nod/lib/aes.cpp

575 lines
15 KiB
C++
Raw Normal View History

2016-03-04 23:04:30 +00:00
#include "nod/aes.hpp"
2017-12-29 07:57:54 +00:00
#include <cstdio>
#include <cstring>
2015-07-22 19:01:28 +00:00
#if _WIN32
#include <intrin.h>
#else
2015-06-30 00:07:46 +00:00
#include <cpuid.h>
2015-07-22 19:01:28 +00:00
#endif
2015-06-29 05:35:25 +00:00
#if __AES__ || (!defined(__clang__) && _MSC_VER >= 1800)
#define _AES_NI 1
#endif
2018-12-08 05:21:47 +00:00
namespace nod {
2015-06-29 05:35:25 +00:00
/* rotates x one bit to the left */
2018-12-08 05:21:47 +00:00
#define ROTL(x) (((x) >> 7) | ((x) << 1))
2015-06-29 05:35:25 +00:00
/* Rotates 32-bit word left by 1, 2 or 3 byte */
2018-12-08 05:21:47 +00:00
#define ROTL8(x) (((x) << 8) | ((x) >> 24))
#define ROTL16(x) (((x) << 16) | ((x) >> 16))
#define ROTL24(x) (((x) << 24) | ((x) >> 8))
2015-06-29 05:35:25 +00:00
static const uint8_t InCo[4] = {0xB, 0xD, 0x9, 0xE}; /* Inverse Coefficients */
2018-12-08 05:21:47 +00:00
static inline uint32_t pack(const uint8_t* b) {
/* pack bytes into a 32-bit Word */
return ((uint32_t)b[3] << 24) | ((uint32_t)b[2] << 16) | ((uint32_t)b[1] << 8) | (uint32_t)b[0];
2015-06-29 05:35:25 +00:00
}
2018-12-08 05:21:47 +00:00
static inline void unpack(uint32_t a, uint8_t* b) {
/* unpack bytes from a word */
b[0] = (uint8_t)a;
b[1] = (uint8_t)(a >> 8);
b[2] = (uint8_t)(a >> 16);
b[3] = (uint8_t)(a >> 24);
2015-06-29 05:35:25 +00:00
}
2018-12-08 05:21:47 +00:00
static inline uint8_t xtime(uint8_t a) { return ((a << 1) ^ (((a >> 7) & 1) * 0x11B)); }
2015-06-29 05:35:25 +00:00
2018-12-08 05:21:47 +00:00
static const struct SoftwareAESTables {
uint8_t fbsub[256];
uint8_t rbsub[256];
uint8_t ptab[256], ltab[256];
uint32_t ftable[256];
uint32_t rtable[256];
uint32_t rco[30];
2015-06-30 00:07:46 +00:00
2018-12-08 05:21:47 +00:00
uint8_t bmul(uint8_t x, uint8_t y) const {
/* x.y= AntiLog(Log(x) + Log(y)) */
if (x && y)
return ptab[(ltab[x] + ltab[y]) % 255];
else
return 0;
}
uint32_t SubByte(uint32_t a) const {
uint8_t b[4];
unpack(a, b);
b[0] = fbsub[b[0]];
b[1] = fbsub[b[1]];
b[2] = fbsub[b[2]];
b[3] = fbsub[b[3]];
return pack(b);
}
uint8_t product(uint32_t x, uint32_t y) const {
/* dot product of two 4-byte arrays */
uint8_t xb[4], yb[4];
unpack(x, xb);
unpack(y, yb);
return bmul(xb[0], yb[0]) ^ bmul(xb[1], yb[1]) ^ bmul(xb[2], yb[2]) ^ bmul(xb[3], yb[3]);
}
uint32_t InvMixCol(uint32_t x) const {
/* matrix Multiplication */
uint32_t y, m;
uint8_t b[4];
m = pack(InCo);
b[3] = product(m, x);
m = ROTL24(m);
b[2] = product(m, x);
m = ROTL24(m);
b[1] = product(m, x);
m = ROTL24(m);
