metaforce/DataSpec/DNAMP3/PAK.cpp

232 lines
6.6 KiB
C++

#include "PAK.hpp"
#include "DNAMP3.hpp"
namespace DataSpec::DNAMP3 {
const hecl::FourCC CMPD("CMPD");
template <>
void PAK::Enumerate<BigDNA::Read>(athena::io::IStreamReader& reader) {
m_header.read(reader);
if (m_header.version != 2)
Log.report(logvisor::Fatal, "unexpected PAK magic");
reader.seek(8, athena::Current);
atUint32 strgSz = reader.readUint32Big();
reader.seek(4, athena::Current);
atUint32 rshdSz = reader.readUint32Big();
reader.seek(44, athena::Current);
atUint32 dataOffset = 128 + strgSz + rshdSz;
atUint64 strgBase = reader.position();
atUint32 nameCount = reader.readUint32Big();
m_nameEntries.clear();
m_nameEntries.reserve(nameCount);
for (atUint32 n = 0; n < nameCount; ++n) {
m_nameEntries.emplace_back();
m_nameEntries.back().read(reader);
}
reader.seek(strgBase + strgSz, athena::Begin);
atUint32 count = reader.readUint32Big();
m_entries.clear();
m_entries.reserve(count);
m_firstEntries.clear();
m_firstEntries.reserve(count);
std::vector<Entry> entries;
entries.reserve(count);
for (atUint32 e = 0; e < count; ++e) {
entries.emplace_back();
entries.back().read(reader);
}
for (atUint32 e = 0; e < count; ++e) {
Entry& entry = entries[e];
entry.offset += dataOffset;
auto search = m_entries.find(entry.id);
if (search == m_entries.end()) {
m_firstEntries.push_back(entry.id);
m_entries[entry.id] = std::move(entry);
} else {
/* Find next MREA to record which area has dupes */
for (atUint32 e2 = e + 1; e2 < count; ++e2) {
Entry& entry2 = entries[e2];
if (entry2.type != FOURCC('MREA'))
continue;
m_dupeMREAs.insert(entry2.id);
break;
}
}
}
m_nameMap.clear();
m_nameMap.reserve(nameCount);
for (NameEntry& entry : m_nameEntries)
m_nameMap[entry.name] = entry.id;
}
template <>
void PAK::Enumerate<BigDNA::Write>(athena::io::IStreamWriter& writer) {
m_header.write(writer);
DNAFourCC("STRG").write(writer);
atUint32 strgSz = 4;
for (const NameEntry& entry : m_nameEntries)
strgSz += (atUint32)entry.name.size() + 13;
atUint32 strgPad = ((strgSz + 63) & ~63) - strgSz;
strgSz += strgPad;
writer.writeUint32Big(strgSz);
DNAFourCC("RSHD").write(writer);
atUint32 rshdSz = 4 + 24 * m_entries.size();
atUint32 rshdPad = ((rshdSz + 63) & ~63) - rshdSz;
rshdSz += rshdPad;
writer.writeUint32Big(rshdSz);
atUint32 dataOffset = 128 + strgSz + rshdSz;
DNAFourCC("DATA").write(writer);
atUint32 dataSz = 0;
for (const auto& entry : m_entries)
dataSz += (entry.second.size + 63) & ~63;
atUint32 dataPad = ((dataSz + 63) & ~63) - dataSz;
dataSz += dataPad;
writer.writeUint32Big(dataSz);
writer.seek(36, athena::Current);
writer.writeUint32Big((atUint32)m_nameEntries.size());
for (const NameEntry& entry : m_nameEntries)
entry.write(writer);
writer.seek(strgPad, athena::Current);
writer.writeUint32Big((atUint32)m_entries.size());
for (const auto& entry : m_entries) {
Entry copy = entry.second;
copy.offset -= dataOffset;
copy.write(writer);
}
writer.seek(rshdPad, athena::Current);
}
template <>
void PAK::Enumerate<BigDNA::BinarySize>(size_t& __isz) {
m_header.binarySize(__isz);
