metaforce/DataSpec/DNACommon/OBBTreeBuilder.cpp

259 lines
8.0 KiB
C++

#include "DataSpec/DNACommon/OBBTreeBuilder.hpp"
#include <cstddef>
#include <unordered_set>
#include <vector>
#include "DataSpec/DNAMP1/DCLN.hpp"
#include <athena/Types.hpp>
#include <gmm/gmm.h>
#include <hecl/Blender/Connection.hpp>
#include <zeus/CTransform.hpp>
namespace DataSpec {
using ColMesh = hecl::blender::ColMesh;
struct FittedOBB {
zeus::CTransform xf;
zeus::CVector3f he;
};
static std::vector<int> MakeRootTriangleIndex(const ColMesh& mesh) {
std::vector<int> ret;
ret.reserve(mesh.trianges.size());
for (size_t i = 0; i < mesh.trianges.size(); ++i)
ret.push_back(i);
return ret;
}
static std::unordered_set<uint32_t> GetTriangleVerts(const ColMesh& mesh, int triIdx) {
const ColMesh::Triangle& T = mesh.trianges[triIdx];
std::unordered_set<uint32_t> verts;
verts.insert(mesh.edges[T.edges[0]].verts[0]);
verts.insert(mesh.edges[T.edges[0]].verts[1]);
verts.insert(mesh.edges[T.edges[1]].verts[0]);
verts.insert(mesh.edges[T.edges[1]].verts[1]);
verts.insert(mesh.edges[T.edges[2]].verts[0]);
verts.insert(mesh.edges[T.edges[2]].verts[1]);
return verts;
}
// method to set the OBB parameters which produce a box oriented according to
// the covariance matrix C, which just containts the points pnts
static FittedOBB BuildFromCovarianceMatrix(gmm::dense_matrix<float>& C, const ColMesh& mesh,
const std::vector<int>& index) {
FittedOBB ret;
// extract the eigenvalues and eigenvectors from C
gmm::dense_matrix<float> eigvec(3, 3);
std::vector<float> eigval(3);
using namespace gmm;
using MAT1 = gmm::dense_matrix<float>;
gmm::symmetric_qr_algorithm(C, eigval, eigvec, default_tol_for_qr);
// find the right, up and forward vectors from the eigenvectors
zeus::CVector3f r(eigvec(0, 0), eigvec(1, 0), eigvec(2, 0));
zeus::CVector3f f(eigvec(0, 1), eigvec(1, 1), eigvec(2, 1));
zeus::CVector3f u(eigvec(0, 2), eigvec(1, 2), eigvec(2, 2));
r.normalize();
f.normalize();
u.normalize();
// set the rotation matrix using the eigvenvectors
ret.xf.basis[0] = r;
ret.xf.basis[1] = f;
ret.xf.basis[2] = u;
ret.xf.orthonormalize();
// now build the bounding box extents in the rotated frame
zeus::CVector3f minim(1e10f, 1e10f, 1e10f), maxim(-1e10f, -1e10f, -1e10f);
for (int triIdx : index) {
std::unordered_set<uint32_t> verts = GetTriangleVerts(mesh, triIdx);
for (uint32_t v : verts) {
const zeus::CVector3f& p = mesh.verts[v].val;
zeus::CVector3f p_prime(ret.xf.basis[0].dot(p), ret.xf.basis[1].dot(p), ret.xf.basis[2].dot(p));
minim = zeus::min(minim, p_prime);
maxim = zeus::max(maxim, p_prime);
}
}
// set the center of the OBB to be the average of the
// minimum and maximum, and the extents be half of the
// difference between the minimum and maximum
zeus::CVector3f center = (maxim + minim) * 0.5f;
ret.xf.origin = ret.xf.basis * center;
ret.he = (maxim - minim) * 0.5f;
return ret;
}
// builds an OBB from triangles specified as an array of
// points with integer indices into the point array. Forms
// the covariance matrix for the triangles, then uses the
// method build_from_covariance_matrix() method to fit
// the box. ALL points will be fit in the box, regardless
// of whether they are indexed by a triangle or not.
static FittedOBB FitOBB(const ColMesh& mesh, const std::vector<int>& index) {
float Ai, Am = 0.0;
zeus::CVector3f mu, mui;
gmm::dense_matrix<float> C(3, 3);
float cxx = 0.0, cxy = 0.0, cxz = 0.0, cyy = 0.0, cyz = 0.0, czz = 0.0;
// loop over the triangles this time to find the
// mean location
for (int i : index) {
std::unordered_set<uint32_t> verts = GetTriangleVerts(mesh, i);
auto it = verts.begin();
zeus::CVector3f p = mesh.verts[*it++].val;
zeus::CVector3f q = mesh.verts[*it++].val;
zeus::CVector3f r = mesh.verts[*it++].val;
mui = (p + q + r) / 3.f;
Ai = (q - p).cross(r - p).magnitude() / 2.f;
mu += mui * Ai;
Am += Ai;
// these bits set the c terms to Am*E[xx], Am*E[xy], Am*E[xz]....
