metaforce/Runtime/rstl.hpp

611 lines
21 KiB
C++

#ifndef __RSTL_HPP__
#define __RSTL_HPP__
#include <vector>
#include <algorithm>
#include <stdlib.h>
#include "optional.hpp"
#include <logvisor/logvisor.hpp>
namespace rstl
{
#ifndef NDEBUG
static logvisor::Module Log("rstl");
#endif
template <typename T>
using optional_object = std::experimental::optional<T>;
/**
* @brief Base vector backed by statically-allocated array
*/
template <class T, size_t N>
class _reserved_vector_base
{
protected:
explicit _reserved_vector_base(size_t _init_sz) : x0_size(_init_sz) {}
size_t x0_size;
uint8_t x4_data[N][sizeof(T)];
T& _value(std::ptrdiff_t idx) { return reinterpret_cast<T&>(x4_data[idx]); }
const T& _value(std::ptrdiff_t idx) const { return reinterpret_cast<const T&>(x4_data[idx]); }
public:
class const_iterator
{
friend class _reserved_vector_base;
protected:
const T* m_val;
explicit const_iterator(const T* val) : m_val(val) {}
public:
using value_type = T;
using difference_type = std::ptrdiff_t;
using pointer = T*;
using reference = T&;
using iterator_category = std::random_access_iterator_tag;
const T& operator*() const { return *m_val; }
const T* operator->() const { return m_val; }
const_iterator& operator++() { ++m_val; return *this; }
const_iterator& operator--() { --m_val; return *this; }
const_iterator operator++(int) { auto ret = *this; ++m_val; return ret; }
const_iterator operator--(int) { auto ret = *this; --m_val; return ret; }
bool operator!=(const const_iterator& other) const { return m_val != other.m_val; }
bool operator==(const const_iterator& other) const { return m_val == other.m_val; }
const_iterator operator+(std::ptrdiff_t i) const { return const_iterator(m_val + i); }
const_iterator operator-(std::ptrdiff_t i) const { return const_iterator(m_val - i); }
const_iterator& operator+=(std::ptrdiff_t i) { m_val += i; return *this; }
const_iterator& operator-=(std::ptrdiff_t i) { m_val -= i; return *this; }
std::ptrdiff_t operator-(const const_iterator& it) const { return m_val - it.m_val; }
bool operator>(const const_iterator& it) const { return m_val > it.m_val; }
bool operator<(const const_iterator& it) const { return m_val < it.m_val; }
bool operator>=(const const_iterator& it) const { return m_val >= it.m_val; }
bool operator<=(const const_iterator& it) const { return m_val <= it.m_val; }
const T& operator[](std::ptrdiff_t i) const { return m_val[i]; }
};
class iterator : public const_iterator
{
friend class _reserved_vector_base;
explicit iterator(T* val) : const_iterator(val) {}
public:
T& operator*() const { return *const_cast<T*>(const_iterator::m_val); }
T* operator->() const { return const_cast<T*>(const_iterator::m_val); }
iterator& operator++() { ++const_iterator::m_val; return *this; }
iterator& operator--() { --const_iterator::m_val; return *this; }
iterator operator++(int) { auto ret = *this; ++const_iterator::m_val; return ret; }
iterator operator--(int) { auto ret = *this; --const_iterator::m_val; return ret; }
iterator operator+(std::ptrdiff_t i) const { return iterator(const_cast<T*>(const_iterator::m_val) + i); }
iterator operator-(std::ptrdiff_t i) const { return iterator(const_cast<T*>(const_iterator::m_val) - i); }
iterator& operator+=(std::ptrdiff_t i) { const_iterator::m_val += i; return *this; }
iterator& operator-=(std::ptrdiff_t i) { const_iterator::m_val -= i; return *this; }
std::ptrdiff_t operator-(const iterator& it) const { return const_iterator::m_val - it.m_val; }
T& operator[](std::ptrdiff_t i) const { return const_cast<T*>(const_iterator::m_val)[i]; }
};
class const_reverse_iterator
{
friend class _reserved_vector_base;
protected:
const T* m_val;
