBuf,
m_cpuBuf[b],
m_gpuTex[b],
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
1,
&copyRegion);
/* Set the layout for the texture image from DESTINATION_OPTIMAL to
* SHADER_READ_ONLY */
SetImageLayout(cmdBuf, m_gpuTex[b], VK_IMAGE_ASPECT_COLOR_BIT,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL, 1, 1);
m_validSlots |= slot;
}
}
void VulkanTextureD::load(const void* data, size_t sz)
{
size_t bufSz = std::min(sz, m_cpuSz);
memmove(m_stagingBuf.get(), data, bufSz);
m_validSlots = 0;
}
void* VulkanTextureD::map(size_t sz)
{
if (sz > m_cpuSz)
return nullptr;
return m_stagingBuf.get();
}
void VulkanTextureD::unmap()
{
m_validSlots = 0;
}
void VulkanDataFactoryImpl::destroyData(IGraphicsData* d)
{
VulkanData* data = static_cast<VulkanData*>(d);
data->m_dead = true;
}
void VulkanDataFactoryImpl::destroyPool(IGraphicsBufferPool* p)
{
VulkanPool* pool = static_cast<VulkanPool*>(p);
pool->m_dead = true;
}
void VulkanDataFactoryImpl::destroyAllData()
{
std::unique_lock<std::mutex> lk(m_committedMutex);
for (VulkanData* data : m_committedData)
data->decrement();
for (IGraphicsBufferPool* pool : m_committedPools)
delete static_cast<VulkanPool*>(pool);
m_committedData.clear();
m_committedPools.clear();
}
VulkanDataFactoryImpl::VulkanDataFactoryImpl(IGraphicsContext* parent,
VulkanContext* ctx, uint32_t drawSamples)
: m_parent(parent), m_ctx(ctx), m_drawSamples(drawSamples)
{
VkDescriptorSetLayoutBinding layoutBindings[BOO_GLSL_MAX_UNIFORM_COUNT + BOO_GLSL_MAX_TEXTURE_COUNT];
for (int i=0 ; i<BOO_GLSL_MAX_UNIFORM_COUNT ; ++i)
{
layoutBindings[i].binding = i;
layoutBindings[i].descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER;
layoutBindings[i].descriptorCount = 1;
layoutBindings[i].stageFlags = VK_SHADER_STAGE_VERTEX_BIT | VK_SHADER_STAGE_FRAGMENT_BIT;
layoutBindings[i].pImmutableSamplers = nullptr;
}
for (int i=BOO_GLSL_MAX_UNIFORM_COUNT ; i<BOO_GLSL_MAX_UNIFORM_COUNT+BOO_GLSL_MAX_TEXTURE_COUNT ; ++i)
{
layoutBindings[i].binding = i;
layoutBindings[i].descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER;
layoutBindings[i].descriptorCount = 1;
layoutBindings[i].stageFlags = VK_SHADER_STAGE_FRAGMENT_BIT;
layoutBindings[i].pImmutableSamplers = &ctx->m_linearSampler;
}
VkDescriptorSetLayoutCreateInfo descriptorLayout = {};
descriptorLayout.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO;
descriptorLayout.pNext = nullptr;
descriptorLayout.bindingCount = BOO_GLSL_MAX_UNIFORM_COUNT + BOO_GLSL_MAX_TEXTURE_COUNT;
descriptorLayout.pBindings = layoutBindings;
ThrowIfFailed(vk::CreateDescriptorSetLayout(ctx->m_dev, &descriptorLayout, nullptr,
&ctx->m_descSetLayout));
VkPipelineLayoutCreateInfo pipelineLayout = {};
pipelineLayout.sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO;
pipelineLayout.setLayoutCount = 1;
pipelineLayout.pSetLayouts = &ctx->m_descSetLayout;
ThrowIfFailed(vk::CreatePipelineLayout(ctx->m_dev, &pipelineLayout, nullptr, &ctx->m_pipelinelayout));
VkAttachmentDescription attachments[2] = {};
/* color attachment */
attachments[0].format = ctx->m_displayFormat;
attachments[0].samples = VkSampleCountFlagBits(drawSamples);
attachments[0].loadOp = VK_ATTACHMENT_LOAD_OP_LOAD;
attachments[0].storeOp = VK_ATTACHMENT_STORE_OP_STORE;
attachments[0].stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE;