b[0] = product(m, x);
y = pack(b);
return y;
}
uint8_t ByteSub(uint8_t x) const {
uint8_t y = ptab[255 - ltab[x]]; /* multiplicative inverse */
x = y;
x = ROTL(x);
y ^= x;
x = ROTL(x);
y ^= x;
x = ROTL(x);
y ^= x;
x = ROTL(x);
y ^= x;
y ^= 0x63;
return y;
}
SoftwareAESTables() {
/* generate tables */
int i;
uint8_t y, b[4];
/* use 3 as primitive root to generate power and log tables */
ltab[0] = 0;
ptab[0] = 1;
ltab[1] = 0;
ptab[1] = 3;
ltab[3] = 1;
for (i = 2; i < 256; i++) {
ptab[i] = ptab[i - 1] ^ xtime(ptab[i - 1]);
ltab[ptab[i]] = i;
2015-07-14 02:24:17 +00:00
}
2015-06-30 00:07:46 +00:00
2018-12-08 05:21:47 +00:00
/* affine transformation:- each bit is xored with itself shifted one bit */
2015-06-30 00:07:46 +00:00
2018-12-08 05:21:47 +00:00
fbsub[0] = 0x63;
rbsub[0x63] = 0;
2015-06-30 00:07:46 +00:00
2018-12-08 05:21:47 +00:00
for (i = 1; i < 256; i++) {
y = ByteSub((uint8_t)i);
fbsub[i] = y;
rbsub[y] = i;
2015-07-14 02:24:17 +00:00
}
2015-06-30 00:07:46 +00:00
2018-12-08 05:21:47 +00:00
for (i = 0, y = 1; i < 30; i++) {
rco[i] = y;
y = xtime(y);
2015-07-14 02:24:17 +00:00
}
2015-06-30 00:07:46 +00:00
2018-12-08 05:21:47 +00:00
/* calculate forward and reverse tables */
for (i = 0; i < 256; i++) {
y = fbsub[i];
b[3] = y ^ xtime(y);
b[2] = y;
b[1] = y;
b[0] = xtime(y);
ftable[i] = pack(b);
y = rbsub[i];
b[3] = bmul(InCo[0], y);
b[2] = bmul(InCo[1], y);
b[1] = bmul(InCo[2], y);
b[0] = bmul(InCo[3], y);
rtable[i] = pack(b);
2015-06-29 05:35:25 +00:00
}
2018-12-08 05:21:47 +00:00
}
2015-07-14 02:24:17 +00:00
} AEStb;
2015-06-29 05:35:25 +00:00
2018-12-08 05:21:47 +00:00
class SoftwareAES : public IAES {
2015-07-14 02:24:17 +00:00
protected:
2018-12-08 05:21:47 +00:00
/* Parameter-dependent data */
int Nk, Nb, Nr;
uint8_t fi[24], ri[24];
uint32_t fkey[120];
uint32_t rkey[120];
2015-06-29 05:35:25 +00:00
2018-12-08 05:21:47 +00:00
void gkey(int nb, int nk, const uint8_t* key);
void _encrypt(uint8_t* buff);
void _decrypt(uint8_t* buff);
2015-06-29 05:35:25 +00:00
2015-07-14 02:24:17 +00:00
public:
2018-12-08 05:21:47 +00:00
void encrypt(const uint8_t* iv, const uint8_t* inbuf, uint8_t* outbuf, size_t len);
void decrypt(const uint8_t* iv, const uint8_t* inbuf, uint8_t* outbuf, size_t len);
void setKey(const uint8_t* key);
2015-07-14 02:24:17 +00:00
};
2015-06-29 05:35:25 +00:00
2018-12-08 05:21:47 +00:00
void SoftwareAES::gkey(int nb, int nk, const uint8_t* key) {
/* blocksize=32*nb bits. Key=32*nk bits */
/* currently nb,bk = 4, 6 or 8 */
/* key comes as 4*Nk bytes */
/* Key Scheduler. Create expanded encryption key */
int i, j, k, m, N;
