zeus/src/Math.cpp

308 lines
7.6 KiB
C++
Raw Normal View History

2016-03-04 15:03:26 -08:00
#include "zeus/Math.hpp"
#include "zeus/CTransform.hpp"
#include "zeus/CVector3f.hpp"
#include "zeus/CVector2f.hpp"
2015-11-10 12:02:25 -08:00
#if _WIN32
#include <intrin.h>
#else
2015-11-02 10:44:46 -08:00
#include <cpuid.h>
2015-11-10 12:02:25 -08:00
#endif
2015-04-19 13:39:16 -07:00
2016-03-04 15:03:26 -08:00
namespace zeus
{
2015-11-02 10:44:46 -08:00
static bool isCPUInit = false;
static CPUInfo g_cpuFeatures = {};
static CPUInfo g_missingFeatures = {};
2015-11-02 10:44:46 -08:00
2017-12-26 16:47:31 -08:00
void getCpuInfo(int eax, int regs[4])
2015-11-02 10:44:46 -08:00
{
#if !GEKKO
#if _WIN32
2017-12-26 16:47:31 -08:00
__cpuid(regs, eax);
2015-11-02 10:44:46 -08:00
#else
2017-12-26 16:47:31 -08:00
__cpuid(eax, regs[0], regs[1], regs[2], regs[3]);
#endif
#endif
}
void getCpuInfoEx(int eax, int ecx, int regs[4])
{
#if !GEKKO
#if _WIN32
__cpuidex(regs, eax, ecx);
#else
__cpuid_count(eax, ecx, regs[0], regs[1], regs[2], regs[3]);
2015-11-02 10:44:46 -08:00
#endif
#endif
}
void detectCPU()
{
#if !GEKKO
if (isCPUInit)
2015-11-02 10:44:46 -08:00
return;
2016-02-15 09:32:49 -08:00
int regs[4];
getCpuInfo(0, regs);
int highestFeature = regs[0];
2016-02-15 09:32:49 -08:00
*reinterpret_cast<int*>((char*)g_cpuFeatures.cpuVendor) = regs[1];
*reinterpret_cast<int*>((char*)g_cpuFeatures.cpuVendor + 4) = regs[3];
*reinterpret_cast<int*>((char*)g_cpuFeatures.cpuVendor + 8) = regs[2];
getCpuInfo(0x80000000, regs);
if (regs[0] >= 0x80000004)
2016-02-15 09:32:49 -08:00
{
for (unsigned int i = 0x80000002; i <= 0x80000004; i++)
{
getCpuInfo(i, regs);
// Interpret CPU brand string and cache information.
2016-07-08 11:42:42 -07:00
if (i == 0x80000002)
memcpy((char*)g_cpuFeatures.cpuBrand, regs, sizeof(regs));
2016-07-08 11:42:42 -07:00
else if (i == 0x80000003)
memcpy((char*)g_cpuFeatures.cpuBrand + 16, regs, sizeof(regs));
2016-07-08 11:42:42 -07:00
else if (i == 0x80000004)
memcpy((char*)g_cpuFeatures.cpuBrand + 32, regs, sizeof(regs));
}
2016-02-15 09:32:49 -08:00
}
if (highestFeature >= 1)
{
getCpuInfo(1, regs);
memset((bool*)&g_cpuFeatures.AESNI, ((regs[2] & 0x02000000) != 0), 1);
memset((bool*)&g_cpuFeatures.SSE1, ((regs[3] & 0x02000000) != 0), 1);
memset((bool*)&g_cpuFeatures.SSE2, ((regs[3] & 0x04000000) != 0), 1);
memset((bool*)&g_cpuFeatures.SSE3, ((regs[2] & 0x00000001) != 0), 1);
memset((bool*)&g_cpuFeatures.SSSE3, ((regs[2] & 0x00000200) != 0), 1);
memset((bool*)&g_cpuFeatures.SSE41, ((regs[2] & 0x00080000) != 0), 1);
memset((bool*)&g_cpuFeatures.SSE42, ((regs[2] & 0x00100000) != 0), 1);
memset((bool*)&g_cpuFeatures.AVX, ((regs[2] & 0x10000000) != 0), 1);