size_t strgSz = 4;
for (const NameEntry& entry : m_nameEntries)
strgSz += entry.name.size() + 13;
size_t strgPad = ((strgSz + 63) & ~63) - strgSz;
size_t rshdSz = 4 + 24 * m_entries.size();
size_t rshdPad = ((rshdSz + 63) & ~63) - rshdSz;
__isz += 60;
__isz += 4;
for (const NameEntry& entry : m_nameEntries)
entry.binarySize(__isz);
__isz += strgPad;
__isz += 4;
for (const auto& entry : m_entries)
entry.second.binarySize(__isz);
__isz += rshdPad;
}
std::unique_ptr<atUint8[]> PAK::Entry::getBuffer(const nod::Node& pak, atUint64& szOut) const {
if (compressed) {
std::unique_ptr<nod::IPartReadStream> strm = pak.beginReadStream(offset);
struct {
hecl::FourCC magic;
atUint32 blockCount;
} head;
strm->read(&head, 8);
if (head.magic != CMPD) {
Log.report(logvisor::Error, "invalid CMPD block");
return std::unique_ptr<atUint8[]>();
}
head.blockCount = hecl::SBig(head.blockCount);
struct Block {
atUint32 compSz;
atUint32 decompSz;
};
std::unique_ptr<Block[]> blocks(new Block[head.blockCount]);
strm->read(blocks.get(), 8 * head.blockCount);
atUint64 maxBlockSz = 0;
atUint64 totalDecompSz = 0;
for (atUint32 b = 0; b < head.blockCount; ++b) {
Block& block = blocks[b];
block.compSz = hecl::SBig(block.compSz) & 0xffffff;
block.decompSz = hecl::SBig(block.decompSz);
if (block.compSz > maxBlockSz)
maxBlockSz = block.compSz;
totalDecompSz += block.decompSz;
}
std::unique_ptr<atUint8[]> compBuf(new atUint8[maxBlockSz]);
atUint8* buf = new atUint8[totalDecompSz];
atUint8* bufCur = buf;
for (atUint32 b = 0; b < head.blockCount; ++b) {
Block& block = blocks[b];
atUint8* compBufCur = compBuf.get();
strm->read(compBufCur, block.compSz);
if (block.compSz == block.decompSz) {
memcpy(bufCur, compBufCur, block.decompSz);
bufCur += block.decompSz;
} else {
atUint32 rem = block.decompSz;
while (rem) {
atUint16 chunkSz = hecl::SBig(*(atUint16*)compBufCur);
compBufCur += 2;
lzo_uint dsz = rem;
lzo1x_decompress(compBufCur, chunkSz, bufCur, &dsz, nullptr);
compBufCur += chunkSz;
bufCur += dsz;
rem -= dsz;
}
}
}
szOut = totalDecompSz;
return std::unique_ptr<atUint8[]>(buf);
} else {
atUint8* buf = new atUint8[size];
pak.beginReadStream(offset)->read(buf, size);
szOut = size;
return std::unique_ptr<atUint8[]>(buf);
}
}
const PAK::Entry* PAK::lookupEntry(const UniqueID64& id) const {
auto result = m_entries.find(id);
if (result != m_entries.end())
return &result->second;
return nullptr;
}
const PAK::Entry* PAK::lookupEntry(std::string_view name) const {
auto result = m_nameMap.find(name.data());
if (result != m_nameMap.end()) {
auto result1 = m_entries.find(result->second);
if (result1 != m_entries.end())
return &result1->second;
}
return nullptr;
}
std::string PAK::bestEntryName(const nod::Node& pakNode, const Entry& entry, bool& named) const {
/* Prefer named entries first */
for (const NameEntry& nentry : m_nameEntries)
if (nentry.id == entry.id) {
named = true;
return nentry.name;
}
/* Otherwise return ID format string */
named = false;
return entry.type.toString() + '_' + entry.id.toString();
}
} // namespace DataSpec::DNAMP3