explicit const_reverse_iterator(const T* val) : m_val(val) {}
public:
using value_type = T;
using difference_type = std::ptrdiff_t;
using pointer = T*;
using reference = T&;
using iterator_category = std::random_access_iterator_tag;
const T& operator*() const { return *m_val; }
const T* operator->() const { return m_val; }
const_reverse_iterator& operator++() { --m_val; return *this; }
const_reverse_iterator& operator--() { ++m_val; return *this; }
const_reverse_iterator operator++(int) { auto ret = *this; --m_val; return ret; }
const_reverse_iterator operator--(int) { auto ret = *this; ++m_val; return ret; }
bool operator!=(const const_reverse_iterator& other) const { return m_val != other.m_val; }
bool operator==(const const_reverse_iterator& other) const { return m_val == other.m_val; }
const_reverse_iterator operator+(std::ptrdiff_t i) const { return const_reverse_iterator(m_val - i); }
const_reverse_iterator operator-(std::ptrdiff_t i) const { return const_reverse_iterator(m_val + i); }
const_reverse_iterator& operator+=(std::ptrdiff_t i) { m_val -= i; return *this; }
const_reverse_iterator& operator-=(std::ptrdiff_t i) { m_val += i; return *this; }
std::ptrdiff_t operator-(const const_reverse_iterator& it) const { return it.m_val - m_val; }
bool operator>(const const_iterator& it) const { return it.m_val > m_val; }
bool operator<(const const_iterator& it) const { return it.m_val < m_val; }
bool operator>=(const const_iterator& it) const { return it.m_val >= m_val; }
bool operator<=(const const_iterator& it) const { return it.m_val <= m_val; }
const T& operator[](std::ptrdiff_t i) const { return m_val[-i]; }
};
class reverse_iterator : public const_reverse_iterator
{
friend class _reserved_vector_base;
explicit reverse_iterator(T* val) : const_reverse_iterator(val) {}
public:
T& operator*() const { return *const_cast<T*>(const_reverse_iterator::m_val); }
T* operator->() const { return const_cast<T*>(const_reverse_iterator::m_val); }
reverse_iterator& operator++() { --const_reverse_iterator::m_val; return *this; }
reverse_iterator& operator--() { ++const_reverse_iterator::m_val; return *this; }
reverse_iterator operator++(int) { auto ret = *this; --const_reverse_iterator::m_val; return ret; }
reverse_iterator operator--(int) { auto ret = *this; ++const_reverse_iterator::m_val; return ret; }
reverse_iterator operator+(std::ptrdiff_t i) const
{ return reverse_iterator(const_cast<T*>(const_reverse_iterator::m_val) - i); }
reverse_iterator operator-(std::ptrdiff_t i) const
{ return reverse_iterator(const_cast<T*>(const_reverse_iterator::m_val) + i); }
reverse_iterator& operator+=(std::ptrdiff_t i) { const_reverse_iterator::m_val -= i; return *this; }
reverse_iterator& operator-=(std::ptrdiff_t i) { const_reverse_iterator::m_val += i; return *this; }
std::ptrdiff_t operator-(const reverse_iterator& it) const { return it.m_val - const_reverse_iterator::m_val; }
T& operator[](std::ptrdiff_t i) const { return const_cast<T*>(const_reverse_iterator::m_val)[-i]; }
};
size_t size() const noexcept { return x0_size; }
bool empty() const noexcept { return x0_size == 0; }
const T* data() const noexcept { return std::addressof(_value(0)); }
T* data() noexcept { return std::addressof(_value(0)); }
T& back() { return _value(x0_size - 1); }
T& front() { return _value(0); }
const T& back() const { return _value(x0_size - 1); }
const T& front() const { return _value(0); }
const_iterator begin() const noexcept { return const_iterator(std::addressof(_value(0))); }
const_iterator end() const noexcept { return const_iterator(std::addressof(_value(x0_size))); }
iterator begin() noexcept { return iterator(std::addressof(_value(0))); }