attachments[0].stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE;
attachments[0].initialLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
attachments[0].finalLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
VkAttachmentReference colorAttachmentRef = {0, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL};
/* depth attachment */
attachments[1].format = VK_FORMAT_D24_UNORM_S8_UINT;
attachments[1].samples = VkSampleCountFlagBits(drawSamples);
attachments[1].loadOp = VK_ATTACHMENT_LOAD_OP_LOAD;
attachments[1].storeOp = VK_ATTACHMENT_STORE_OP_STORE;
attachments[1].stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE;
attachments[1].stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE;
attachments[1].initialLayout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL;
attachments[1].finalLayout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL;
VkAttachmentReference depthAttachmentRef = {1, VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL};
/* render subpass */
VkSubpassDescription subpass = {};
subpass.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS;
subpass.colorAttachmentCount = 1;
subpass.pColorAttachments = &colorAttachmentRef;
subpass.pDepthStencilAttachment = &depthAttachmentRef;
/* render pass */
VkRenderPassCreateInfo renderPass = {};
renderPass.sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO;
renderPass.attachmentCount = 2;
renderPass.pAttachments = attachments;
renderPass.subpassCount = 1;
renderPass.pSubpasses = &subpass;
ThrowIfFailed(vk::CreateRenderPass(ctx->m_dev, &renderPass, nullptr, &ctx->m_pass));
}
static uint64_t CompileVert(std::vector<unsigned int>& out, const char* vertSource, uint64_t srcKey,
VulkanDataFactoryImpl& factory)
{
const EShMessages messages = EShMessages(EShMsgSpvRules | EShMsgVulkanRules);
glslang::TShader vs(EShLangVertex);
vs.setStrings(&vertSource, 1);
if (!vs.parse(&glslang::DefaultTBuiltInResource, 110, false, messages))
{
printf("%s\n", vertSource);
Log.report(logvisor::Fatal, "unable to compile vertex shader\n%s", vs.getInfoLog());
}
glslang::TProgram prog;
prog.addShader(&vs);
if (!prog.link(messages))
{
Log.report(logvisor::Fatal, "unable to link shader program\n%s", prog.getInfoLog());
}
glslang::GlslangToSpv(*prog.getIntermediate(EShLangVertex), out);
//spv::Disassemble(std::cerr, out);
XXH64_state_t hashState;
XXH64_reset(&hashState, 0);
XXH64_update(&hashState, out.data(), out.size() * sizeof(unsigned int));
uint64_t binKey = XXH64_digest(&hashState);
factory.m_sourceToBinary[srcKey] = binKey;
return binKey;
}
static uint64_t CompileFrag(std::vector<unsigned int>& out, const char* fragSource, uint64_t srcKey,
VulkanDataFactoryImpl& factory)
{
const EShMessages messages = EShMessages(EShMsgSpvRules | EShMsgVulkanRules);
glslang::TShader fs(EShLangFragment);
fs.setStrings(&fragSource, 1);
if (!fs.parse(&glslang::DefaultTBuiltInResource, 110, false, messages))
{
printf("%s\n", fragSource);
Log.report(logvisor::Fatal, "unable to compile fragment shader\n%s", fs.getInfoLog());
}
glslang::TProgram prog;
prog.addShader(&fs);
if (!prog.link(messages))
{
Log.report(logvisor::Fatal, "unable to link shader program\n%s", prog.getInfoLog());
}
glslang::GlslangToSpv(*prog.getIntermediate(EShLangFragment), out);
//spv::Disassemble(std::cerr, out);
XXH64_state_t hashState;
XXH64_reset(&hashState, 0);