int C1, C2, C3;
uint32_t CipherKey[8];
Nb = nb;
Nk = nk;
/* Nr is number of rounds */
if (Nb >= Nk)
Nr = 6 + Nb;
else
Nr = 6 + Nk;
C1 = 1;
if (Nb < 8) {
C2 = 2;
C3 = 3;
} else {
C2 = 3;
C3 = 4;
}
/* pre-calculate forward and reverse increments */
for (m = j = 0; j < nb; j++, m += 3) {
fi[m] = (j + C1) % nb;
fi[m + 1] = (j + C2) % nb;
fi[m + 2] = (j + C3) % nb;
ri[m] = (nb + j - C1) % nb;
ri[m + 1] = (nb + j - C2) % nb;
ri[m + 2] = (nb + j - C3) % nb;
}
N = Nb * (Nr + 1);
for (i = j = 0; i < Nk; i++, j += 4) {
CipherKey[i] = pack(key + j);
}
for (i = 0; i < Nk; i++)
fkey[i] = CipherKey[i];
for (j = Nk, k = 0; j < N; j += Nk, k++) {
fkey[j] = fkey[j - Nk] ^ AEStb.SubByte(ROTL24(fkey[j - 1])) ^ AEStb.rco[k];
if (Nk <= 6) {
for (i = 1; i < Nk && (i + j) < N; i++)
fkey[i + j] = fkey[i + j - Nk] ^ fkey[i + j - 1];
} else {
for (i = 1; i < 4 && (i + j) < N; i++)
fkey[i + j] = fkey[i + j - Nk] ^ fkey[i + j - 1];
if ((j + 4) < N)
fkey[j + 4] = fkey[j + 4 - Nk] ^ AEStb.SubByte(fkey[j + 3]);
for (i = 5; i < Nk && (i + j) < N; i++)
fkey[i + j] = fkey[i + j - Nk] ^ fkey[i + j - 1];
}
}
2015-06-29 05:35:25 +00:00
2018-12-08 05:21:47 +00:00
/* now for the expanded decrypt key in reverse order */
2015-06-29 05:35:25 +00:00
2018-12-08 05:21:47 +00:00
for (j = 0; j < Nb; j++)
rkey[j + N - Nb] = fkey[j];
2015-06-29 05:35:25 +00:00
2018-12-08 05:21:47 +00:00
for (i = Nb; i < N - Nb; i += Nb) {
k = N - Nb - i;
2015-06-29 05:35:25 +00:00
2018-12-08 05:21:47 +00:00
for (j = 0; j < Nb; j++)
rkey[k + j] = AEStb.InvMixCol(fkey[i + j]);
}
2015-06-29 05:35:25 +00:00
2018-12-08 05:21:47 +00:00
for (j = N - Nb; j < N; j++)
rkey[j - N + Nb] = fkey[j];
}
2015-06-29 05:35:25 +00:00
2018-12-08 05:21:47 +00:00
/* There is an obvious time/space trade-off possible here. *
* Instead of just one ftable[], I could have 4, the other *
* 3 pre-rotated to save the ROTL8, ROTL16 and ROTL24 overhead */
2015-06-29 05:35:25 +00:00
2018-12-08 05:21:47 +00:00
void SoftwareAES::_encrypt(uint8_t* buff) {
int i, j, k, m;
uint32_t a[8], b[8], *x, *y, *t;
2015-06-29 05:35:25 +00:00
2018-12-08 05:21:47 +00:00
for (i = j = 0; i < Nb; i++, j += 4) {
a[i] = pack(buff + j);
a[i] ^= fkey[i];
}
2015-06-29 05:35:25 +00:00
2018-12-08 05:21:47 +00:00
k = Nb;
x = a;
y = b;
2015-06-29 05:35:25 +00:00
2018-12-08 05:21:47 +00:00
/* State alternates between a and b */
for (i = 1; i < Nr; i++) {
/* Nr is number of rounds. May be odd. */
2015-06-29 05:35:25 +00:00
2018-12-08 05:21:47 +00:00
/* if Nb is fixed - unroll this next
loop and hard-code in the values of fi[] */
2015-06-29 05:35:25 +00:00
2018-12-08 05:21:47 +00:00