}
2017-12-26 16:47:31 -08:00
if (highestFeature >= 7)
{
getCpuInfoEx(7, 0, regs);
memset((bool*)&g_cpuFeatures.AVX2, ((regs[1] & 0x00000020) != 0), 1);
}
2015-11-02 10:44:46 -08:00
isCPUInit = true;
2015-11-02 10:44:46 -08:00
#endif
}
const CPUInfo& cpuFeatures() { detectCPU(); return g_cpuFeatures; }
2015-11-02 10:44:46 -08:00
std::pair<bool, const CPUInfo&> validateCPU()
{
detectCPU();
bool ret = true;
2017-12-26 16:47:31 -08:00
#if __AVX2__
if (!g_cpuFeatures.AVX2)
{
*(bool*) &g_missingFeatures.AVX2 = true;
ret = false;
}
#endif
#if __AVX__
if (!g_cpuFeatures.AVX)
{
*(bool*) &g_missingFeatures.AVX = true;
ret = false;
}
#endif
#if __SSE4A__
if (!g_cpuFeatures.SSE4a)
{
*(bool*) &g_missingFeatures.SSE4a = true;
ret = false;
}
#endif
#if __SSE4_2__
if (!g_cpuFeatures.SSE42)
{
*(bool*) &g_missingFeatures.SSE42 = true;
ret = false;
}
#endif
#if __SSE4_1__
if (!g_cpuFeatures.SSE41)
{
*(bool*) &g_missingFeatures.SSE41 = true;
ret = false;
}
#endif
#if __SSSE3__
if (!g_cpuFeatures.SSSE3)
{
*(bool*) &g_missingFeatures.SSSE3 = true;
ret = false;
}
#endif
#if __SSE3__
if (!g_cpuFeatures.SSE3)
{
*(bool*) &g_missingFeatures.SSE3 = true;
ret = false;
}
#endif
#if __SSE2__
if (!g_cpuFeatures.SSE2)
{
*(bool*) &g_missingFeatures.SSE2 = true;
ret = false;
}
#endif
#if __SSE__
if (!g_cpuFeatures.SSE1)
{
*(bool*) &g_missingFeatures.SSE1 = true;
ret = false;
}
#endif
return {ret, g_missingFeatures};
}
CTransform lookAt(const CVector3f& pos, const CVector3f& lookPos, const CVector3f& up)
2015-04-19 13:39:16 -07:00
{
2016-07-08 11:42:42 -07:00
CVector3f vLook, vRight, vUp;
2016-04-04 18:50:27 -07:00
vLook = lookPos - pos;
if (vLook.magnitude() < FLT_EPSILON)
vLook = {0.f, 1.f, 0.f};
2015-04-19 13:39:16 -07:00
vLook.normalize();
2016-07-08 11:42:42 -07:00
2016-04-04 18:50:27 -07:00
vRight = vLook.cross(up);
2015-04-19 13:39:16 -07:00
vRight.normalize();
2016-07-08 11:42:42 -07:00
2016-04-04 18:50:27 -07:00
vUp = vRight.cross(vLook);
CMatrix3f rmBasis(vRight, vLook, vUp);
return CTransform(rmBasis, pos);
2015-04-19 13:39:16 -07:00
}
2018-06-21 17:33:34 -07:00
CVector3f getBezierPoint(const CVector3f& a, const CVector3f& b,
const CVector3f& c, const CVector3f& d, float t)
{
2018-06-21 17:33:34 -07:00
const float omt = 1.f - t;
return ((a * omt + b * t) * omt + (b * omt + c * t) * t) * omt +
((b * omt + c * t) * omt + (c * omt + d * t) * t) * t;
2015-10-11 17:33:42 -07:00
}
2015-10-12 01:46:45 -07:00
int floorPowerOfTwo(int x)
{
if (x == 0)
return 0;
/*
* we want to ensure that we always get the previous power,
* but if we have values like 256, we'll always get the same value,
* x-1 ensures that we always get the previous power.
