dawn-cmake/src/dawn_native/ShaderModule.cpp

612 lines
27 KiB
C++
Raw Normal View History

// Copyright 2017 The Dawn Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
2018-07-24 11:53:51 +00:00
#include "dawn_native/ShaderModule.h"
#include "common/HashUtils.h"
2018-07-24 11:53:51 +00:00
#include "dawn_native/BindGroupLayout.h"
#include "dawn_native/Device.h"
#include "dawn_native/Pipeline.h"
#include "dawn_native/PipelineLayout.h"
#include <spirv-tools/libspirv.hpp>
#include <spirv_cross.hpp>
#include <sstream>
namespace dawn_native {
namespace {
Format::Type SpirvCrossBaseTypeToFormatType(spirv_cross::SPIRType::BaseType spirvBaseType) {
switch (spirvBaseType) {
case spirv_cross::SPIRType::Float:
return Format::Float;
case spirv_cross::SPIRType::Int:
return Format::Sint;
case spirv_cross::SPIRType::UInt:
return Format::Uint;
default:
UNREACHABLE();
return Format::Other;
}
}
wgpu::TextureViewDimension SpirvDimToTextureViewDimension(spv::Dim dim, bool arrayed) {
switch (dim) {
case spv::Dim::Dim1D:
return wgpu::TextureViewDimension::e1D;
case spv::Dim::Dim2D:
if (arrayed) {
return wgpu::TextureViewDimension::e2DArray;
} else {
return wgpu::TextureViewDimension::e2D;
}
case spv::Dim::Dim3D:
return wgpu::TextureViewDimension::e3D;
case spv::Dim::DimCube:
if (arrayed) {
return wgpu::TextureViewDimension::CubeArray;
} else {
return wgpu::TextureViewDimension::Cube;
}
default:
UNREACHABLE();
return wgpu::TextureViewDimension::Undefined;
}
}
wgpu::TextureViewDimension ToWGPUTextureViewDimension(
shaderc_spvc_texture_view_dimension dim) {
switch (dim) {
case shaderc_spvc_texture_view_dimension_undefined:
return wgpu::TextureViewDimension::Undefined;
case shaderc_spvc_texture_view_dimension_e1D:
return wgpu::TextureViewDimension::e1D;
case shaderc_spvc_texture_view_dimension_e2D:
return wgpu::TextureViewDimension::e2D;
case shaderc_spvc_texture_view_dimension_e2D_array:
return wgpu::TextureViewDimension::e2DArray;
case shaderc_spvc_texture_view_dimension_cube:
return wgpu::TextureViewDimension::Cube;
case shaderc_spvc_texture_view_dimension_cube_array:
return wgpu::TextureViewDimension::CubeArray;
case shaderc_spvc_texture_view_dimension_e3D:
return wgpu::TextureViewDimension::e3D;
}
UNREACHABLE();
}
Format::Type ToDawnFormatType(shaderc_spvc_texture_format_type type) {
switch (type) {
case shaderc_spvc_texture_format_type_float:
return Format::Type::Float;
case shaderc_spvc_texture_format_type_sint:
return Format::Type::Sint;
case shaderc_spvc_texture_format_type_uint:
return Format::Type::Uint;
case shaderc_spvc_texture_format_type_other:
return Format::Type::Other;
}
UNREACHABLE();
}
wgpu::BindingType ToWGPUBindingType(shaderc_spvc_binding_type type) {
switch (type) {
case shaderc_spvc_binding_type_uniform_buffer:
return wgpu::BindingType::UniformBuffer;
case shaderc_spvc_binding_type_storage_buffer:
return wgpu::BindingType::StorageBuffer;
case shaderc_spvc_binding_type_readonly_storage_buffer:
return wgpu::BindingType::ReadonlyStorageBuffer;
case shaderc_spvc_binding_type_sampler:
return wgpu::BindingType::Sampler;
case shaderc_spvc_binding_type_sampled_texture:
return wgpu::BindingType::SampledTexture;
case shaderc_spvc_binding_type_storage_texture:
return wgpu::BindingType::StorageTexture;
}
UNREACHABLE();
}
// TODO(rharrison): Convert this to ResultOrError once ExtractSPIRVInfo turns an error
SingleShaderStage ToSingleShaderStage(shaderc_spvc_execution_model execution_model) {
switch (execution_model) {
case shaderc_spvc_execution_model_vertex:
return SingleShaderStage::Vertex;
case shaderc_spvc_execution_model_fragment:
return SingleShaderStage::Fragment;
case shaderc_spvc_execution_model_glcompute:
return SingleShaderStage::Compute;
default:
// This will be converted to an error return when the whole
// calling stack is changed to passing errors.
