metaforce/Runtime/Collision/CMetroidAreaCollider.cpp

955 lines
38 KiB
C++

#include "Runtime/Collision/CMetroidAreaCollider.hpp"
#include "Runtime/Collision/CCollisionInfoList.hpp"
#include "Runtime/Collision/CMaterialFilter.hpp"
#include "Runtime/Collision/CollisionUtil.hpp"
namespace metaforce {
u32 CMetroidAreaCollider::g_CalledClip = 0;
u32 CMetroidAreaCollider::g_RejectedByClip = 0;
u32 CMetroidAreaCollider::g_TrianglesProcessed = 0;
u32 CMetroidAreaCollider::g_DupTrianglesProcessed = 0;
u16 CMetroidAreaCollider::g_DupPrimitiveCheckCount = 0;
std::array<u16, 0x2800> CMetroidAreaCollider::g_DupVertexList{};
std::array<u16, 0x6000> CMetroidAreaCollider::g_DupEdgeList{};
std::array<u16, 0x4000> CMetroidAreaCollider::g_DupTriangleList{};
CAABoxAreaCache::CAABoxAreaCache(const zeus::CAABox& aabb, const std::array<zeus::CPlane, 6>& pl,
const CMaterialFilter& filter, const CMaterialList& material,
CCollisionInfoList& collisionList)
: x0_aabb(aabb)
, x4_planes(pl)
, x8_filter(filter)
, xc_material(material)
, x10_collisionList(collisionList)
, x14_center(aabb.center())
, x20_halfExtent(aabb.extents()) {}
CBooleanAABoxAreaCache::CBooleanAABoxAreaCache(const zeus::CAABox& aabb, const CMaterialFilter& filter)
: x0_aabb(aabb), x4_filter(filter), x8_center(aabb.center()), x14_halfExtent(aabb.extents()) {}
CSphereAreaCache::CSphereAreaCache(const zeus::CAABox& aabb, const zeus::CSphere& sphere, const CMaterialFilter& filter,
const CMaterialList& material, CCollisionInfoList& collisionList)
: x0_aabb(aabb), x4_sphere(sphere), x8_filter(filter), xc_material(material), x10_collisionList(collisionList) {}
CBooleanSphereAreaCache::CBooleanSphereAreaCache(const zeus::CAABox& aabb, const zeus::CSphere& sphere,
const CMaterialFilter& filter)
: x0_aabb(aabb), x4_sphere(sphere), x8_filter(filter) {}
SBoxEdge::SBoxEdge(const zeus::CAABox& aabb, int idx, const zeus::CVector3f& dir)
: x0_seg(aabb.getEdge(zeus::CAABox::EBoxEdgeId(idx)))
, x28_start(x0_seg.x0_start)
, x40_end(x0_seg.x18_end)
, x58_delta(x40_end - x28_start)
, x70_coDir(x58_delta.cross(dir).asNormalized())
, x88_dirCoDirDot(x28_start.dot(x70_coDir)) {}
static void FlagEdgeIndicesForFace(int face, std::array<bool, 12>& edgeFlags) {
switch (face) {
case 0:
edgeFlags[10] = true;
edgeFlags[11] = true;
edgeFlags[2] = true;
edgeFlags[4] = true;
return;
case 1:
edgeFlags[8] = true;
edgeFlags[9] = true;
edgeFlags[0] = true;
edgeFlags[6] = true;
return;
case 2:
edgeFlags[4] = true;
edgeFlags[5] = true;
edgeFlags[6] = true;
edgeFlags[7] = true;
return;
case 3:
edgeFlags[0] = true;
edgeFlags[1] = true;
edgeFlags[2] = true;
edgeFlags[3] = true;
return;
case 4:
edgeFlags[7] = true;
edgeFlags[8] = true;
edgeFlags[3] = true;
edgeFlags[11] = true;
return;
case 5:
edgeFlags[1] = true;
edgeFlags[5] = true;
edgeFlags[9] = true;
edgeFlags[10] = true;
return;
default:
break;
}
}
static void FlagVertexIndicesForFace(int face, std::array<bool, 8>& vertFlags) {
switch (face) {
case 0:
vertFlags[1] = true;
vertFlags[3] = true;
vertFlags[5] = true;
vertFlags[7] = true;
return;
case 1:
vertFlags[0] = true;
vertFlags[2] = true;
vertFlags[4] = true;
vertFlags[6] = true;
return;
case 2:
vertFlags[2] = true;
vertFlags[3] = true;
vertFlags[6] = true;
vertFlags[7] = true;
return;
case 3:
vertFlags[0] = true;
vertFlags[1] = true;
vertFlags[4] = true;
vertFlags[5] = true;
return;
case 4:
vertFlags[4] = true;
vertFlags[5] = true;
vertFlags[6] = true;
vertFlags[7] = true;
return;
case 5:
vertFlags[0] = true;
vertFlags[1] = true;
vertFlags[2] = true;
vertFlags[3] = true;
return;
default:
break;
}
}
CMovingAABoxComponents::CMovingAABoxComponents(const zeus::CAABox& aabb, const zeus::CVector3f& dir) : x6e8_aabb(aabb) {
std::array<bool, 12> edgeFlags{};
std::array<bool, 8> vertFlags{};
int useFaces = 0;