XXH64_update(&hashState, out.data(), out.size() * sizeof(unsigned int));
uint64_t binKey = XXH64_digest(&hashState);
factory.m_sourceToBinary[srcKey] = binKey;
return binKey;
}
IShaderPipeline* VulkanDataFactory::Context::newShaderPipeline
(const char* vertSource, const char* fragSource,
std::vector<unsigned int>* vertBlobOut, std::vector<unsigned int>* fragBlobOut,
std::vector<unsigned char>* pipelineBlob, IVertexFormat* vtxFmt,
BlendFactor srcFac, BlendFactor dstFac, Primitive prim,
ZTest depthTest, bool depthWrite, bool colorWrite,
bool alphaWrite, CullMode culling)
{
VulkanData* d = static_cast<VulkanData*>(VulkanDataFactoryImpl::m_deferredData.get());
VulkanDataFactoryImpl& factory = static_cast<VulkanDataFactoryImpl&>(m_parent);
XXH64_state_t hashState;
uint64_t srcHashes[2] = {};
uint64_t binHashes[2] = {};
XXH64_reset(&hashState, 0);
if (vertSource)
{
XXH64_update(&hashState, vertSource, strlen(vertSource));
srcHashes[0] = XXH64_digest(&hashState);
auto binSearch = factory.m_sourceToBinary.find(srcHashes[0]);
if (binSearch != factory.m_sourceToBinary.cend())
binHashes[0] = binSearch->second;
}
else if (vertBlobOut && vertBlobOut->size())
{
XXH64_update(&hashState, vertBlobOut->data(), vertBlobOut->size() * sizeof(unsigned int));
binHashes[0] = XXH64_digest(&hashState);
}
XXH64_reset(&hashState, 0);
if (fragSource)
{
XXH64_update(&hashState, fragSource, strlen(fragSource));
srcHashes[1] = XXH64_digest(&hashState);
auto binSearch = factory.m_sourceToBinary.find(srcHashes[1]);
if (binSearch != factory.m_sourceToBinary.cend())
binHashes[1] = binSearch->second;
}
else if (fragBlobOut && fragBlobOut->size())
{
XXH64_update(&hashState, fragBlobOut->data(), fragBlobOut->size() * sizeof(unsigned int));
binHashes[1] = XXH64_digest(&hashState);
}
if (vertBlobOut && vertBlobOut->empty())
binHashes[0] = CompileVert(*vertBlobOut, vertSource, srcHashes[0], factory);
if (fragBlobOut && fragBlobOut->empty())
binHashes[1] = CompileFrag(*fragBlobOut, fragSource, srcHashes[1], factory);
VkShaderModuleCreateInfo smCreateInfo = {};
smCreateInfo.sType = VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO;
smCreateInfo.pNext = nullptr;
smCreateInfo.flags = 0;
VulkanShareableShader::Token vertShader;
VulkanShareableShader::Token fragShader;
auto vertFind = binHashes[0] ? factory.m_sharedShaders.find(binHashes[0]) :
factory.m_sharedShaders.end();
if (vertFind != factory.m_sharedShaders.end())
{
vertShader = vertFind->second->lock();
}
else
{
std::vector<unsigned int> vertBlob;
const std::vector<unsigned int>* useVertBlob;
if (vertBlobOut)
{
useVertBlob = vertBlobOut;
}
else
{
useVertBlob = &vertBlob;
binHashes[0] = CompileVert(vertBlob, vertSource, srcHashes[0], factory);
}
smCreateInfo.codeSize = useVertBlob->size() * sizeof(unsigned int);
smCreateInfo.pCode = useVertBlob->data();
VkShaderModule vertModule;
ThrowIfFailed(vk::CreateShaderModule(factory.m_ctx->m_dev, &smCreateInfo, nullptr, &vertModule));
auto it =
factory.m_sharedShaders.emplace(std::make_pair(binHashes[0],
std::make_unique<VulkanShareableShader>(factory, srcHashes[0], binHashes[0],
factory.m_ctx->m_dev, vertModule))).first;
vertShader = it->second->lock();
}
auto fragFind = binHashes[1] ? factory.m_sharedShaders.find(binHashes[1]) :
factory.m_sharedShaders.end();
if (fragFind != factory.m_sharedShaders.end())