iterator end() noexcept { return iterator(std::addressof(_value(x0_size))); }
const_iterator cbegin() const noexcept { return begin(); }
const_iterator cend() const noexcept { return end(); }
const_reverse_iterator rbegin() const noexcept
{ return const_reverse_iterator(std::addressof(_value(x0_size - 1))); }
const_reverse_iterator rend() const noexcept { return const_reverse_iterator(std::addressof(_value(-1))); }
reverse_iterator rbegin() noexcept { return reverse_iterator(std::addressof(_value(x0_size - 1))); }
reverse_iterator rend() noexcept { return reverse_iterator(std::addressof(_value(-1))); }
const_reverse_iterator crbegin() const noexcept { return rbegin(); }
const_reverse_iterator crend() const noexcept { return rend(); }
T& operator[](size_t idx) { return _value(idx); }
const T& operator[](size_t idx) const { return _value(idx); }
protected:
static iterator _const_cast_iterator(const const_iterator& it) { return iterator(const_cast<T*>(it.m_val)); }
};
/**
* @brief Vector backed by statically-allocated array with uninitialized storage
*/
template <class T, size_t N>
class reserved_vector : public _reserved_vector_base<T, N>
{
public:
using base = _reserved_vector_base<T, N>;
using iterator = typename base::iterator;
using const_iterator = typename base::const_iterator;
reserved_vector() : base(0) {}
~reserved_vector()
{
for (size_t i=0 ; i<base::x0_size ; ++i)
std::default_delete<T>()(std::addressof(base::_value(i)));
}
void push_back(const T& d)
{
#ifndef NDEBUG
if (base::x0_size == N)
Log.report(logvisor::Fatal, "push_back() called on full rstl::reserved_vector.");
#endif
::new (static_cast<void*>(std::addressof(base::_value(base::x0_size)))) T(d);
++base::x0_size;
}
void push_back(T&& d)
{
#ifndef NDEBUG
if (base::x0_size == N)
Log.report(logvisor::Fatal, "push_back() called on full rstl::reserved_vector.");
#endif
::new (static_cast<void*>(std::addressof(base::_value(base::x0_size)))) T(std::forward<T>(d));
++base::x0_size;
}
template<class... _Args>
void emplace_back(_Args&&... args)
{
#ifndef NDEBUG
if (base::x0_size == N)
Log.report(logvisor::Fatal, "emplace_back() called on full rstl::reserved_vector.");
#endif
::new (static_cast<void*>(std::addressof(base::_value(base::x0_size)))) T(std::forward<_Args>(args)...);
++base::x0_size;
}
void pop_back()
{
#ifndef NDEBUG
if (base::x0_size == 0)
Log.report(logvisor::Fatal, "pop_back() called on empty rstl::reserved_vector.");
#endif
--base::x0_size;
std::default_delete<T>()(std::addressof(base::_value(base::x0_size)));
}
iterator insert(const_iterator pos, const T& value)
{
#ifndef NDEBUG
if (base::x0_size == N)
Log.report(logvisor::Fatal, "insert() called on full rstl::reserved_vector.");
#endif
auto target_it = base::_const_cast_iterator(pos) - 1;
if (pos == base::cend())
{
::new (static_cast<void*>(std::addressof(base::_value(base::x0_size)))) T(value);
}
else
{
::new (static_cast<void*>(std::addressof(base::_value(base::x0_size))))
T(std::forward<T>(base::_value(base::x0_size - 1)));
for (auto it = base::end() - 1; it != target_it; --it)
*it = std::forward<T>(*(it - 1));
*target_it = value;
}
++base::x0_size;
return target_it;
}
iterator insert(const_iterator pos, T&& value)
{
#ifndef NDEBUG
if (base::x0_size == N)
Log.report(logvisor::Fatal, "insert() called on full rstl::reserved_vector.");
#endif
auto target_it = base::_const_cast_iterator(pos) - 1;
if (pos == base::cend())
{
::new (static_cast<void*>(std::addressof(base::_value(base::x0_size)))) T(std::forward<T>(value));
}
else
{
::new (static_cast<void*>(std::addressof(base::_value(base::x0_size))))
T(std::forward<T>(base::_value(base::x0_size - 1)));