for (int i = 0; i < 3; ++i) {
if (dir[i] != 0.f) {
const int face = i * 2 + (dir[i] < 0.f);
FlagEdgeIndicesForFace(face, edgeFlags);
FlagVertexIndicesForFace(face, vertFlags);
useFaces += 1;
}
}
for (size_t i = 0; i < edgeFlags.size(); ++i) {
if (edgeFlags[i]) {
x0_edges.emplace_back(aabb, s32(i), dir);
}
}
for (size_t i = 0; i < vertFlags.size(); ++i) {
if (vertFlags[i]) {
x6c4_vertIdxs.push_back(u32(i));
}
}
if (useFaces == 1) {
x6e8_aabb = zeus::CAABox();
x6e8_aabb.accumulateBounds(aabb.getPoint(x6c4_vertIdxs[0]));
x6e8_aabb.accumulateBounds(aabb.getPoint(x6c4_vertIdxs[1]));
x6e8_aabb.accumulateBounds(aabb.getPoint(x6c4_vertIdxs[2]));
x6e8_aabb.accumulateBounds(aabb.getPoint(x6c4_vertIdxs[3]));
}
}
CMetroidAreaCollider::COctreeLeafCache::COctreeLeafCache(const CAreaOctTree& octTree) : x0_octTree(octTree) {}
void CMetroidAreaCollider::COctreeLeafCache::AddLeaf(const CAreaOctTree::Node& node) {
if (x4_nodeCache.size() == x4_nodeCache.capacity()) {
x908_24_overflow = true;
return;
}
x4_nodeCache.push_back(node);
}
void CMetroidAreaCollider::BuildOctreeLeafCache(const CAreaOctTree::Node& node, const zeus::CAABox& aabb,
CMetroidAreaCollider::COctreeLeafCache& cache) {
for (int i = 0; i < 8; ++i) {
CAreaOctTree::Node::ETreeType type = node.GetChildType(i);
if (type != CAreaOctTree::Node::ETreeType::Invalid) {
CAreaOctTree::Node ch = node.GetChild(i);
if (aabb.intersects(ch.GetBoundingBox())) {
if (type == CAreaOctTree::Node::ETreeType::Leaf)
cache.AddLeaf(ch);
else
BuildOctreeLeafCache(ch, aabb, cache);
}
}
}
}
static zeus::CVector3f ClipRayToPlane(const zeus::CVector3f& a, const zeus::CVector3f& b, const zeus::CPlane& plane) {
return (1.f - -plane.pointToPlaneDist(a) / (b - a).dot(plane.normal())) * (a - b) + b;
}
bool CMetroidAreaCollider::ConvexPolyCollision(const std::array<zeus::CPlane, 6>& planes,
const std::array<zeus::CVector3f, 3>& verts, zeus::CAABox& aabb) {
std::array<rstl::reserved_vector<zeus::CVector3f, 20>, 2> vecs;
g_CalledClip += 1;
g_RejectedByClip -= 1;
vecs[0].push_back(verts[0]);
vecs[0].push_back(verts[1]);
vecs[0].push_back(verts[2]);
int vecIdx = 0;
int otherVecIdx = 1;
for (int i = 0; i < 6; ++i) {
rstl::reserved_vector<zeus::CVector3f, 20>& vec = vecs[vecIdx];
rstl::reserved_vector<zeus::CVector3f, 20>& otherVec = vecs[otherVecIdx];
otherVec.clear();
bool inFrontOf = planes[i].pointToPlaneDist(vec.front()) >= 0.f;
for (size_t j = 0; j < vec.size(); ++j) {
const zeus::CVector3f& b = vec[(j + 1) % vec.size()];
if (inFrontOf)
otherVec.push_back(vec[j]);
bool nextInFrontOf = planes[i].pointToPlaneDist(b) >= 0.f;
if (nextInFrontOf ^ inFrontOf)
otherVec.push_back(ClipRayToPlane(vec[j], b, planes[i]));
inFrontOf = nextInFrontOf;
}
if (otherVec.empty())
return false;
vecIdx ^= 1;
otherVecIdx ^= 1;
}
rstl::reserved_vector<zeus::CVector3f, 20>& accumVec = vecs[otherVecIdx ^ 1];
for (const zeus::CVector3f& point : accumVec)
aabb.accumulateBounds(point);
g_RejectedByClip -= 1;
return true;
}
bool CMetroidAreaCollider::AABoxCollisionCheckBoolean_Cached(const COctreeLeafCache& leafCache,
const zeus::CAABox& aabb, const CMaterialFilter& filter) {
CBooleanAABoxAreaCache cache(aabb, filter);
for (const CAreaOctTree::Node& node : leafCache.x4_nodeCache) {
if (cache.x0_aabb.intersects(node.GetBoundingBox())) {
CAreaOctTree::TriListReference list = node.GetTriangleArray();
for (int j = 0; j < list.GetSize(); ++j) {
++g_TrianglesProcessed;
CCollisionSurface surf = node.GetOwner().GetMasterListTriangle(list.GetAt(j));
if (cache.x4_filter.Passes(CMaterialList(surf.GetSurfaceFlags()))) {
if (CollisionUtil::TriBoxOverlap(cache.x8_center, cache.x14_halfExtent, surf.GetVert(0), surf.GetVert(1),
surf.GetVert(2)))
return true;
}
}
}
}
return false;
}
bool CMetroidAreaCollider::AABoxCollisionCheckBoolean_Internal(const CAreaOctTree::Node& node,