{
fragShader = fragFind->second->lock();
}
else
{
std::vector<unsigned int> fragBlob;
const std::vector<unsigned int>* useFragBlob;
if (fragBlobOut)
{
useFragBlob = fragBlobOut;
}
else
{
useFragBlob = &fragBlob;
binHashes[1] = CompileFrag(fragBlob, fragSource, srcHashes[1], factory);
}
smCreateInfo.codeSize = useFragBlob->size() * sizeof(unsigned int);
smCreateInfo.pCode = useFragBlob->data();
VkShaderModule fragModule;
ThrowIfFailed(vk::CreateShaderModule(factory.m_ctx->m_dev, &smCreateInfo, nullptr, &fragModule));
auto it =
factory.m_sharedShaders.emplace(std::make_pair(binHashes[1],
std::make_unique<VulkanShareableShader>(factory, srcHashes[1], binHashes[1],
factory.m_ctx->m_dev, fragModule))).first;
fragShader = it->second->lock();
}
VkPipelineCache pipelineCache = VK_NULL_HANDLE;
if (pipelineBlob)
{
VkPipelineCacheCreateInfo cacheDataInfo = {};
cacheDataInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_CACHE_CREATE_INFO;
cacheDataInfo.pNext = nullptr;
cacheDataInfo.initialDataSize = pipelineBlob->size();
if (cacheDataInfo.initialDataSize)
cacheDataInfo.pInitialData = pipelineBlob->data();
ThrowIfFailed(vk::CreatePipelineCache(factory.m_ctx->m_dev, &cacheDataInfo, nullptr, &pipelineCache));
}
VulkanShaderPipeline* retval = new VulkanShaderPipeline(d, factory.m_ctx, std::move(vertShader), std::move(fragShader),
pipelineCache, static_cast<const VulkanVertexFormat*>(vtxFmt),
srcFac, dstFac, prim, depthTest, depthWrite, colorWrite,
alphaWrite, culling);
if (pipelineBlob && pipelineBlob->empty())
{
size_t cacheSz = 0;
ThrowIfFailed(vk::GetPipelineCacheData(factory.m_ctx->m_dev, pipelineCache, &cacheSz, nullptr));
if (cacheSz)
{
pipelineBlob->resize(cacheSz);
ThrowIfFailed(vk::GetPipelineCacheData(factory.m_ctx->m_dev, pipelineCache, &cacheSz, pipelineBlob->data()));
pipelineBlob->resize(cacheSz);
}
}
d->m_SPs.emplace_back(retval);
return retval;
}
IGraphicsBufferS* VulkanDataFactory::Context::newStaticBuffer(BufferUse use, const void* data, size_t stride, size_t count)
{
VulkanData* d = static_cast<VulkanData*>(VulkanDataFactoryImpl::m_deferredData.get());
VulkanDataFactoryImpl& factory = static_cast<VulkanDataFactoryImpl&>(m_parent);
VulkanGraphicsBufferS* retval = new VulkanGraphicsBufferS(d, use, factory.m_ctx, data, stride, count);
d->m_SBufs.emplace_back(retval);
return retval;
}
IGraphicsBufferD* VulkanDataFactory::Context::newDynamicBuffer(BufferUse use, size_t stride, size_t count)
{
VulkanData* d = static_cast<VulkanData*>(VulkanDataFactoryImpl::m_deferredData.get());
VulkanDataFactoryImpl& factory = static_cast<VulkanDataFactoryImpl&>(m_parent);
VulkanCommandQueue* q = static_cast<VulkanCommandQueue*>(factory.m_parent->getCommandQueue());
VulkanGraphicsBufferD* retval = new VulkanGraphicsBufferD(d, q, use, factory.m_ctx, stride, count);
d->m_DBufs.emplace_back(retval);
return retval;
}
ITextureS* VulkanDataFactory::Context::newStaticTexture(size_t width, size_t height, size_t mips,
TextureFormat fmt, const void* data, size_t sz)
{
VulkanData* d = static_cast<VulkanData*>(VulkanDataFactoryImpl::m_deferredData.get());
VulkanDataFactoryImpl& factory = static_cast<VulkanDataFactoryImpl&>(m_parent);
VulkanTextureS* retval = new VulkanTextureS(d, factory.m_ctx, width, height, mips, fmt, data, sz);
d->m_STexs.emplace_back(retval);
return retval;