UNREACHABLE();
return SingleShaderStage::Vertex;
}
}
} // anonymous namespace
MaybeError ValidateShaderModuleDescriptor(DeviceBase*,
const ShaderModuleDescriptor* descriptor) {
if (descriptor->nextInChain != nullptr) {
return DAWN_VALIDATION_ERROR("nextInChain must be nullptr");
}
spvtools::SpirvTools spirvTools(SPV_ENV_VULKAN_1_1);
std::ostringstream errorStream;
errorStream << "SPIRV Validation failure:" << std::endl;
spirvTools.SetMessageConsumer([&errorStream](spv_message_level_t level, const char*,
const spv_position_t& position,
const char* message) {
switch (level) {
case SPV_MSG_FATAL:
case SPV_MSG_INTERNAL_ERROR:
case SPV_MSG_ERROR:
errorStream << "error: line " << position.index << ": " << message << std::endl;
break;
case SPV_MSG_WARNING:
errorStream << "warning: line " << position.index << ": " << message
<< std::endl;
break;
case SPV_MSG_INFO:
errorStream << "info: line " << position.index << ": " << message << std::endl;
break;
default:
break;
}
});
if (!spirvTools.Validate(descriptor->code, descriptor->codeSize)) {
return DAWN_VALIDATION_ERROR(errorStream.str().c_str());
}
return {};
}
// ShaderModuleBase
ShaderModuleBase::ShaderModuleBase(DeviceBase* device, const ShaderModuleDescriptor* descriptor)
: CachedObject(device), mCode(descriptor->code, descriptor->code + descriptor->codeSize) {
mFragmentOutputFormatBaseTypes.fill(Format::Other);
}
ShaderModuleBase::ShaderModuleBase(DeviceBase* device, ObjectBase::ErrorTag tag)
: CachedObject(device, tag) {
}
ShaderModuleBase::~ShaderModuleBase() {
if (IsCachedReference()) {
GetDevice()->UncacheShaderModule(this);
}
}
// static
ShaderModuleBase* ShaderModuleBase::MakeError(DeviceBase* device) {
return new ShaderModuleBase(device, ObjectBase::kError);
}
void ShaderModuleBase::ExtractSpirvInfo(const spirv_cross::Compiler& compiler) {
ASSERT(!IsError());
if (GetDevice()->IsToggleEnabled(Toggle::UseSpvc)) {
ExtractSpirvInfoWithSpvc(compiler);
} else {
ExtractSpirvInfoWithSpirvCross(compiler);
}
}
void ShaderModuleBase::ExtractSpirvInfoWithSpvc(const spirv_cross::Compiler& compiler) {
shaderc_spvc_execution_model execution_model;
if (!CheckSpvcSuccess(mSpvcContext.GetExecutionModel(&execution_model),
"Unable to get execution model for shader.")) {
return;
}
mExecutionModel = ToSingleShaderStage(execution_model);
size_t push_constant_buffers_count;
if (!CheckSpvcSuccess(mSpvcContext.GetPushConstantBufferCount(&push_constant_buffers_count),
"Unable to get push constant buffer count for shader.")) {
return;
}
// TODO(rharrison): This should be handled by spirv-val pass in spvc,
// but need to confirm.