const CBooleanAABoxAreaCache& cache) {
for (int i = 0; i < 8; ++i) {
CAreaOctTree::Node::ETreeType type = node.GetChildType(i);
if (type != CAreaOctTree::Node::ETreeType::Invalid) {
CAreaOctTree::Node ch = node.GetChild(i);
if (cache.x0_aabb.intersects(ch.GetBoundingBox())) {
if (type == CAreaOctTree::Node::ETreeType::Leaf) {
CAreaOctTree::TriListReference list = ch.GetTriangleArray();
for (int j = 0; j < list.GetSize(); ++j) {
++g_TrianglesProcessed;
CCollisionSurface surf = ch.GetOwner().GetMasterListTriangle(list.GetAt(j));
if (cache.x4_filter.Passes(CMaterialList(surf.GetSurfaceFlags()))) {
if (CollisionUtil::TriBoxOverlap(cache.x8_center, cache.x14_halfExtent, surf.GetVert(0), surf.GetVert(1),
surf.GetVert(2)))
return true;
}
}
} else {
if (AABoxCollisionCheckBoolean_Internal(ch, cache))
return true;
}
}
}
}
return false;
}
bool CMetroidAreaCollider::AABoxCollisionCheckBoolean(const CAreaOctTree& octTree, const zeus::CAABox& aabb,
const CMaterialFilter& filter) {
CBooleanAABoxAreaCache cache(aabb, filter);
return AABoxCollisionCheckBoolean_Internal(octTree.GetRootNode(), cache);
}
bool CMetroidAreaCollider::SphereCollisionCheckBoolean_Cached(const COctreeLeafCache& leafCache,
const zeus::CAABox& aabb, const zeus::CSphere& sphere,
const CMaterialFilter& filter) {
CBooleanSphereAreaCache cache(aabb, sphere, filter);
for (const CAreaOctTree::Node& node : leafCache.x4_nodeCache) {
if (cache.x0_aabb.intersects(node.GetBoundingBox())) {
CAreaOctTree::TriListReference list = node.GetTriangleArray();
for (int j = 0; j < list.GetSize(); ++j) {
++g_TrianglesProcessed;
CCollisionSurface surf = node.GetOwner().GetMasterListTriangle(list.GetAt(j));
if (cache.x8_filter.Passes(CMaterialList(surf.GetSurfaceFlags()))) {
if (CollisionUtil::TriSphereOverlap(cache.x4_sphere, surf.GetVert(0), surf.GetVert(1), surf.GetVert(2)))
return true;
}
}
}
}
return false;
}
bool CMetroidAreaCollider::SphereCollisionCheckBoolean_Internal(const CAreaOctTree::Node& node,
const CBooleanSphereAreaCache& cache) {
for (int i = 0; i < 8; ++i) {
CAreaOctTree::Node::ETreeType type = node.GetChildType(i);
if (type != CAreaOctTree::Node::ETreeType::Invalid) {
CAreaOctTree::Node ch = node.GetChild(i);
if (cache.x0_aabb.intersects(ch.GetBoundingBox())) {
if (type == CAreaOctTree::Node::ETreeType::Leaf) {
CAreaOctTree::TriListReference list = ch.GetTriangleArray();
for (int j = 0; j < list.GetSize(); ++j) {
++g_TrianglesProcessed;
CCollisionSurface surf = ch.GetOwner().GetMasterListTriangle(list.GetAt(j));
if (cache.x8_filter.Passes(CMaterialList(surf.GetSurfaceFlags()))) {
if (CollisionUtil::TriSphereOverlap(cache.x4_sphere, surf.GetVert(0), surf.GetVert(1), surf.GetVert(2)))
return true;
}
}
} else {
if (SphereCollisionCheckBoolean_Internal(ch, cache))
return true;
}
}
}
}
return false;
}
bool CMetroidAreaCollider::SphereCollisionCheckBoolean(const CAreaOctTree& octTree, const zeus::CAABox& aabb,
const zeus::CSphere& sphere, const CMaterialFilter& filter) {
CAreaOctTree::Node node = octTree.GetRootNode();
CBooleanSphereAreaCache cache(aabb, sphere, filter);
return SphereCollisionCheckBoolean_Internal(node, cache);
}
bool CMetroidAreaCollider::AABoxCollisionCheck_Cached(const COctreeLeafCache& leafCache, const zeus::CAABox& aabb,
const CMaterialFilter& filter, const CMaterialList& matList,
CCollisionInfoList& list) {
bool ret = false;
const std::array<zeus::CPlane, 6> planes{{
{zeus::skRight, aabb.min.dot(zeus::skRight)},
{zeus::skLeft, aabb.max.dot(zeus::skLeft)},
{zeus::skForward, aabb.min.dot(zeus::skForward)},
{zeus::skBack, aabb.max.dot(zeus::skBack)},
{zeus::skUp, aabb.min.dot(zeus::skUp)},
{zeus::skDown, aabb.max.dot(zeus::skDown)},
}};
CAABoxAreaCache cache(aabb, planes, filter, matList, list);