}
ITextureSA* VulkanDataFactory::Context::newStaticArrayTexture(size_t width, size_t height, size_t layers, size_t mips,
TextureFormat fmt, const void* data, size_t sz)
{
VulkanData* d = static_cast<VulkanData*>(VulkanDataFactoryImpl::m_deferredData.get());
VulkanDataFactoryImpl& factory = static_cast<VulkanDataFactoryImpl&>(m_parent);
VulkanTextureSA* retval = new VulkanTextureSA(d, factory.m_ctx, width, height, layers, mips, fmt, data, sz);
d->m_SATexs.emplace_back(retval);
return retval;
}
ITextureD* VulkanDataFactory::Context::newDynamicTexture(size_t width, size_t height, TextureFormat fmt)
{
VulkanData* d = static_cast<VulkanData*>(VulkanDataFactoryImpl::m_deferredData.get());
VulkanDataFactoryImpl& factory = static_cast<VulkanDataFactoryImpl&>(m_parent);
VulkanCommandQueue* q = static_cast<VulkanCommandQueue*>(factory.m_parent->getCommandQueue());
VulkanTextureD* retval = new VulkanTextureD(d, q, factory.m_ctx, width, height, fmt);
d->m_DTexs.emplace_back(retval);
return retval;
}
ITextureR* VulkanDataFactory::Context::newRenderTexture(size_t width, size_t height,
size_t colorBindCount, size_t depthBindCount)
{
VulkanData* d = static_cast<VulkanData*>(VulkanDataFactoryImpl::m_deferredData.get());
VulkanDataFactoryImpl& factory = static_cast<VulkanDataFactoryImpl&>(m_parent);
VulkanCommandQueue* q = static_cast<VulkanCommandQueue*>(factory.m_parent->getCommandQueue());
VulkanTextureR* retval = new VulkanTextureR(d, factory.m_ctx, q, width, height, factory.m_drawSamples,
colorBindCount, depthBindCount);
d->m_RTexs.emplace_back(retval);
return retval;
}
IVertexFormat* VulkanDataFactory::Context::newVertexFormat(size_t elementCount,
const VertexElementDescriptor* elements,
size_t baseVert, size_t baseInst)
{
VulkanData* d = static_cast<VulkanData*>(VulkanDataFactoryImpl::m_deferredData.get());
VulkanVertexFormat* retval = new struct VulkanVertexFormat(d, elementCount, elements);
d->m_VFmts.emplace_back(retval);
return retval;
}
IShaderDataBinding* VulkanDataFactory::Context::newShaderDataBinding(IShaderPipeline* pipeline,
IVertexFormat* /*vtxFormat*/,
IGraphicsBuffer* vbuf, IGraphicsBuffer* instVbuf, IGraphicsBuffer* ibuf,
size_t ubufCount, IGraphicsBuffer** ubufs, const PipelineStage* /*ubufStages*/,
const size_t* ubufOffs, const size_t* ubufSizes,
size_t texCount, ITexture** texs,
const int* bindIdxs, const bool* bindDepth,
size_t baseVert, size_t baseInst)
{
VulkanDataFactoryImpl& factory = static_cast<VulkanDataFactoryImpl&>(m_parent);
VulkanData* d = static_cast<VulkanData*>(VulkanDataFactoryImpl::m_deferredData.get());
VulkanShaderDataBinding* retval =
new VulkanShaderDataBinding(d, factory.m_ctx, pipeline, vbuf, instVbuf, ibuf,
ubufCount, ubufs, ubufOffs, ubufSizes, texCount, texs,
bindIdxs, bindDepth, baseVert, baseInst);
d->m_SBinds.emplace_back(retval);
return retval;
}
GraphicsDataToken VulkanDataFactoryImpl::commitTransaction
(const std::function<bool(IGraphicsDataFactory::Context&)>& trans)
{
if (m_deferredData.get())
Log.report(logvisor::Fatal, "nested commitTransaction usage detected");
m_deferredData.reset(new VulkanData(m_ctx));
Context ctx(*this);
if (!trans(ctx))
{
delete m_deferredData.get();
m_deferredData.reset();
return GraphicsDataToken(this, nullptr);
}
VulkanData* retval = static_cast<VulkanData*>(m_deferredData.get());