for (auto it = base::end() - 1; it != target_it; --it)
*it = std::forward<T>(*(it - 1));
*target_it = std::forward<T>(value);
}
++base::x0_size;
return target_it;
}
void resize(size_t size)
{
#ifndef NDEBUG
if (size > N)
Log.report(logvisor::Fatal, "resized() call overflows rstl::reserved_vector.");
#endif
if (size > base::x0_size)
{
for (size_t i = base::x0_size; i < size; ++i)
::new (static_cast<void*>(std::addressof(base::_value(i)))) T;
base::x0_size = size;
}
else if (size < base::x0_size)
{
for (size_t i = size; i < base::x0_size; ++i)
std::default_delete<T>()(std::addressof(base::_value(i)));
base::x0_size = size;
}
}
void resize(size_t size, const T& value)
{
#ifndef NDEBUG
if (size > N)
Log.report(logvisor::Fatal, "resized() call overflows rstl::reserved_vector.");
#endif
if (size > base::x0_size)
{
for (size_t i = base::x0_size; i < size; ++i)
::new (static_cast<void*>(std::addressof(base::_value(i)))) T(value);
base::x0_size = size;
}
else if (size < base::x0_size)
{
for (size_t i = size; i < base::x0_size; ++i)
std::default_delete<T>()(std::addressof(base::_value(i)));
base::x0_size = size;
}
}
iterator erase(const_iterator pos)
{
#ifndef NDEBUG
if (base::x0_size == 0)
Log.report(logvisor::Fatal, "erase() called on empty rstl::reserved_vector.");
#endif
for (auto it = base::_const_cast_iterator(pos) + 1; it != base::end(); ++it)
*(it - 1) = std::forward<T>(*it);
--base::x0_size;
std::default_delete<T>()(std::addressof(base::_value(base::x0_size)));
return base::_const_cast_iterator(pos);
}
void clear()
{
for (auto it = base::begin(); it != base::end(); ++it)
std::default_delete<T>()(std::addressof(*it));
base::x0_size = 0;
}
};
/**
* @brief Vector backed by statically-allocated array with default-initialized elements
*/
template <class T, size_t N>
class prereserved_vector : public _reserved_vector_base<T, N>
{
void _init()
{
for (auto& i : base::x4_data)
::new (static_cast<void*>(std::addressof(i))) T;
}
void _deinit()
{
for (auto& i : base::x4_data)
std::default_delete<T>()(reinterpret_cast<T*>(std::addressof(i)));
}
public:
using base = _reserved_vector_base<T, N>;
using iterator = typename base::iterator;
using const_iterator = typename base::const_iterator;
prereserved_vector() : base(1) { _init(); }
~prereserved_vector() { _deinit(); }
void set_size(size_t n)
{
if (n <= N)
base::x0_size = n;
}
void set_data(const T* data) { memmove(base::x4_data, data, sizeof(T) * base::x0_size); }
void push_back(const T& d)
{
#ifndef NDEBUG
if (base::x0_size == N)
Log.report(logvisor::Fatal, "push_back() called on full rstl::prereserved_vector.");
#endif
base::_value(base::x0_size) = d;
++base::x0_size;
}
void push_back(T&& d)
{
#ifndef NDEBUG
if (base::x0_size == N)
Log.report(logvisor::Fatal, "push_back() called on full rstl::prereserved_vector.");
#endif
base::_value(base::x0_size) = std::forward<T>(d);
++base::x0_size;
}
template<class... _Args>
void emplace_back(_Args&&... args)
{
#ifndef NDEBUG
if (base::x0_size == N)
Log.report(logvisor::Fatal, "emplace_back() called on full rstl::prereserved_vector.");
#endif
base::_value(base::x0_size) = T(std::forward<_Args>(args)...);
++base::x0_size;
}
void pop_back()
{
#ifndef NDEBUG
if (base::x0_size == 0)
Log.report(logvisor::Fatal, "pop_back() called on empty rstl::prereserved_vector.");
#endif
--base::x0_size;
}
iterator insert(const_iterator pos, const T& value)
{
#ifndef NDEBUG
if (base::x0_size == N)
Log.report(logvisor::Fatal, "insert() called on full rstl::reserved_vector.");
#endif
auto target_it = base::_const_cast_iterator(pos) - 1;
if (pos == base::cend())
{
*target_it = value;
}
else
{
for (auto it = base::end(); it != target_it; --it)