ResetInternalCounters();
for (const CAreaOctTree::Node& node : leafCache.x4_nodeCache) {
if (aabb.intersects(node.GetBoundingBox())) {
CAreaOctTree::TriListReference listRef = node.GetTriangleArray();
for (int j = 0; j < listRef.GetSize(); ++j) {
++g_TrianglesProcessed;
u16 triIdx = listRef.GetAt(j);
if (g_DupPrimitiveCheckCount == g_DupTriangleList[triIdx]) {
g_DupTrianglesProcessed += 1;
} else {
g_DupTriangleList[triIdx] = g_DupPrimitiveCheckCount;
CCollisionSurface surf = node.GetOwner().GetMasterListTriangle(triIdx);
CMaterialList material(surf.GetSurfaceFlags());
if (cache.x8_filter.Passes(material)) {
if (CollisionUtil::TriBoxOverlap(cache.x14_center, cache.x20_halfExtent, surf.GetVert(0), surf.GetVert(1),
surf.GetVert(2))) {
zeus::CAABox aabb2 = zeus::CAABox();
if (ConvexPolyCollision(cache.x4_planes, surf.GetVerts(), aabb2)) {
zeus::CPlane plane = surf.GetPlane();
CCollisionInfo collision(aabb2, cache.xc_material, material, plane.normal(), -plane.normal());
cache.x10_collisionList.Add(collision, false);
ret = true;
}
}
}
}
}
}
}
return ret;
}
bool CMetroidAreaCollider::AABoxCollisionCheck_Internal(const CAreaOctTree::Node& node, const CAABoxAreaCache& cache) {
bool ret = false;
switch (node.GetTreeType()) {
case CAreaOctTree::Node::ETreeType::Invalid:
return false;
case CAreaOctTree::Node::ETreeType::Branch: {
for (int i = 0; i < 8; ++i) {
CAreaOctTree::Node ch = node.GetChild(i);
if (ch.GetBoundingBox().intersects(cache.x0_aabb))
if (AABoxCollisionCheck_Internal(ch, cache))
ret = true;
}
break;
}
case CAreaOctTree::Node::ETreeType::Leaf: {
CAreaOctTree::TriListReference list = node.GetTriangleArray();
for (int j = 0; j < list.GetSize(); ++j) {
++g_TrianglesProcessed;
u16 triIdx = list.GetAt(j);
if (g_DupPrimitiveCheckCount == g_DupTriangleList[triIdx]) {
g_DupTrianglesProcessed += 1;
} else {
g_DupTriangleList[triIdx] = g_DupPrimitiveCheckCount;
CCollisionSurface surf = node.GetOwner().GetMasterListTriangle(triIdx);
CMaterialList material(surf.GetSurfaceFlags());
if (cache.x8_filter.Passes(material)) {
if (CollisionUtil::TriBoxOverlap(cache.x14_center, cache.x20_halfExtent, surf.GetVert(0), surf.GetVert(1),
surf.GetVert(2))) {
zeus::CAABox aabb = zeus::CAABox();
if (ConvexPolyCollision(cache.x4_planes, surf.GetVerts(), aabb)) {
zeus::CPlane plane = surf.GetPlane();
CCollisionInfo collision(aabb, cache.xc_material, material, plane.normal(), -plane.normal());
cache.x10_collisionList.Add(collision, false);
ret = true;
}
}
}
}
}
break;
}
default:
break;
}
return ret;
}
bool CMetroidAreaCollider::AABoxCollisionCheck(const CAreaOctTree& octTree, const zeus::CAABox& aabb,
const CMaterialFilter& filter, const CMaterialList& matList,
CCollisionInfoList& list) {
const std::array<zeus::CPlane, 6> planes{{
{zeus::skRight, aabb.min.dot(zeus::skRight)},
{zeus::skLeft, aabb.max.dot(zeus::skLeft)},
{zeus::skForward, aabb.min.dot(zeus::skForward)},
{zeus::skBack, aabb.max.dot(zeus::skBack)},
{zeus::skUp, aabb.min.dot(zeus::skUp)},
{zeus::skDown, aabb.max.dot(zeus::skDown)},
}};
const CAABoxAreaCache cache(aabb, planes, filter, matList, list);
ResetInternalCounters();
const CAreaOctTree::Node node = octTree.GetRootNode();
return AABoxCollisionCheck_Internal(node, cache);
}
bool CMetroidAreaCollider::SphereCollisionCheck_Cached(const COctreeLeafCache& leafCache, const zeus::CAABox& aabb,
const zeus::CSphere& sphere, const CMaterialList& matList,
const CMaterialFilter& filter, CCollisionInfoList& clist) {
ResetInternalCounters();
bool ret = false;
zeus::CVector3f point, normal;
for (const CAreaOctTree::Node& node : leafCache.x4_nodeCache) {
if (aabb.intersects(node.GetBoundingBox())) {
CAreaOctTree::TriListReference list = node.GetTriangleArray();
for (int j = 0; j < list.GetSize(); ++j) {
++g_TrianglesProcessed;