if (push_constant_buffers_count > 0) {
GetDevice()->HandleError(wgpu::ErrorType::Validation,
"Push constants aren't supported.");
return;
}
// Fill in bindingInfo with the SPIRV bindings
auto ExtractResourcesBinding = [this](std::vector<shaderc_spvc_binding_info> bindings) {
for (const auto& binding : bindings) {
if (binding.binding >= kMaxBindingsPerGroup || binding.set >= kMaxBindGroups) {
GetDevice()->HandleError(wgpu::ErrorType::Validation,
"Binding over limits in the SPIRV");
continue;
}
BindingInfo* info = &mBindingInfo[binding.set][binding.binding];
*info = {};
info->used = true;
info->id = binding.id;
info->base_type_id = binding.base_type_id;
if (binding.binding_type == shaderc_spvc_binding_type_sampled_texture) {
info->multisampled = binding.multisampled;
info->textureDimension = ToWGPUTextureViewDimension(binding.texture_dimension);
info->textureComponentType = ToDawnFormatType(binding.texture_component_type);
}
info->type = ToWGPUBindingType(binding.binding_type);
}
};
std::vector<shaderc_spvc_binding_info> resource_bindings;
if (!CheckSpvcSuccess(mSpvcContext.GetBindingInfo(
shaderc_spvc_shader_resource_uniform_buffers,
shaderc_spvc_binding_type_uniform_buffer, &resource_bindings),
"Unable to get binding info for uniform buffers from shader")) {
return;
}
ExtractResourcesBinding(resource_bindings);
if (!CheckSpvcSuccess(mSpvcContext.GetBindingInfo(
shaderc_spvc_shader_resource_separate_images,
shaderc_spvc_binding_type_sampled_texture, &resource_bindings),
"Unable to get binding info for sampled textures from shader")) {
return;
}
ExtractResourcesBinding(resource_bindings);
if (!CheckSpvcSuccess(
mSpvcContext.GetBindingInfo(shaderc_spvc_shader_resource_separate_samplers,
shaderc_spvc_binding_type_sampler, &resource_bindings),
"Unable to get binding info for samples from shader")) {
return;
}
ExtractResourcesBinding(resource_bindings);
if (!CheckSpvcSuccess(mSpvcContext.GetBindingInfo(
shaderc_spvc_shader_resource_storage_buffers,
shaderc_spvc_binding_type_storage_buffer, &resource_bindings),
"Unable to get binding info for storage buffers from shader")) {
return;
}
ExtractResourcesBinding(resource_bindings);
std::vector<shaderc_spvc_resource_location_info> input_stage_locations;
if (!CheckSpvcSuccess(mSpvcContext.GetInputStageLocationInfo(&input_stage_locations),
"Unable to get input stage location information from shader")) {
input_stage_locations.clear();
return;
}
for (const auto& input : input_stage_locations) {
if (mExecutionModel == SingleShaderStage::Vertex) {
if (input.location >= kMaxVertexAttributes) {
GetDevice()->HandleError(wgpu::ErrorType::Validation,
"Attribute location over limits in the SPIRV");
return;
}
mUsedVertexAttributes.set(input.location);
} else if (mExecutionModel == SingleShaderStage::Fragment) {
// Without a location qualifier on vertex inputs, spirv_cross::CompilerMSL gives
// them all the location 0, causing a compile error.
if (!input.has_location) {
GetDevice()->HandleError(wgpu::ErrorType::Validation,
"Need location qualifier on fragment input");
return;
}
}
}
std::vector<shaderc_spvc_resource_location_info> output_stage_locations;
if (!CheckSpvcSuccess(mSpvcContext.GetOutputStageLocationInfo(&output_stage_locations),
"Unable to get output stage location information from shader")) {
output_stage_locations.clear();
return;
}
for (const auto& output : output_stage_locations) {
if (mExecutionModel == SingleShaderStage::Vertex) {
// Without a location qualifier on vertex outputs, spirv_cross::CompilerMSL
// gives them all the location 0, causing a compile error.
if (!output.has_location) {
GetDevice()->HandleError(wgpu::ErrorType::Validation,
"Need location qualifier on vertex output");
return;
}
} else if (mExecutionModel == SingleShaderStage::Fragment) {
if (output.location >= kMaxColorAttachments) {
GetDevice()->HandleError(wgpu::ErrorType::Validation,
"Fragment output location over limits in the SPIRV");
return;
}
}
}
if (mExecutionModel == SingleShaderStage::Fragment) {
std::vector<shaderc_spvc_resource_type_info> output_types;
if (!CheckSpvcSuccess(mSpvcContext.GetOutputStageTypeInfo(&output_types),
"Unable to get output stage type information from shader")) {
output_stage_locations.clear();
return;
}
for (const auto& output : output_types) {