/* size up resources */
uint32_t bufMemTypeBits = ~0;
VkDeviceSize bufMemSize = 0;
uint32_t texMemTypeBits = ~0;
VkDeviceSize texMemSize = 0;
for (std::unique_ptr<VulkanGraphicsBufferS>& buf : retval->m_SBufs)
bufMemSize = buf->sizeForGPU(m_ctx, bufMemTypeBits, bufMemSize);
for (std::unique_ptr<VulkanGraphicsBufferD>& buf : retval->m_DBufs)
bufMemSize = buf->sizeForGPU(m_ctx, bufMemTypeBits, bufMemSize);
for (std::unique_ptr<VulkanTextureS>& tex : retval->m_STexs)
texMemSize = tex->sizeForGPU(m_ctx, texMemTypeBits, texMemSize);
for (std::unique_ptr<VulkanTextureSA>& tex : retval->m_SATexs)
texMemSize = tex->sizeForGPU(m_ctx, texMemTypeBits, texMemSize);
for (std::unique_ptr<VulkanTextureD>& tex : retval->m_DTexs)
texMemSize = tex->sizeForGPU(m_ctx, texMemTypeBits, texMemSize);
/* allocate memory and place textures */
if (bufMemSize)
{
VkMemoryAllocateInfo memAlloc = {};
memAlloc.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
memAlloc.allocationSize = bufMemSize;
ThrowIfFalse(MemoryTypeFromProperties(m_ctx, bufMemTypeBits,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
&memAlloc.memoryTypeIndex));
ThrowIfFailed(vk::AllocateMemory(m_ctx->m_dev, &memAlloc, nullptr, &retval->m_bufMem));
/* place resources */
uint8_t* mappedData;
ThrowIfFailed(vk::MapMemory(m_ctx->m_dev, retval->m_bufMem, 0, bufMemSize, 0, reinterpret_cast<void**>(&mappedData)));
for (std::unique_ptr<VulkanGraphicsBufferS>& buf : retval->m_SBufs)
buf->placeForGPU(m_ctx, retval->m_bufMem, mappedData);
vk::UnmapMemory(m_ctx->m_dev, retval->m_bufMem);
for (std::unique_ptr<VulkanGraphicsBufferD>& buf : retval->m_DBufs)
buf->placeForGPU(m_ctx, retval->m_bufMem);
}
/* allocate memory and place textures */
if (texMemSize)
{
VkMemoryAllocateInfo memAlloc = {};
memAlloc.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
memAlloc.allocationSize = texMemSize;
ThrowIfFalse(MemoryTypeFromProperties(m_ctx, texMemTypeBits, 0, &memAlloc.memoryTypeIndex));
ThrowIfFailed(vk::AllocateMemory(m_ctx->m_dev, &memAlloc, nullptr, &retval->m_texMem));
for (std::unique_ptr<VulkanTextureS>& tex : retval->m_STexs)
tex->placeForGPU(m_ctx, retval->m_texMem);
for (std::unique_ptr<VulkanTextureSA>& tex : retval->m_SATexs)
tex->placeForGPU(m_ctx, retval->m_texMem);
for (std::unique_ptr<VulkanTextureD>& tex : retval->m_DTexs)
tex->placeForGPU(m_ctx, retval->m_texMem);
}
/* Execute static uploads */
ThrowIfFailed(vk::EndCommandBuffer(m_ctx->m_loadCmdBuf));
VkSubmitInfo submitInfo = {};
submitInfo.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;
submitInfo.commandBufferCount = 1;
submitInfo.pCommandBuffers = &m_ctx->m_loadCmdBuf;
/* Take exclusive lock here and submit queue */
std::unique_lock<std::mutex> qlk(m_ctx->m_queueLock);
ThrowIfFailed(vk::QueueWaitIdle(m_ctx->m_queue));
ThrowIfFailed(vk::QueueSubmit(m_ctx->m_queue, 1, &submitInfo, VK_NULL_HANDLE));
/* Commit data bindings (create descriptor sets) */
for (std::unique_ptr<VulkanShaderDataBinding>& bind : retval->m_SBinds)
bind->commit(m_ctx);
/* Wait for uploads to complete */
ThrowIfFailed(vk::QueueWaitIdle(m_ctx->m_queue));
qlk.unlock();
/* Reset command buffer */
ThrowIfFailed(vk::ResetCommandBuffer(m_ctx->m_loadCmdBuf, 0));
VkCommandBufferBeginInfo cmdBufBeginInfo = {};
cmdBufBeginInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO;