u16 triIdx = list.GetAt(j);
if (g_DupPrimitiveCheckCount == g_DupTriangleList[triIdx]) {
g_DupTrianglesProcessed += 1;
} else {
g_DupTriangleList[triIdx] = g_DupPrimitiveCheckCount;
CCollisionSurface surf = node.GetOwner().GetMasterListTriangle(triIdx);
CMaterialList material(surf.GetSurfaceFlags());
if (filter.Passes(material)) {
if (CollisionUtil::TriSphereIntersection(sphere, surf.GetVert(0), surf.GetVert(1), surf.GetVert(2), point,
normal)) {
CCollisionInfo collision(point, matList, material, normal);
clist.Add(collision, false);
ret = true;
}
}
}
}
}
}
return ret;
}
bool CMetroidAreaCollider::SphereCollisionCheck_Internal(const CAreaOctTree::Node& node,
const CSphereAreaCache& cache) {
bool ret = false;
zeus::CVector3f point, normal;
for (int i = 0; i < 8; ++i) {
CAreaOctTree::Node::ETreeType chTp = node.GetChildType(i);
if (chTp != CAreaOctTree::Node::ETreeType::Invalid) {
CAreaOctTree::Node ch = node.GetChild(i);
if (cache.x0_aabb.intersects(ch.GetBoundingBox())) {
if (chTp == CAreaOctTree::Node::ETreeType::Leaf) {
CAreaOctTree::TriListReference list = ch.GetTriangleArray();
for (int j = 0; j < list.GetSize(); ++j) {
++g_TrianglesProcessed;
u16 triIdx = list.GetAt(j);
if (g_DupPrimitiveCheckCount == g_DupTriangleList[triIdx]) {
g_DupTrianglesProcessed += 1;
} else {
g_DupTriangleList[triIdx] = g_DupPrimitiveCheckCount;
CCollisionSurface surf = ch.GetOwner().GetMasterListTriangle(triIdx);
CMaterialList material(surf.GetSurfaceFlags());
if (cache.x8_filter.Passes(material)) {
if (CollisionUtil::TriSphereIntersection(cache.x4_sphere, surf.GetVert(0), surf.GetVert(1),
surf.GetVert(2), point, normal)) {
CCollisionInfo collision(point, cache.xc_material, material, normal);
cache.x10_collisionList.Add(collision, false);
ret = true;
}
}
}
}
} else {
if (SphereCollisionCheck_Internal(ch, cache))
ret = true;
}
}
}
}
return ret;
}
bool CMetroidAreaCollider::SphereCollisionCheck(const CAreaOctTree& octTree, const zeus::CAABox& aabb,
const zeus::CSphere& sphere, const CMaterialList& matList,
const CMaterialFilter& filter, CCollisionInfoList& list) {
CSphereAreaCache cache(aabb, sphere, filter, matList, list);
ResetInternalCounters();
CAreaOctTree::Node node = octTree.GetRootNode();
return SphereCollisionCheck_Internal(node, cache);
}
bool CMetroidAreaCollider::MovingAABoxCollisionCheck_BoxVertexTri(
const CCollisionSurface& surf, const zeus::CAABox& aabb, const rstl::reserved_vector<u32, 8>& vertIndices,
const zeus::CVector3f& dir, double& d, zeus::CVector3f& normalOut, zeus::CVector3f& pointOut) {
bool ret = false;
for (u32 idx : vertIndices) {
zeus::CVector3f point = aabb.getPoint(idx);
if (CollisionUtil::RayTriangleIntersection_Double(point, dir, surf.GetVerts(), d)) {
pointOut = float(d) * dir + point;
normalOut = surf.GetNormal();
ret = true;
}
}
return ret;
}
bool CMetroidAreaCollider::MovingAABoxCollisionCheck_TriVertexBox(const zeus::CVector3f& vert, const zeus::CAABox& aabb,
const zeus::CVector3f& dir, double& dOut,
zeus::CVector3f& normal, zeus::CVector3f& point) {
zeus::CMRay ray(vert, -dir, dOut);
zeus::CVector3f norm;
double d;
if (CollisionUtil::RayAABoxIntersection_Double(ray, aabb, norm, d) == 2) {
d *= dOut;
if (d < dOut) {
normal = -norm;
dOut = d;
point = vert;
return true;
}
}
return false;
}
bool CMetroidAreaCollider::MovingAABoxCollisionCheck_Edge(const zeus::CVector3f& ev0, const zeus::CVector3f& ev1,
const rstl::reserved_vector<SBoxEdge, 12>& edges,
const zeus::CVector3f& dir, double& d,
zeus::CVector3f& normal, zeus::CVector3f& point) {
bool ret = false;
for (const SBoxEdge& edge : edges) {
zeus::CVector3d ev0d = ev0;
zeus::CVector3d ev1d = ev1;
if ((edge.x70_coDir.dot(ev1d) >= edge.x88_dirCoDirDot) != (edge.x70_coDir.dot(ev0d) >= edge.x88_dirCoDirDot)) {
