zeus/include/zeus/CVector3f.hpp

211 lines
7.1 KiB
C++

#pragma once
#include <cassert>
#include <cfloat>
#include <cmath>
#include "zeus/CVector2f.hpp"
#include "zeus/Global.hpp"
#include "zeus/Math.hpp"
namespace zeus {
class CVector3d;
class CRelAngle;
class CVector3f {
public:
zeus::simd<float> mSimd;
constexpr CVector3f() : mSimd() {}
template <typename T>
constexpr CVector3f(const simd<T>& s) : mSimd(s) {}
inline CVector3f(const CVector3d& vec);
explicit constexpr CVector3f(float xyz) : mSimd(xyz) {}
void assign(float x, float y, float z) { mSimd.set(x, y, z); }
constexpr CVector3f(float x, float y, float z) : mSimd(x, y, z) {}
constexpr CVector3f(const float* floats) : mSimd(floats[0], floats[1], floats[2]) {}
CVector3f(const CVector2f& other, float z = 0.f) {
mSimd = other.mSimd;
mSimd[2] = z;
}
[[nodiscard]] CVector2f toVec2f() const { return CVector2f(mSimd); }
[[nodiscard]] bool operator==(const CVector3f& rhs) const {
const auto mask = mSimd == rhs.mSimd;
return mask[0] && mask[1] && mask[2];
}
[[nodiscard]] bool operator!=(const CVector3f& rhs) const { return !(*this == rhs); }
[[nodiscard]] simd<float>::mask_type operator>(const CVector3f& rhs) const { return mSimd > rhs.mSimd; }
[[nodiscard]] simd<float>::mask_type operator>=(const CVector3f& rhs) const { return mSimd >= rhs.mSimd; }
[[nodiscard]] simd<float>::mask_type operator<(const CVector3f& rhs) const { return mSimd < rhs.mSimd; }
[[nodiscard]] simd<float>::mask_type operator<=(const CVector3f& rhs) const { return mSimd <= rhs.mSimd; }
[[nodiscard]] CVector3f operator+(const CVector3f& rhs) const { return mSimd + rhs.mSimd; }
[[nodiscard]] CVector3f operator-(const CVector3f& rhs) const { return mSimd - rhs.mSimd; }
[[nodiscard]] CVector3f operator-() const { return -mSimd; }
[[nodiscard]] CVector3f operator*(const CVector3f& rhs) const { return mSimd * rhs.mSimd; }
[[nodiscard]] CVector3f operator/(const CVector3f& rhs) const { return mSimd / rhs.mSimd; }
[[nodiscard]] CVector3f operator+(float val) const { return mSimd + val; }
[[nodiscard]] CVector3f operator-(float val) const { return mSimd - val; }
[[nodiscard]] CVector3f operator*(float val) const { return mSimd * val; }
[[nodiscard]] CVector3f operator/(float val) const { return mSimd / val; }
const CVector3f& operator+=(const CVector3f& rhs) {
mSimd += rhs.mSimd;
return *this;
}
const CVector3f& operator-=(const CVector3f& rhs) {
mSimd -= rhs.mSimd;
return *this;
}
const CVector3f& operator*=(const CVector3f& rhs) {
mSimd *= rhs.mSimd;
return *this;
}
const CVector3f& operator/=(const CVector3f& rhs) {
mSimd /= rhs.mSimd;
return *this;
}
void normalize() {
float mag = 1.f / magnitude();
*this *= CVector3f(mag);
}
[[nodiscard]] CVector3f normalized() const {
float mag = 1.f / magnitude();
return *this * mag;
}
[[nodiscard]] CVector3f cross(const CVector3f& rhs) const {
return {y() * rhs.z() - z() * rhs.y(), z() * rhs.x() - x() * rhs.z(), x() * rhs.y() - y() * rhs.x()};
}
[[nodiscard]] float dot(const CVector3f& rhs) const { return mSimd.dot3(rhs.mSimd); }
[[nodiscard]] float magSquared() const { return mSimd.dot3(mSimd); }
[[nodiscard]] float magnitude() const { return std::sqrt(magSquared()); }
[[nodiscard]] bool isNotInf() const { return !(std::isinf(x()) || std::isinf(y()) || std::isinf(z())); }
[[nodiscard]] bool isMagnitudeSafe() const { return isNotInf() && magSquared() >= 9.9999994e-29; }
[[nodiscard]] bool isNaN() const { return std::isnan(x()) || std::isnan(y()) || std::isnan(z()); }