for (m = j = 0; j < Nb; j++, m += 3) {
/* deal with each 32-bit element of the State */
/* This is the time-critical bit */
y[j] = fkey[k++] ^ AEStb.ftable[(uint8_t)x[j]] ^ ROTL8(AEStb.ftable[(uint8_t)(x[fi[m]] >> 8)]) ^
ROTL16(AEStb.ftable[(uint8_t)(x[fi[m + 1]] >> 16)]) ^ ROTL24(AEStb.ftable[(uint8_t)(x[fi[m + 2]] >> 24)]);
2015-06-29 05:35:25 +00:00
}
2018-12-08 05:21:47 +00:00
t = x;
x = y;
y = t; /* swap pointers */
}
2015-06-29 05:35:25 +00:00
2018-12-08 05:21:47 +00:00
/* Last Round - unroll if possible */
for (m = j = 0; j < Nb; j++, m += 3) {
y[j] = fkey[k++] ^ (uint32_t)AEStb.fbsub[(uint8_t)x[j]] ^ ROTL8((uint32_t)AEStb.fbsub[(uint8_t)(x[fi[m]] >> 8)]) ^
ROTL16((uint32_t)AEStb.fbsub[(uint8_t)(x[fi[m + 1]] >> 16)]) ^
ROTL24((uint32_t)AEStb.fbsub[(uint8_t)(x[fi[m + 2]] >> 24)]);
}
2015-06-29 05:35:25 +00:00
2018-12-08 05:21:47 +00:00
for (i = j = 0; i < Nb; i++, j += 4) {
unpack(y[i], (uint8_t*)&buff[j]);
x[i] = y[i] = 0; /* clean up stack */
}
2015-06-29 05:35:25 +00:00
2018-12-08 05:21:47 +00:00
return;
2015-06-29 05:35:25 +00:00
}
2018-12-08 05:21:47 +00:00
void SoftwareAES::_decrypt(uint8_t* buff) {
int i, j, k, m;
uint32_t a[8], b[8], *x, *y, *t;
2015-06-29 05:35:25 +00:00
2018-12-08 05:21:47 +00:00
for (i = j = 0; i < Nb; i++, j += 4) {
a[i] = pack(buff + j);
a[i] ^= rkey[i];
}
2015-06-29 05:35:25 +00:00
2018-12-08 05:21:47 +00:00
k = Nb;
x = a;
y = b;
2015-06-29 05:35:25 +00:00
2018-12-08 05:21:47 +00:00
/* State alternates between a and b */
for (i = 1; i < Nr; i++) {
/* Nr is number of rounds. May be odd. */
2015-06-29 05:35:25 +00:00
2018-12-08 05:21:47 +00:00
/* if Nb is fixed - unroll this next
loop and hard-code in the values of ri[] */
2015-06-29 05:35:25 +00:00
2018-12-08 05:21:47 +00:00
for (m = j = 0; j < Nb; j++, m += 3) {
/* This is the time-critical bit */
y[j] = rkey[k++] ^ AEStb.rtable[(uint8_t)x[j]] ^ ROTL8(AEStb.rtable[(uint8_t)(x[ri[m]] >> 8)]) ^
ROTL16(AEStb.rtable[(uint8_t)(x[ri[m + 1]] >> 16)]) ^ ROTL24(AEStb.rtable[(uint8_t)(x[ri[m + 2]] >> 24)]);
2015-06-29 05:35:25 +00:00
}
2018-12-08 05:21:47 +00:00
t = x;
x = y;
y = t; /* swap pointers */
}
2015-06-29 05:35:25 +00:00
2018-12-08 05:21:47 +00:00
/* Last Round - unroll if possible */
for (m = j = 0; j < Nb; j++, m += 3) {
y[j] = rkey[k++] ^ (uint32_t)AEStb.rbsub[(uint8_t)x[j]] ^ ROTL8((uint32_t)AEStb.rbsub[(uint8_t)(x[ri[m]] >> 8)]) ^
ROTL16((uint32_t)AEStb.rbsub[(uint8_t)(x[ri[m + 1]] >> 16)]) ^
ROTL24((uint32_t)AEStb.rbsub[(uint8_t)(x[ri[m + 2]] >> 24)]);
}
2015-06-29 05:35:25 +00:00
2018-12-08 05:21:47 +00:00
for (i = j = 0; i < Nb; i++, j += 4) {