*it = std::forward<T>(*(it - 1));
*target_it = value;
}
++base::x0_size;
return target_it;
}
iterator insert(const_iterator pos, T&& value)
{
#ifndef NDEBUG
if (base::x0_size == N)
Log.report(logvisor::Fatal, "insert() called on full rstl::reserved_vector.");
#endif
auto target_it = base::_const_cast_iterator(pos) - 1;
if (pos == base::cend())
{
*target_it = std::forward<T>(value);
}
else
{
for (auto it = base::end(); it != target_it; --it)
*it = std::forward<T>(*(it - 1));
*target_it = std::forward<T>(value);
}
++base::x0_size;
return target_it;
}
void resize(size_t size)
{
#ifndef NDEBUG
if (size > N)
Log.report(logvisor::Fatal, "resized() call overflows rstl::prereserved_vector.");
#endif
base::x0_size = size;
}
void resize(size_t size, const T& value)
{
#ifndef NDEBUG
if (size > N)
Log.report(logvisor::Fatal, "resized() call overflows rstl::prereserved_vector.");
#endif
if (size > base::x0_size)
{
for (size_t i = base::x0_size; i < size; ++i)
base::_value(i) = T(value);
base::x0_size = size;
}
else if (size < base::x0_size)
{
base::x0_size = size;
}
}
iterator erase(const_iterator pos)
{
#ifndef NDEBUG
if (base::x0_size == 0)
Log.report(logvisor::Fatal, "erase() called on empty rstl::prereserved_vector.");
#endif
for (auto it = base::_const_cast_iterator(pos) + 1; it != base::end(); ++it)
*(it - 1) = std::forward<T>(*it);
--base::x0_size;
return base::_const_cast_iterator(pos);
}
void clear() { base::x0_size = 0; }
};
template<class ForwardIt, class T>
ForwardIt binary_find(ForwardIt first, ForwardIt last, const T& value)
{
first = std::lower_bound(first, last, value);
return (!(first == last) && !(value < *first)) ? first : last;
}
template<class ForwardIt, class T, class GetKey>
ForwardIt binary_find(ForwardIt first, ForwardIt last, const T& value, GetKey getkey)
{
auto comp = [&](const auto& left, const T& right) { return getkey(left) < right; };
first = std::lower_bound(first, last, value, comp);
return (!(first == last) && !(value < getkey(*first))) ? first : last;
}
#if 0
template <typename _CharTp>
class basic_string
{
struct COWData
{
uint32_t x0_capacity;
uint32_t x4_refCount;
_CharTp x8_data[];
};
const _CharTp* x0_ptr;
COWData* x4_cow;
uint32_t x8_size;
void internal_allocate(int size)
{
x4_cow = reinterpret_cast<COWData*>(new uint8_t[size * sizeof(_CharTp) + 8]);
x0_ptr = x4_cow->x8_data;
x4_cow->x0_capacity = uint32_t(size);
x4_cow->x4_refCount = 1;
}
static const _CharTp _EmptyString;
public:
struct literal_t {};
basic_string(literal_t, const _CharTp* data)
{
x0_ptr = data;
x4_cow = nullptr;
const _CharTp* it = data;
while (*it)
++it;
x8_size = uint32_t((it - data) / sizeof(_CharTp));
}
basic_string(const basic_string& str)
{
x0_ptr = str.x0_ptr;
x4_cow = str.x4_cow;
x8_size = str.x8_size;
if (x4_cow)
++x4_cow->x4_refCount;
}
basic_string(const _CharTp* data, int size)
{
if (size <= 0 && !data)
{
x0_ptr = &_EmptyString;
x4_cow = nullptr;
x8_size = 0;
return;
}
const _CharTp* it = data;
uint32_t len = 0;
while (*it)
{
if (size != -1 && len >= size)
break;
++it;
++len;
}
internal_allocate(len + 1);
x8_size = len;
for (int i = 0; i < len; ++i)
x4_cow->x8_data[i] = data[i];
x4_cow->x8_data[len] = 0;
}
~basic_string()
{
if (x4_cow && --x4_cow->x4_refCount == 0)
delete[] x4_cow;
}
};
template <>
const char basic_string<char>::_EmptyString = 0;
template <>
const wchar_t basic_string<wchar_t>::_EmptyString = 0;
typedef basic_string<wchar_t> wstring;
typedef basic_string<char> string;
wstring wstring_l(const wchar_t* data)
{
return wstring(wstring::literal_t(), data);
}
string string_l(const char* data)
{
return string(string::literal_t(), data);
}
#endif
}
#endif // __RSTL_HPP__