void zeroOut() { mSimd.broadcast(0.f); }
void splat(float xyz) { mSimd.broadcast(xyz); }
[[nodiscard]] static float getAngleDiff(const CVector3f& a, const CVector3f& b);
[[nodiscard]] static CVector3f lerp(const CVector3f& a, const CVector3f& b, float t) {
return zeus::simd<float>(1.f - t) * a.mSimd + b.mSimd * zeus::simd<float>(t);
}
[[nodiscard]] static CVector3f nlerp(const CVector3f& a, const CVector3f& b, float t) {
return lerp(a, b, t).normalized();
}
[[nodiscard]] static CVector3f slerp(const CVector3f& a, const CVector3f& b, CRelAngle clampAngle);
[[nodiscard]] bool isNormalized() const { return std::fabs(1.f - magSquared()) <= FLT_EPSILON; }
[[nodiscard]] bool canBeNormalized() const {
if (std::isinf(x()) || std::isinf(y()) || std::isinf(z()))
return false;
return !(std::fabs(x()) < FLT_EPSILON && std::fabs(y()) < FLT_EPSILON && std::fabs(z()) < FLT_EPSILON);
}
[[nodiscard]] bool isZero() const { return mSimd[0] == 0.f && mSimd[1] == 0.f && mSimd[2] == 0.f; }
void scaleToLength(float newLength) {
float length = magSquared();
if (length < FLT_EPSILON) {
mSimd[0] = newLength, mSimd[1] = 0.f, mSimd[2] = 0.f;
return;
}
length = std::sqrt(length);
float scalar = newLength / length;
*this *= CVector3f(scalar);
}
[[nodiscard]] CVector3f scaledToLength(float newLength) const {
CVector3f v = *this;
v.scaleToLength(newLength);
return v;
}
[[nodiscard]] bool isEqu(const CVector3f& other, float epsilon = FLT_EPSILON) const {
const CVector3f diffVec = other - *this;
return (diffVec.x() <= epsilon && diffVec.y() <= epsilon && diffVec.z() <= epsilon);
}
[[nodiscard]] simd<float>::reference operator[](size_t idx) {
assert(idx < 3);
return mSimd[idx];
}
[[nodiscard]] float operator[](size_t idx) const {
assert(idx < 3);
return mSimd[idx];
}
[[nodiscard]] float x() const { return mSimd[0]; }
[[nodiscard]] float y() const { return mSimd[1]; }
[[nodiscard]] float z() const { return mSimd[2]; }
[[nodiscard]] simd<float>::reference x() { return mSimd[0]; }
[[nodiscard]] simd<float>::reference y() { return mSimd[1]; }
[[nodiscard]] simd<float>::reference z() { return mSimd[2]; }
[[nodiscard]] static inline CVector3f radToDeg(const CVector3f& rad);
[[nodiscard]] static inline CVector3f degToRad(const CVector3f& deg);
};
constexpr inline CVector3f skOne3f(1.f);
constexpr inline CVector3f skNegOne3f(-1.f);
constexpr inline CVector3f skZero3f(0.f);
constexpr inline CVector3f skForward(0.f, 1.f, 0.f);
constexpr inline CVector3f skBack(0.f, -1.f, 0.f);
constexpr inline CVector3f skLeft(-1.f, 0.f, 0.f);
constexpr inline CVector3f skRight(1.f, 0.f, 0.f);
constexpr inline CVector3f skUp(0.f, 0.f, 1.f);
constexpr inline CVector3f skDown(0.f, 0.f, -1.f);
constexpr inline CVector3f skRadToDegVec(180.f / M_PIF);
constexpr inline CVector3f skDegToRadVec(M_PIF / 180.f);
[[nodiscard]] inline CVector3f operator+(float lhs, const CVector3f& rhs) { return zeus::simd<float>(lhs) + rhs.mSimd; }
[[nodiscard]] inline CVector3f operator-(float lhs, const CVector3f& rhs) { return zeus::simd<float>(lhs) - rhs.mSimd; }
[[nodiscard]] inline CVector3f operator*(float lhs, const CVector3f& rhs) { return zeus::simd<float>(lhs) * rhs.mSimd; }
[[nodiscard]] inline CVector3f operator/(float lhs, const CVector3f& rhs) { return zeus::simd<float>(lhs) / rhs.mSimd; }
inline CVector3f CVector3f::radToDeg(const CVector3f& rad) { return rad * skRadToDegVec; }
inline CVector3f CVector3f::degToRad(const CVector3f& deg) { return deg * skDegToRadVec; }
} // namespace zeus