zeus::CVector3d delta = ev0d - ev1d;
zeus::CVector3d cross0 = edge.x58_delta.cross(delta);
if (cross0.magSquared() >= DBL_EPSILON) {
zeus::CVector3d cross0Norm = cross0.asNormalized();
if (cross0Norm.dot(dir) >= 0.0) {
ev1d = ev0;
ev0d = ev1;
delta = ev0d - ev1d;
cross0Norm = edge.x58_delta.cross(delta).asNormalized();
}
zeus::CVector3d clipped =
ev0d + (-(ev0d.dot(edge.x70_coDir) - edge.x88_dirCoDirDot) / delta.dot(edge.x70_coDir)) * delta;
int maxCompIdx = (std::fabs(edge.x70_coDir.x()) > std::fabs(edge.x70_coDir.y())) ? 0 : 1;
if (std::fabs(edge.x70_coDir[maxCompIdx]) < std::fabs(edge.x70_coDir.z()))
maxCompIdx = 2;
int ci0, ci1;
switch (maxCompIdx) {
case 0:
ci0 = 1;
ci1 = 2;
break;
case 1:
ci0 = 0;
ci1 = 2;
break;
default:
ci0 = 0;
ci1 = 1;
break;
}
double mag = (edge.x58_delta[ci0] * (clipped[ci1] - edge.x28_start[ci1]) -
edge.x58_delta[ci1] * (clipped[ci0] - edge.x28_start[ci0])) /
(edge.x58_delta[ci0] * dir[ci1] - edge.x58_delta[ci1] * dir[ci0]);
if (mag >= 0.0 && mag < d) {
zeus::CVector3d clippedMag = clipped - mag * zeus::CVector3d(dir);
if ((edge.x28_start - clippedMag).dot(edge.x40_end - clippedMag) < 0.0 && mag < d) {
normal = cross0Norm.asCVector3f();
d = mag;
point = clipped.asCVector3f();
ret = true;
}
}
}
}
}
return ret;
}
bool CMetroidAreaCollider::MovingAABoxCollisionCheck_Cached(const COctreeLeafCache& leafCache, const zeus::CAABox& aabb,
const CMaterialFilter& filter, const CMaterialList& matList,
const zeus::CVector3f& dir, float mag,
CCollisionInfo& infoOut, double& dOut) {
bool ret = false;
ResetInternalCounters();
dOut = mag;
CMovingAABoxComponents components(aabb, dir);
zeus::CAABox movedAABB = components.x6e8_aabb;
zeus::CVector3f moveVec = mag * dir;
movedAABB.accumulateBounds(aabb.min + moveVec);
movedAABB.accumulateBounds(aabb.max + moveVec);
zeus::CVector3f center = movedAABB.center();
zeus::CVector3f extent = movedAABB.extents();
zeus::CVector3f normal, point;
for (const CAreaOctTree::Node& node : leafCache.x4_nodeCache) {
if (movedAABB.intersects(node.GetBoundingBox())) {
CAreaOctTree::TriListReference list = node.GetTriangleArray();
for (int j = 0; j < list.GetSize(); ++j) {
u16 triIdx = list.GetAt(j);
if (g_DupPrimitiveCheckCount != g_DupTriangleList[triIdx]) {
g_TrianglesProcessed += 1;
g_DupTriangleList[triIdx] = g_DupPrimitiveCheckCount;
CMaterialList triMat(node.GetOwner().GetTriangleMaterial(triIdx));
if (filter.Passes(triMat)) {
std::array<u16, 3> vertIndices;
node.GetOwner().GetTriangleVertexIndices(triIdx, vertIndices.data());
CCollisionSurface surf(node.GetOwner().GetVert(vertIndices[0]), node.GetOwner().GetVert(vertIndices[1]),
node.GetOwner().GetVert(vertIndices[2]), triMat.GetValue());
if (CollisionUtil::TriBoxOverlap(center, extent, surf.GetVert(0), surf.GetVert(1), surf.GetVert(2))) {
bool triRet = false;
double d = dOut;
if (MovingAABoxCollisionCheck_BoxVertexTri(surf, aabb, components.x6c4_vertIdxs, dir, d, normal, point) &&
d < dOut) {
triRet = true;
ret = true;
infoOut = CCollisionInfo(point, matList, triMat, normal);
dOut = d;
}
for (const u16 vertIdx : vertIndices) {
zeus::CVector3f vtx = node.GetOwner().GetVert(vertIdx);
if (g_DupPrimitiveCheckCount != g_DupVertexList[vertIdx]) {
g_DupVertexList[vertIdx] = g_DupPrimitiveCheckCount;
if (movedAABB.pointInside(vtx)) {
d = dOut;
if (MovingAABoxCollisionCheck_TriVertexBox(vtx, aabb, dir, d, normal, point) && d < dOut) {
CMaterialList vertMat(node.GetOwner().GetVertMaterial(vertIdx));
triRet = true;
ret = true;
infoOut = CCollisionInfo(point, matList, vertMat, normal);
dOut = d;
}
}
}
}
const u16* edgeIndices = node.GetOwner().GetTriangleEdgeIndices(triIdx);
for (int k = 0; k < 3; ++k) {
u16 edgeIdx = edgeIndices[k];
if (g_DupPrimitiveCheckCount != g_DupEdgeList[edgeIdx]) {
g_DupEdgeList[edgeIdx] = g_DupPrimitiveCheckCount;