ASSERT(output.type != shaderc_spvc_texture_format_type_other);
mFragmentOutputFormatBaseTypes[output.location] = ToDawnFormatType(output.type);
}
}
}
void ShaderModuleBase::ExtractSpirvInfoWithSpirvCross(const spirv_cross::Compiler& compiler) {
// TODO(cwallez@chromium.org): make errors here creation errors
// currently errors here do not prevent the shadermodule from being used
const auto& resources = compiler.get_shader_resources();
switch (compiler.get_execution_model()) {
case spv::ExecutionModelVertex:
mExecutionModel = SingleShaderStage::Vertex;
break;
case spv::ExecutionModelFragment:
mExecutionModel = SingleShaderStage::Fragment;
break;
case spv::ExecutionModelGLCompute:
mExecutionModel = SingleShaderStage::Compute;
break;
default:
2017-07-11 01:48:12 +00:00
UNREACHABLE();
}
if (resources.push_constant_buffers.size() > 0) {
GetDevice()->HandleError(wgpu::ErrorType::Validation,
"Push constants aren't supported.");
}
// Fill in bindingInfo with the SPIRV bindings
auto ExtractResourcesBinding =
[this](const spirv_cross::SmallVector<spirv_cross::Resource>& resources,
const spirv_cross::Compiler& compiler, wgpu::BindingType bindingType) {
for (const auto& resource : resources) {
ASSERT(compiler.get_decoration_bitset(resource.id).get(spv::DecorationBinding));
ASSERT(compiler.get_decoration_bitset(resource.id)
.get(spv::DecorationDescriptorSet));
uint32_t binding = compiler.get_decoration(resource.id, spv::DecorationBinding);
uint32_t set =
compiler.get_decoration(resource.id, spv::DecorationDescriptorSet);
if (binding >= kMaxBindingsPerGroup || set >= kMaxBindGroups) {
GetDevice()->HandleError(wgpu::ErrorType::Validation,
"Binding over limits in the SPIRV");
continue;
}
BindingInfo* info = &mBindingInfo[set][binding];
*info = {};
info->used = true;
info->id = resource.id;
info->base_type_id = resource.base_type_id;
switch (bindingType) {
case wgpu::BindingType::SampledTexture: {
spirv_cross::SPIRType::ImageType imageType =
compiler.get_type(info->base_type_id).image;
spirv_cross::SPIRType::BaseType textureComponentType =
compiler.get_type(imageType.type).basetype;
info->multisampled = imageType.ms;
info->textureDimension =
SpirvDimToTextureViewDimension(imageType.dim, imageType.arrayed);
info->textureComponentType =
SpirvCrossBaseTypeToFormatType(textureComponentType);
info->type = bindingType;
} break;
case wgpu::BindingType::StorageBuffer: {
// Differentiate between readonly storage bindings and writable ones
// based on the NonWritable decoration
spirv_cross::Bitset flags =
compiler.get_buffer_block_flags(resource.id);
if (flags.get(spv::DecorationNonWritable)) {
info->type = wgpu::BindingType::ReadonlyStorageBuffer;
} else {
info->type = wgpu::BindingType::StorageBuffer;
}
} break;
default:
info->type = bindingType;
}
}
};
2017-11-24 18:59:42 +00:00
ExtractResourcesBinding(resources.uniform_buffers, compiler,
wgpu::BindingType::UniformBuffer);
2017-11-24 18:59:42 +00:00
ExtractResourcesBinding(resources.separate_images, compiler,
wgpu::BindingType::SampledTexture);
ExtractResourcesBinding(resources.separate_samplers, compiler, wgpu::BindingType::Sampler);
2017-11-24 18:59:42 +00:00
ExtractResourcesBinding(resources.storage_buffers, compiler,
wgpu::BindingType::StorageBuffer);
// Extract the vertex attributes
if (mExecutionModel == SingleShaderStage::Vertex) {
for (const auto& attrib : resources.stage_inputs) {
ASSERT(compiler.get_decoration_bitset(attrib.id).get(spv::DecorationLocation));
uint32_t location = compiler.get_decoration(attrib.id, spv::DecorationLocation);
if (location >= kMaxVertexAttributes) {
GetDevice()->HandleError(wgpu::ErrorType::Validation,
"Attribute location over limits in the SPIRV");
return;
}
2017-11-23 18:32:51 +00:00
mUsedVertexAttributes.set(location);
}
// Without a location qualifier on vertex outputs, spirv_cross::CompilerMSL gives
// them all the location 0, causing a compile error.
for (const auto& attrib : resources.stage_outputs) {
if (!compiler.get_decoration_bitset(attrib.id).get(spv::DecorationLocation)) {
GetDevice()->HandleError(wgpu::ErrorType::Validation,
"Need location qualifier on vertex output");
return;
}
}
}
if (mExecutionModel == SingleShaderStage::Fragment) {
// Without a location qualifier on vertex inputs, spirv_cross::CompilerMSL gives
// them all the location 0, causing a compile error.