unpack(y[i], (uint8_t*)&buff[j]);
x[i] = y[i] = 0; /* clean up stack */
}
2015-06-29 05:35:25 +00:00
2018-12-08 05:21:47 +00:00
return;
2015-06-29 05:35:25 +00:00
}
2018-12-08 05:21:47 +00:00
void SoftwareAES::setKey(const uint8_t* key) { gkey(4, 4, key); }
2015-06-29 05:35:25 +00:00
// CBC mode decryption
2018-12-08 05:21:47 +00:00
void SoftwareAES::decrypt(const uint8_t* iv, const uint8_t* inbuf, uint8_t* outbuf, size_t len) {
uint8_t block[16];
const uint8_t* ctext_ptr;
unsigned int blockno = 0, i;
2015-06-29 05:35:25 +00:00
2018-12-08 05:21:47 +00:00
// fprintf( stderr,"aes_decrypt(%p, %p, %p, %lld)\n", iv, inbuf, outbuf, len );
// printf("aes_decrypt(%p, %p, %p, %lld)\n", iv, inbuf, outbuf, len);
2015-06-29 05:35:25 +00:00
2018-12-08 05:21:47 +00:00
for (blockno = 0; blockno <= (len / sizeof(block)); blockno++) {
unsigned int fraction;
2015-06-29 05:35:25 +00:00
2018-12-08 05:21:47 +00:00
if (blockno == (len / sizeof(block))) // last block
{
fraction = len % sizeof(block);
2015-06-29 05:35:25 +00:00
2018-12-08 05:21:47 +00:00
if (fraction == 0)
break;
2015-06-29 05:35:25 +00:00
2018-12-08 05:21:47 +00:00
memset(block, 0, sizeof(block));
} else
fraction = 16;
2015-06-29 05:35:25 +00:00
2018-12-08 05:21:47 +00:00
// debug_printf("block %d: fraction = %d\n", blockno, fraction);
memcpy(block, inbuf + blockno * sizeof(block), fraction);
_decrypt(block);
2015-06-29 05:35:25 +00:00
2018-12-08 05:21:47 +00:00
if (blockno == 0)
ctext_ptr = iv;
else
ctext_ptr = (uint8_t*)(inbuf + (blockno - 1) * sizeof(block));
2015-06-29 05:35:25 +00:00
2018-12-08 05:21:47 +00:00
for (i = 0; i < fraction; i++)
outbuf[blockno * sizeof(block) + i] = ctext_ptr[i] ^ block[i];
2015-06-29 05:35:25 +00:00
2018-12-08 05:21:47 +00:00
// debug_printf("Block %d output: ", blockno);
// hexdump(outbuf + blockno*sizeof(block), 16);
}
2015-06-29 05:35:25 +00:00
}
// CBC mode encryption
2018-12-08 05:21:47 +00:00
void SoftwareAES::encrypt(const uint8_t* iv, const uint8_t* inbuf, uint8_t* outbuf, size_t len) {
uint8_t block[16];
uint8_t feedback[16];
memcpy(feedback, iv, 16);
unsigned int blockno = 0, i;
2015-06-29 05:35:25 +00:00
2018-12-08 05:21:47 +00:00
// printf("aes_decrypt(%p, %p, %p, %lld)\n", iv, inbuf, outbuf, len);
// fprintf( stderr,"aes_encrypt(%p, %p, %p, %lld)\n", iv, inbuf, outbuf, len);
2015-06-29 05:35:25 +00:00
2018-12-08 05:21:47 +00:00
for (blockno = 0; blockno <= (len / sizeof(block)); blockno++) {
unsigned int fraction;
2015-06-29 05:35:25 +00:00
2018-12-08 05:21:47 +00:00
if (blockno == (len / sizeof(block))) // last block
{
fraction = len % sizeof(block);