cmdBufBeginInfo.flags = 0;
ThrowIfFailed(vk::BeginCommandBuffer(m_ctx->m_loadCmdBuf, &cmdBufBeginInfo));
/* Delete upload objects */
for (std::unique_ptr<VulkanTextureS>& tex : retval->m_STexs)
tex->deleteUploadObjects();
for (std::unique_ptr<VulkanTextureSA>& tex : retval->m_SATexs)
tex->deleteUploadObjects();
/* All set! */
m_deferredData.reset();
std::unique_lock<std::mutex> lk(m_committedMutex);
m_committedData.insert(retval);
return GraphicsDataToken(this, retval);
}
IGraphicsBufferD* VulkanDataFactoryImpl::newPoolBuffer(IGraphicsBufferPool* p, BufferUse use,
size_t stride, size_t count)
{
VulkanCommandQueue* q = static_cast<VulkanCommandQueue*>(m_parent->getCommandQueue());
VulkanPool* pool = static_cast<VulkanPool*>(p);
VulkanPoolItem* item = new VulkanPoolItem(m_ctx);
VulkanGraphicsBufferD* retval = new VulkanGraphicsBufferD(item, q, use, m_ctx, stride, count);
item->m_buf.reset(retval);
/* size up resources */
uint32_t bufMemTypeBits = ~0;
VkDeviceSize bufMemSize = retval->sizeForGPU(m_ctx, bufMemTypeBits, 0);
/* allocate memory */
if (bufMemSize)
{
VkMemoryAllocateInfo memAlloc = {};
memAlloc.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
memAlloc.allocationSize = bufMemSize;
ThrowIfFalse(MemoryTypeFromProperties(m_ctx, bufMemTypeBits,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
&memAlloc.memoryTypeIndex));
ThrowIfFailed(vk::AllocateMemory(m_ctx->m_dev, &memAlloc, nullptr, &item->m_bufMem));
/* place resources */
retval->placeForGPU(m_ctx, item->m_bufMem);
}
pool->m_items.emplace(item);
return retval;
}
void VulkanDataFactoryImpl::deletePoolBuffer(IGraphicsBufferPool* p, IGraphicsBufferD* buf)
{
VulkanPool* pool = static_cast<VulkanPool*>(p);
auto search = pool->m_items.find(static_cast<VulkanPoolItem*>(buf->m_parentData));
if (search != pool->m_items.end())
(*search)->m_dead = true;
}
GraphicsBufferPoolToken VulkanDataFactoryImpl::newBufferPool()
{
std::unique_lock<std::mutex> lk(m_committedMutex);
VulkanPool* retval = new VulkanPool;
m_committedPools.insert(retval);
return GraphicsBufferPoolToken(this, retval);
}
ThreadLocalPtr<struct VulkanData> VulkanDataFactoryImpl::m_deferredData;
void VulkanCommandQueue::execute()
{
if (!m_running)
return;
/* Stage dynamic uploads */
VulkanDataFactoryImpl* gfxF = static_cast<VulkanDataFactoryImpl*>(m_parent->getDataFactory());
std::unique_lock<std::mutex> datalk(gfxF->m_committedMutex);
for (VulkanData* d : gfxF->m_committedData)
{
for (std::unique_ptr<VulkanGraphicsBufferD>& b : d->m_DBufs)
b->update(m_fillBuf);
for (std::unique_ptr<VulkanTextureD>& t : d->m_DTexs)
t->update(m_fillBuf);
}
for (VulkanPool* p : gfxF->m_committedPools)
{
for (auto& b : p->m_items)
b->m_buf->update(m_fillBuf);
}
datalk.unlock();
/* Perform dynamic uploads */
std::unique_lock<std::mutex> lk(m_ctx->m_queueLock);
if (!m_dynamicNeedsReset)
{
vk::EndCommandBuffer(m_dynamicCmdBufs[m_fillBuf]);
vk::WaitForFences(m_ctx->m_dev, 1, &m_dynamicBufFence, VK_FALSE, -1);
vk::ResetFences(m_ctx->m_dev, 1, &m_dynamicBufFence);
VkSubmitInfo submitInfo = {};
submitInfo.pNext = nullptr;
submitInfo.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;
submitInfo.waitSemaphoreCount = 0;
submitInfo.pWaitSemaphores = nullptr;
submitInfo.pWaitDstStageMask = nullptr;
submitInfo.commandBufferCount = 1;
submitInfo.pCommandBuffers = &m_dynamicCmdBufs[m_fillBuf];