CMaterialList edgeMat(node.GetOwner().GetEdgeMaterial(edgeIdx));
if (!edgeMat.HasMaterial(EMaterialTypes::NoEdgeCollision)) {
d = dOut;
const CCollisionEdge& edge = node.GetOwner().GetEdge(edgeIdx);
if (MovingAABoxCollisionCheck_Edge(node.GetOwner().GetVert(edge.GetVertIndex1()),
node.GetOwner().GetVert(edge.GetVertIndex2()),
components.x0_edges, dir, d, normal, point) &&
d < dOut) {
triRet = true;
ret = true;
infoOut = CCollisionInfo(point, matList, edgeMat, normal);
dOut = d;
}
}
}
}
if (triRet) {
moveVec = float(dOut) * dir;
movedAABB = components.x6e8_aabb;
movedAABB.accumulateBounds(aabb.min + moveVec);
movedAABB.accumulateBounds(aabb.max + moveVec);
center = movedAABB.center();
extent = movedAABB.extents();
}
} else {
const u16* edgeIndices = node.GetOwner().GetTriangleEdgeIndices(triIdx);
g_DupEdgeList[edgeIndices[0]] = g_DupPrimitiveCheckCount;
g_DupEdgeList[edgeIndices[1]] = g_DupPrimitiveCheckCount;
g_DupEdgeList[edgeIndices[2]] = g_DupPrimitiveCheckCount;
g_DupVertexList[vertIndices[0]] = g_DupPrimitiveCheckCount;
g_DupVertexList[vertIndices[1]] = g_DupPrimitiveCheckCount;
g_DupVertexList[vertIndices[2]] = g_DupPrimitiveCheckCount;
}
}
}
}
}
}
return ret;
}
bool CMetroidAreaCollider::MovingSphereCollisionCheck_Cached(const COctreeLeafCache& leafCache,
const zeus::CAABox& aabb, const zeus::CSphere& sphere,
const CMaterialFilter& filter,
const CMaterialList& matList, const zeus::CVector3f& dir,
float mag, CCollisionInfo& infoOut, double& dOut) {
bool ret = false;
ResetInternalCounters();
dOut = mag;
zeus::CAABox movedAABB = aabb;
zeus::CVector3f moveVec = mag * dir;
movedAABB.accumulateBounds(aabb.min + moveVec);
movedAABB.accumulateBounds(aabb.max + moveVec);
zeus::CVector3f center = movedAABB.center();
zeus::CVector3f extent = movedAABB.extents();
for (const CAreaOctTree::Node& node : leafCache.x4_nodeCache) {
if (movedAABB.intersects(node.GetBoundingBox())) {
CAreaOctTree::TriListReference list = node.GetTriangleArray();
for (int j = 0; j < list.GetSize(); ++j) {
u16 triIdx = list.GetAt(j);
if (g_DupPrimitiveCheckCount != g_DupTriangleList[triIdx]) {
g_TrianglesProcessed += 1;
g_DupTriangleList[triIdx] = g_DupPrimitiveCheckCount;
CMaterialList triMat(node.GetOwner().GetTriangleMaterial(triIdx));
if (filter.Passes(triMat)) {
std::array<u16, 3> vertIndices;
node.GetOwner().GetTriangleVertexIndices(triIdx, vertIndices.data());
CCollisionSurface surf(node.GetOwner().GetVert(vertIndices[0]), node.GetOwner().GetVert(vertIndices[1]),
node.GetOwner().GetVert(vertIndices[2]), triMat.GetValue());
if (CollisionUtil::TriBoxOverlap(center, extent, surf.GetVert(0), surf.GetVert(1), surf.GetVert(2))) {
zeus::CVector3f surfNormal = surf.GetNormal();
if ((sphere.position + moveVec - surf.GetVert(0)).dot(surfNormal) <= sphere.radius) {
bool triRet = false;
float mag = (sphere.radius - (sphere.position - surf.GetVert(0)).dot(surfNormal)) / dir.dot(surfNormal);
zeus::CVector3f intersectPoint = sphere.position + mag * dir;
const std::array<bool, 3> outsideEdges{
(intersectPoint - surf.GetVert(0)).dot(surfNormal.cross(surf.GetVert(1) - surf.GetVert(0))) < 0.f,
(intersectPoint - surf.GetVert(1)).dot(surfNormal.cross(surf.GetVert(2) - surf.GetVert(1))) < 0.f,
(intersectPoint - surf.GetVert(2)).dot(surfNormal.cross(surf.GetVert(0) - surf.GetVert(2))) < 0.f,
};
if (mag >= 0.f && !outsideEdges[0] && !outsideEdges[1] && !outsideEdges[2] && mag < dOut) {
infoOut = CCollisionInfo(intersectPoint - sphere.radius * surfNormal, matList, triMat, surfNormal);
dOut = mag;
triRet = true;
ret = true;
}
bool intersects = (sphere.position - surf.GetVert(0)).dot(surfNormal) <= sphere.radius;
std::array<bool, 3> testVert{true, true, true};
const u16* edgeIndices = node.GetOwner().GetTriangleEdgeIndices(triIdx);