2015-06-29 05:35:25 +00:00
2018-12-08 05:21:47 +00:00
if (fraction == 0)
break;
2015-06-29 05:35:25 +00:00
2018-12-08 05:21:47 +00:00
memset(block, 0, sizeof(block));
} else
fraction = 16;
2015-06-29 05:35:25 +00:00
2018-12-08 05:21:47 +00:00
// debug_printf("block %d: fraction = %d\n", blockno, fraction);
memcpy(block, inbuf + blockno * sizeof(block), fraction);
2015-06-29 05:35:25 +00:00
2018-12-08 05:21:47 +00:00
for (i = 0; i < fraction; i++)
block[i] = inbuf[blockno * sizeof(block) + i] ^ feedback[i];
2015-06-29 05:35:25 +00:00
2018-12-08 05:21:47 +00:00
_encrypt(block);
memcpy(feedback, block, sizeof(block));
memcpy(outbuf + blockno * sizeof(block), block, sizeof(block));
// debug_printf("Block %d output: ", blockno);
// hexdump(outbuf + blockno*sizeof(block), 16);
}
2015-06-29 05:35:25 +00:00
}
#if _AES_NI
2015-06-29 05:35:25 +00:00
2015-06-30 00:07:46 +00:00
#include <wmmintrin.h>
2015-06-29 05:35:25 +00:00
2018-12-08 05:21:47 +00:00
class NiAES : public IAES {
__m128i m_ekey[11];
__m128i m_dkey[11];
2015-06-29 05:35:25 +00:00
2018-12-08 05:21:47 +00:00
public:
void encrypt(const uint8_t* iv, const uint8_t* inbuf, uint8_t* outbuf, size_t len) {
__m128i feedback, data;
uint64_t i, j;
if (len % 16)
len = len / 16 + 1;
else
len /= 16;
feedback = _mm_loadu_si128((__m128i*)iv);
for (i = 0; i < len; i++) {
data = _mm_loadu_si128(&((__m128i*)inbuf)[i]);
feedback = _mm_xor_si128(data, feedback);
feedback = _mm_xor_si128(feedback, m_ekey[0]);
for (j = 1; j < 10; j++)
feedback = _mm_aesenc_si128(feedback, m_ekey[j]);
feedback = _mm_aesenclast_si128(feedback, m_ekey[j]);
_mm_storeu_si128(&((__m128i*)outbuf)[i], feedback);
2015-06-30 00:07:46 +00:00
}
2018-12-08 05:21:47 +00:00
}
void decrypt(const uint8_t* iv, const uint8_t* inbuf, uint8_t* outbuf, size_t len) {
__m128i data, feedback, last_in;
uint64_t i, j;
if (len % 16)
len = len / 16 + 1;
else
len /= 16;
feedback = _mm_loadu_si128((__m128i*)iv);
for (i = 0; i < len; i++) {
last_in = _mm_loadu_si128(&((__m128i*)inbuf)[i]);
data = _mm_xor_si128(last_in, m_dkey[0]);
for (j = 1; j < 10; j++)
data = _mm_aesdec_si128(data, m_dkey[j]);
data = _mm_aesdeclast_si128(data, m_dkey[j]);
data = _mm_xor_si128(data, feedback);
_mm_storeu_si128(&((__m128i*)outbuf)[i], data);
feedback = last_in;
2015-06-30 00:07:46 +00:00
}
2018-12-08 05:21:47 +00:00
}
static inline __m128i AES_128_ASSIST(__m128i temp1, __m128i temp2) {
__m128i temp3;
temp2 = _mm_shuffle_epi32(temp2, 0xff);
temp3 = _mm_slli_si128(temp1, 0x4);
temp1 = _mm_xor_si128(temp1, temp3);
temp3 = _mm_slli_si128(temp3, 0x4);
temp1 = _mm_xor_si128(temp1, temp3);