submitInfo.signalSemaphoreCount = 0;
submitInfo.pSignalSemaphores = nullptr;
ThrowIfFailed(vk::QueueSubmit(m_ctx->m_queue, 1, &submitInfo, m_dynamicBufFence));
}
vk::CmdEndRenderPass(m_cmdBufs[m_fillBuf]);
/* Check on fence */
if (m_submitted && vk::GetFenceStatus(m_ctx->m_dev, m_drawCompleteFence) == VK_NOT_READY)
{
/* Abandon this list (renderer too slow) */
resetCommandBuffer();
m_dynamicNeedsReset = true;
m_resolveDispSource = nullptr;
return;
}
m_submitted = false;
vk::ResetFences(m_ctx->m_dev, 1, &m_drawCompleteFence);
/* Clear dead data */
datalk.lock();
for (auto it = gfxF->m_committedData.begin() ; it != gfxF->m_committedData.end() ;)
{
if ((*it)->m_dead)
{
(*it)->decrement();
it = gfxF->m_committedData.erase(it);
continue;
}
++it;
}
for (auto it = gfxF->m_committedPools.begin() ; it != gfxF->m_committedPools.end() ;)
{
if ((*it)->m_dead)
{
VulkanPool* p = *it;
it = gfxF->m_committedPools.erase(it);
delete p;
continue;
}
else
{
(*it)->clearDeadBuffers();
}
++it;
}
datalk.unlock();
/* Perform texture and swap-chain resizes */
if (m_ctx->_resizeSwapChains() || m_texResizes.size())
{
for (const auto& resize : m_texResizes)
{
if (m_boundTarget == resize.first)
m_boundTarget = nullptr;
resize.first->resize(m_ctx, resize.second.first, resize.second.second);
}
m_texResizes.clear();
resetCommandBuffer();
m_dynamicNeedsReset = true;
m_resolveDispSource = nullptr;
return;
}
m_drawBuf = m_fillBuf;
m_fillBuf ^= 1;
/* Queue the command buffer for execution */
VkPipelineStageFlags pipeStageFlags = VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT;
VkSubmitInfo submitInfo = {};
submitInfo.pNext = nullptr;
submitInfo.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;
submitInfo.waitSemaphoreCount = 0;
submitInfo.pWaitSemaphores = nullptr;
submitInfo.pWaitDstStageMask = &pipeStageFlags;
submitInfo.commandBufferCount = 1;
submitInfo.pCommandBuffers = &m_cmdBufs[m_drawBuf];
submitInfo.signalSemaphoreCount = 0;
submitInfo.pSignalSemaphores = nullptr;
if (_resolveDisplay())
{
submitInfo.waitSemaphoreCount = 1;
submitInfo.pWaitSemaphores = &m_swapChainReadySem;
submitInfo.signalSemaphoreCount = 1;
submitInfo.pSignalSemaphores = &m_drawCompleteSem;
}
ThrowIfFailed(vk::EndCommandBuffer(m_cmdBufs[m_drawBuf]));
ThrowIfFailed(vk::QueueSubmit(m_ctx->m_queue, 1, &submitInfo, m_drawCompleteFence));
m_submitted = true;
if (submitInfo.signalSemaphoreCount)
{
VulkanContext::Window::SwapChain& thisSc = m_windowCtx->m_swapChains[m_windowCtx->m_activeSwapChain];
VkPresentInfoKHR present;
present.sType = VK_STRUCTURE_TYPE_PRESENT_INFO_KHR;
present.pNext = nullptr;
present.swapchainCount = 1;
present.pSwapchains = &thisSc.m_swapChain;
present.pImageIndices = &thisSc.m_backBuf;
present.waitSemaphoreCount = 1;
present.pWaitSemaphores = &m_drawCompleteSem;
present.pResults = nullptr;
ThrowIfFailed(vk::QueuePresentKHR(m_ctx->m_queue, &present));
}
resetCommandBuffer();
resetDynamicCommandBuffer();
}
IGraphicsCommandQueue* _NewVulkanCommandQueue(VulkanContext* ctx, VulkanContext::Window* windowCtx,
IGraphicsContext* parent)
{
return new struct VulkanCommandQueue(ctx, windowCtx, parent);
}
IGraphicsDataFactory* _NewVulkanDataFactory(IGraphicsContext* parent, VulkanContext* ctx,
uint32_t drawSamples)
{
return new class VulkanDataFactoryImpl(parent, ctx, drawSamples);
}
}