cxx += (9.0 * mui.x() * mui.x() + p.x() * p.x() + q.x() * q.x() + r.x() * r.x()) * (Ai / 12.0);
cxy += (9.0 * mui.x() * mui.y() + p.x() * p.y() + q.x() * q.y() + r.x() * r.y()) * (Ai / 12.0);
cxz += (9.0 * mui.x() * mui.z() + p.x() * p.z() + q.x() * q.z() + r.x() * r.z()) * (Ai / 12.0);
cyy += (9.0 * mui.y() * mui.y() + p.y() * p.y() + q.y() * q.y() + r.y() * r.y()) * (Ai / 12.0);
cyz += (9.0 * mui.y() * mui.z() + p.y() * p.z() + q.y() * q.z() + r.y() * r.z()) * (Ai / 12.0);
}
if (zeus::close_enough(Am, 0.f))
return {};
// divide out the Am fraction from the average position and
// covariance terms
mu = mu / Am;
cxx /= Am;
cxy /= Am;
cxz /= Am;
cyy /= Am;
cyz /= Am;
czz /= Am;
// now subtract off the E[x]*E[x], E[x]*E[y], ... terms
cxx -= mu.x() * mu.x();
cxy -= mu.x() * mu.y();
cxz -= mu.x() * mu.z();
cyy -= mu.y() * mu.y();
cyz -= mu.y() * mu.z();
czz -= mu.z() * mu.z();
// now build the covariance matrix
C(0, 0) = cxx;
C(0, 1) = cxy;
C(0, 2) = cxz;
C(1, 0) = cxy;
C(1, 1) = cyy;
C(1, 2) = cyz;
C(2, 0) = cxz;
C(2, 1) = cyz;
C(2, 2) = czz;
// set the obb parameters from the covariance matrix
return BuildFromCovarianceMatrix(C, mesh, index);
}
template <typename Node>
static void MakeLeaf(const ColMesh& mesh, const std::vector<int>& index, Node& n) {
n.left.reset();
n.right.reset();
n.isLeaf = true;
n.leafData = std::make_unique<typename Node::LeafData>();
n.leafData->triangleIndexCount = atUint32(index.size());
n.leafData->triangleIndices.reserve(n.leafData->triangleIndexCount);
for (int i : index)
n.leafData->triangleIndices.push_back(i);
}
template <typename Node>
static std::unique_ptr<Node> RecursiveMakeNode(const ColMesh& mesh, const std::vector<int>& index) {
// calculate root OBB
FittedOBB obb = FitOBB(mesh, index);
// make results row-major and also invert the rotation basis
obb.xf.basis.transpose();
std::unique_ptr<Node> n = std::make_unique<Node>();
for (int i = 0; i < 3; ++i) {
n->xf[i] = zeus::CVector4f{obb.xf.basis[i]};
n->xf[i].simd[3] = float(obb.xf.origin[i]);
}
n->halfExtent = obb.he;
// terminate branch when volume < 1.0
if (obb.he[0] * obb.he[1] * obb.he[2] < 1.f) {
MakeLeaf(mesh, index, *n);
return n;
}
n->isLeaf = false;
std::vector<int> indexNeg[3];
std::vector<int> indexPos[3];
for (int c = 0; c < 3; ++c) {
// subdivide negative side
indexNeg[c].reserve(index.size());
for (int i : index) {
std::unordered_set<uint32_t> verts = GetTriangleVerts(mesh, i);
for (uint32_t vtx : verts) {
zeus::CVector3f v = mesh.verts[vtx].val;
v = obb.xf.basis * (v - obb.xf.origin);
if (v[c] < 0.f) {
indexNeg[c].push_back(i);
break;
}
}
}
// subdivide positive side
indexPos[c].reserve(index.size());
for (int i : index) {
std::unordered_set<uint32_t> verts = GetTriangleVerts(mesh, i);
for (uint32_t vtx : verts) {
zeus::CVector3f v = mesh.verts[vtx].val;
v = obb.xf.basis * (v - obb.xf.origin);
if (v[c] >= 0.f) {
indexPos[c].push_back(i);
break;
}
}
}
}
size_t idxMin = index.size();
int minComp = -1;
for (int c = 0; c < 3; ++c) {
size_t test = std::max(indexNeg[c].size(), indexPos[c].size());
if (test < idxMin && test < index.size() * 3 / 4) {
minComp = c;
idxMin = test;
}
}
if (minComp == -1) {
MakeLeaf(mesh, index, *n);
return n;
}
n->left = RecursiveMakeNode<Node>(mesh, indexNeg[minComp]);
n->right = RecursiveMakeNode<Node>(mesh, indexPos[minComp]);
return n;
}
template <typename Node>
std::unique_ptr<Node> OBBTreeBuilder::buildCol(const ColMesh& mesh) {
std::vector<int> root = MakeRootTriangleIndex(mesh);
return RecursiveMakeNode<Node>(mesh, root);
}
template std::unique_ptr<DNAMP1::DCLN::Collision::Node>
OBBTreeBuilder::buildCol<DNAMP1::DCLN::Collision::Node>(const ColMesh& mesh);
} // namespace DataSpec