for (const auto& attrib : resources.stage_inputs) {
if (!compiler.get_decoration_bitset(attrib.id).get(spv::DecorationLocation)) {
GetDevice()->HandleError(wgpu::ErrorType::Validation,
"Need location qualifier on fragment input");
return;
}
}
for (const auto& fragmentOutput : resources.stage_outputs) {
ASSERT(
compiler.get_decoration_bitset(fragmentOutput.id).get(spv::DecorationLocation));
uint32_t location =
compiler.get_decoration(fragmentOutput.id, spv::DecorationLocation);
if (location >= kMaxColorAttachments) {
GetDevice()->HandleError(wgpu::ErrorType::Validation,
"Fragment output location over limits in the SPIRV");
return;
}
spirv_cross::SPIRType::BaseType shaderFragmentOutputBaseType =
compiler.get_type(fragmentOutput.base_type_id).basetype;
Format::Type formatType =
SpirvCrossBaseTypeToFormatType(shaderFragmentOutputBaseType);
ASSERT(formatType != Format::Type::Other);
mFragmentOutputFormatBaseTypes[location] = formatType;
}
}
}
const ShaderModuleBase::ModuleBindingInfo& ShaderModuleBase::GetBindingInfo() const {
ASSERT(!IsError());
2017-11-23 18:32:51 +00:00
return mBindingInfo;
}
const std::bitset<kMaxVertexAttributes>& ShaderModuleBase::GetUsedVertexAttributes() const {
ASSERT(!IsError());
2017-11-23 18:32:51 +00:00
return mUsedVertexAttributes;
}
const ShaderModuleBase::FragmentOutputBaseTypes& ShaderModuleBase::GetFragmentOutputBaseTypes()
const {
ASSERT(!IsError());
return mFragmentOutputFormatBaseTypes;
}
SingleShaderStage ShaderModuleBase::GetExecutionModel() const {
ASSERT(!IsError());
2017-11-23 18:32:51 +00:00
return mExecutionModel;
}
bool ShaderModuleBase::IsCompatibleWithPipelineLayout(const PipelineLayoutBase* layout) const {
ASSERT(!IsError());
for (uint32_t group : IterateBitSet(layout->GetBindGroupLayoutsMask())) {
if (!IsCompatibleWithBindGroupLayout(group, layout->GetBindGroupLayout(group))) {
return false;
}
}
for (uint32_t group : IterateBitSet(~layout->GetBindGroupLayoutsMask())) {
for (size_t i = 0; i < kMaxBindingsPerGroup; ++i) {
if (mBindingInfo[group][i].used) {
return false;
}
}
}
return true;
}
bool ShaderModuleBase::IsCompatibleWithBindGroupLayout(
size_t group,
const BindGroupLayoutBase* layout) const {
ASSERT(!IsError());
const auto& layoutInfo = layout->GetBindingInfo();
for (size_t i = 0; i < kMaxBindingsPerGroup; ++i) {
2017-11-23 18:32:51 +00:00
const auto& moduleInfo = mBindingInfo[group][i];
const auto& layoutBindingType = layoutInfo.types[i];
if (!moduleInfo.used) {
continue;
}
if (layoutBindingType != moduleInfo.type) {
// Binding mismatch between shader and bind group is invalid. For example, a
// writable binding in the shader with a readonly storage buffer in the bind group
// layout is invalid. However, a readonly binding in the shader with a writable
// storage buffer in the bind group layout is valid.
bool validBindingConversion =
layoutBindingType == wgpu::BindingType::StorageBuffer &&
moduleInfo.type == wgpu::BindingType::ReadonlyStorageBuffer;
if (!validBindingConversion) {
return false;
}
}
2017-11-23 18:32:51 +00:00
if ((layoutInfo.visibilities[i] & StageBit(mExecutionModel)) == 0) {
return false;
}
if (layoutBindingType == wgpu::BindingType::SampledTexture) {
Format::Type layoutTextureComponentType =
Format::TextureComponentTypeToFormatType(layoutInfo.textureComponentTypes[i]);
if (layoutTextureComponentType != moduleInfo.textureComponentType) {
return false;
}
if (layoutInfo.textureDimensions[i] != moduleInfo.textureDimension) {
return false;
}
}
}
return true;
}
size_t ShaderModuleBase::HashFunc::operator()(const ShaderModuleBase* module) const {
size_t hash = 0;
for (uint32_t word : module->mCode) {
HashCombine(&hash, word);
}
return hash;
}
bool ShaderModuleBase::EqualityFunc::operator()(const ShaderModuleBase* a,
const ShaderModuleBase* b) const {
return a->mCode == b->mCode;
}
bool ShaderModuleBase::CheckSpvcSuccess(shaderc_spvc_status status, const char* error_msg) {
if (status != shaderc_spvc_status_success) {
GetDevice()->HandleError(wgpu::ErrorType::Validation, error_msg);
return false;
}
return true;
}
} // namespace dawn_native