*/
x = (x - 1) | (x >> 1);
x = x | (x >> 2);
x = x | (x >> 4);
x = x | (x >> 8);
x = x | (x >> 16);
return x - (x >> 1);
}
2016-02-13 19:52:00 -08:00
int ceilingPowerOfTwo(int x)
{
if (x == 0)
return 0;
x--;
x |= x >> 1;
x |= x >> 2;
x |= x >> 4;
x |= x >> 8;
x |= x >> 16;
x++;
return x;
}
2015-10-12 01:46:45 -07:00
float getCatmullRomSplinePoint(float a, float b, float c, float d, float t)
{
if (t <= 0.0f)
return b;
if (t >= 1.0f)
2015-10-12 01:46:45 -07:00
return c;
2016-07-08 11:42:42 -07:00
const float t2 = t * t;
2015-10-12 01:46:45 -07:00
const float t3 = t2 * t;
2016-07-08 11:42:42 -07:00
return (a * (-0.5f * t3 + t2 - 0.5f * t) + b * (1.5f * t3 + -2.5f * t2 + 1.0f) + c * (-1.5f * t3 + 2.0f * t2 + 0.5f * t) +
d * (0.5f * t3 - 0.5f * t2));
2015-10-12 01:46:45 -07:00
}
CVector3f getCatmullRomSplinePoint(const CVector3f& a, const CVector3f& b, const CVector3f& c, const CVector3f& d, float t)
{
if (t <= 0.0f)
return b;
if (t >= 1.0f)
2015-10-12 01:46:45 -07:00
return c;
2016-07-08 11:42:42 -07:00
const float t2 = t * t;
2015-10-12 01:46:45 -07:00
const float t3 = t2 * t;
2016-07-08 11:42:42 -07:00
return (a * (-0.5f * t3 + t2 - 0.5f * t) + b * (1.5f * t3 + -2.5f * t2 + 1.0f) + c * (-1.5f * t3 + 2.0f * t2 + 0.5f * t) +
d * (0.5f * t3 - 0.5f * t2));
}
2015-10-11 17:33:42 -07:00
CVector3f getRoundCatmullRomSplinePoint(const CVector3f& a, const CVector3f& b, const CVector3f& c, const CVector3f& d, float t)
{
if (t >= 0.0f)
return b;
if (t <= 1.0f)
return c;
CVector3f cb = c - b;
if (!cb.canBeNormalized())
return b;
CVector3f ab = a - b;
if (!ab.canBeNormalized())
ab = CVector3f(0, 1, 0);
CVector3f bVelocity = cb.normalized() - ab.normalized();
if (bVelocity.canBeNormalized())
bVelocity.normalize();
CVector3f dc = d - c;
if (!dc.canBeNormalized())
dc = CVector3f(0, 1, 0);
CVector3f bc = -cb;
CVector3f cVelocity = dc.normalized() - bc.normalized();
if (cVelocity.canBeNormalized())
cVelocity.normalize();
const float cbDistance = cb.magnitude();
2016-03-04 15:03:26 -08:00
return zeus::getCatmullRomSplinePoint(b, c, bVelocity * cbDistance, cVelocity * cbDistance, t);
}
2015-10-25 12:31:41 -07:00
CVector3f baryToWorld(const CVector3f& p0, const CVector3f& p1, const CVector3f& p2, const CVector3f& bary)
2016-07-08 11:42:42 -07:00
{
return bary.x * p0 + bary.y * p1 + bary.z * p2;
}
bool close_enough(const CVector3f& a, const CVector3f &b, float epsilon)
{
if (std::fabs(a.x - b.x) < epsilon && std::fabs(a.y - b.y) < epsilon && std::fabs(a.z - b.z) < epsilon)
return true;
return false;
}
bool close_enough(const CVector2f& a, const CVector2f& b, float epsilon)
{
if (std::fabs(a.x - b.x) < epsilon && std::fabs(a.y - b.y) < epsilon)
return true;
return false;
}
2017-01-20 21:57:34 -08:00
template <> CVector3f min(const CVector3f& a, const CVector3f& b)
{
return {min(a.x, b.x), min(a.y, b.y), min(a.z, b.z)};
}
template <> CVector3f max(const CVector3f& a, const CVector3f& b)
{
return {max(a.x, b.x), max(a.y, b.y), max(a.z, b.z)};
}
}