temp3 = _mm_slli_si128(temp3, 0x4);
temp1 = _mm_xor_si128(temp1, temp3);
temp1 = _mm_xor_si128(temp1, temp2);
return temp1;
}
void setKey(const uint8_t* key) {
__m128i temp1, temp2;
temp1 = _mm_loadu_si128((__m128i*)key);
m_ekey[0] = temp1;
m_dkey[10] = temp1;
temp2 = _mm_aeskeygenassist_si128(temp1, 0x1);
temp1 = AES_128_ASSIST(temp1, temp2);
m_ekey[1] = temp1;
m_dkey[9] = _mm_aesimc_si128(temp1);
temp2 = _mm_aeskeygenassist_si128(temp1, 0x2);
temp1 = AES_128_ASSIST(temp1, temp2);
m_ekey[2] = temp1;
m_dkey[8] = _mm_aesimc_si128(temp1);
temp2 = _mm_aeskeygenassist_si128(temp1, 0x4);
temp1 = AES_128_ASSIST(temp1, temp2);
m_ekey[3] = temp1;
m_dkey[7] = _mm_aesimc_si128(temp1);
temp2 = _mm_aeskeygenassist_si128(temp1, 0x8);
temp1 = AES_128_ASSIST(temp1, temp2);
m_ekey[4] = temp1;
m_dkey[6] = _mm_aesimc_si128(temp1);
temp2 = _mm_aeskeygenassist_si128(temp1, 0x10);
temp1 = AES_128_ASSIST(temp1, temp2);
m_ekey[5] = temp1;
m_dkey[5] = _mm_aesimc_si128(temp1);
temp2 = _mm_aeskeygenassist_si128(temp1, 0x20);
temp1 = AES_128_ASSIST(temp1, temp2);
m_ekey[6] = temp1;
m_dkey[4] = _mm_aesimc_si128(temp1);
temp2 = _mm_aeskeygenassist_si128(temp1, 0x40);
temp1 = AES_128_ASSIST(temp1, temp2);
m_ekey[7] = temp1;
m_dkey[3] = _mm_aesimc_si128(temp1);
temp2 = _mm_aeskeygenassist_si128(temp1, 0x80);
temp1 = AES_128_ASSIST(temp1, temp2);
m_ekey[8] = temp1;
m_dkey[2] = _mm_aesimc_si128(temp1);
temp2 = _mm_aeskeygenassist_si128(temp1, 0x1b);
temp1 = AES_128_ASSIST(temp1, temp2);
m_ekey[9] = temp1;
m_dkey[1] = _mm_aesimc_si128(temp1);
temp2 = _mm_aeskeygenassist_si128(temp1, 0x36);
temp1 = AES_128_ASSIST(temp1, temp2);
m_ekey[10] = temp1;
m_dkey[0] = temp1;
}
2015-06-30 00:07:46 +00:00
};
2015-06-29 05:35:25 +00:00
static int HAS_AES_NI = -1;
2015-06-29 05:35:25 +00:00
#endif
2018-12-08 05:21:47 +00:00
std::unique_ptr<IAES> NewAES() {
#if _AES_NI
2018-12-08 05:21:47 +00:00
if (HAS_AES_NI == -1) {
2015-07-14 00:38:16 +00:00
#if _MSC_VER
2018-12-08 05:21:47 +00:00
int info[4];
__cpuid(info, 1);
HAS_AES_NI = ((info[2] & 0x2000000) != 0);
2015-07-14 00:38:16 +00:00
#else
2018-12-08 05:21:47 +00:00
unsigned int a, b, c, d;
__cpuid(1, a, b, c, d);
HAS_AES_NI = ((c & 0x2000000) != 0);
2015-07-14 00:38:16 +00:00
#endif
2018-12-08 05:21:47 +00:00
}
if (HAS_AES_NI)
return std::unique_ptr<IAES>(new NiAES);
else
2015-06-30 00:07:46 +00:00
return std::unique_ptr<IAES>(new SoftwareAES);
2018-12-08 05:21:47 +00:00
#else
return std::unique_ptr<IAES>(new SoftwareAES);
2015-06-30 00:07:46 +00:00
#endif
2015-06-29 05:35:25 +00:00
}
2018-12-08 05:21:47 +00:00
} // namespace nod