for (int k = 0; k < 3; ++k) {
if (intersects || outsideEdges[k]) {
u16 edgeIdx = edgeIndices[k];
if (g_DupPrimitiveCheckCount != g_DupEdgeList[edgeIdx]) {
g_DupEdgeList[edgeIdx] = g_DupPrimitiveCheckCount;
CMaterialList edgeMat(node.GetOwner().GetEdgeMaterial(edgeIdx));
if (!edgeMat.HasMaterial(EMaterialTypes::NoEdgeCollision)) {
int nextIdx = (k + 1) % 3;
zeus::CVector3f edgeVec = surf.GetVert(nextIdx) - surf.GetVert(k);
float edgeVecMag = edgeVec.magnitude();
edgeVec *= zeus::CVector3f(1.f / edgeVecMag);
float dirDotEdge = dir.dot(edgeVec);
zeus::CVector3f edgeRej = dir - dirDotEdge * edgeVec;
float edgeRejMagSq = edgeRej.magSquared();
zeus::CVector3f vertToSphere = sphere.position - surf.GetVert(k);
float vtsDotEdge = vertToSphere.dot(edgeVec);
zeus::CVector3f vtsRej = vertToSphere - vtsDotEdge * edgeVec;
if (edgeRejMagSq > 0.f) {
float tmp = 2.f * vtsRej.dot(edgeRej);
float tmp2 =
4.f * edgeRejMagSq * (vtsRej.magSquared() - sphere.radius * sphere.radius) - tmp * tmp;
if (tmp2 >= 0.f) {
float mag = 0.5f / edgeRejMagSq * (-tmp - std::sqrt(tmp2));
if (mag >= 0.f) {
float t = mag * dirDotEdge + vtsDotEdge;
if (t >= 0.f && t <= edgeVecMag && mag < dOut) {
zeus::CVector3f point = surf.GetVert(k) + t * edgeVec;
infoOut = CCollisionInfo(point, matList, edgeMat,
(sphere.position + mag * dir - point).normalized());
dOut = mag;
triRet = true;
ret = true;
testVert[k] = false;
testVert[nextIdx] = false;
} else if (t < -sphere.radius && dirDotEdge <= 0.f) {
testVert[k] = false;
} else if (t > edgeVecMag + sphere.radius && dirDotEdge >= 0.0) {
testVert[nextIdx] = false;
}
}
} else {
testVert[k] = false;
testVert[nextIdx] = false;
}
}
}
}
}
}
for (int k = 0; k < 3; ++k) {
u16 vertIdx = vertIndices[k];
if (testVert[k]) {
if (g_DupPrimitiveCheckCount != g_DupVertexList[vertIdx]) {
g_DupVertexList[vertIdx] = g_DupPrimitiveCheckCount;
double d = dOut;
if (CollisionUtil::RaySphereIntersection_Double(zeus::CSphere(surf.GetVert(k), sphere.radius),
sphere.position, dir, d) &&
d >= 0.0) {
infoOut = CCollisionInfo(surf.GetVert(k), matList, node.GetOwner().GetVertMaterial(vertIdx),
(sphere.position + dir * d - surf.GetVert(k)).normalized());
dOut = d;
triRet = true;
ret = true;
}
}
} else {
g_DupVertexList[vertIdx] = g_DupPrimitiveCheckCount;
}
}
if (triRet) {
moveVec = float(dOut) * dir;
movedAABB = aabb;
movedAABB.accumulateBounds(aabb.min + moveVec);
movedAABB.accumulateBounds(aabb.max + moveVec);
center = movedAABB.center();
extent = movedAABB.extents();
}
}
} else {
const u16* edgeIndices = node.GetOwner().GetTriangleEdgeIndices(triIdx);
g_DupEdgeList[edgeIndices[0]] = g_DupPrimitiveCheckCount;
g_DupEdgeList[edgeIndices[1]] = g_DupPrimitiveCheckCount;
g_DupEdgeList[edgeIndices[2]] = g_DupPrimitiveCheckCount;
g_DupVertexList[vertIndices[0]] = g_DupPrimitiveCheckCount;
g_DupVertexList[vertIndices[1]] = g_DupPrimitiveCheckCount;
g_DupVertexList[vertIndices[2]] = g_DupPrimitiveCheckCount;
}
}
}
}
}
}
return ret;
}
void CMetroidAreaCollider::ResetInternalCounters() {
g_CalledClip = 0;
g_RejectedByClip = 0;
g_TrianglesProcessed = 0;
g_DupTrianglesProcessed = 0;
if (g_DupPrimitiveCheckCount == 0xffff) {
g_DupVertexList.fill(0);
g_DupEdgeList.fill(0);
g_DupTriangleList.fill(0);
g_DupPrimitiveCheckCount += 1;
}
g_DupPrimitiveCheckCount += 1;
}
void CAreaCollisionCache::ClearCache() {
x18_leafCaches.clear();
x1b40_24_leafOverflow = false;
x1b40_25_cacheOverflow = false;
}
void CAreaCollisionCache::AddOctreeLeafCache(const CMetroidAreaCollider::COctreeLeafCache& leafCache) {
if (!leafCache.GetNumLeaves())
return;
if (leafCache.HasCacheOverflowed())
x1b40_24_leafOverflow = true;
if (x18_leafCaches.size() < 3) {
x18_leafCaches.push_back(leafCache);
} else {
x1b40_24_leafOverflow = true;
x1b40_25_cacheOverflow = true;
}
}
} // namespace metaforce