dawn-cmake/src/resolver/resolver.cc

2329 lines
76 KiB
C++
Raw Normal View History

2020-03-02 20:47:43 +00:00
// Copyright 2020 The Tint Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "src/resolver/resolver.h"
2020-03-02 20:47:43 +00:00
#include <algorithm>
#include <utility>
#include "src/ast/assignment_statement.h"
#include "src/ast/bitcast_expression.h"
#include "src/ast/break_statement.h"
#include "src/ast/call_statement.h"
#include "src/ast/constant_id_decoration.h"
#include "src/ast/continue_statement.h"
#include "src/ast/discard_statement.h"
#include "src/ast/fallthrough_statement.h"
#include "src/ast/if_statement.h"
#include "src/ast/internal_decoration.h"
#include "src/ast/loop_statement.h"
#include "src/ast/return_statement.h"
#include "src/ast/struct_block_decoration.h"
#include "src/ast/switch_statement.h"
#include "src/ast/unary_op_expression.h"
#include "src/ast/variable_decl_statement.h"
#include "src/ast/workgroup_decoration.h"
#include "src/semantic/array.h"
#include "src/semantic/call.h"
#include "src/semantic/function.h"
#include "src/semantic/member_accessor_expression.h"
#include "src/semantic/statement.h"
#include "src/semantic/struct.h"
#include "src/semantic/variable.h"
#include "src/type/access_control_type.h"
#include "src/utils/get_or_create.h"
#include "src/utils/math.h"
2020-03-02 20:47:43 +00:00
namespace tint {
namespace resolver {
namespace {
using IntrinsicType = tint::semantic::IntrinsicType;
// Helper class that temporarily assigns a value to a reference for the scope of
// the object. Once the ScopedAssignment is destructed, the original value is
// restored.
template <typename T>
class ScopedAssignment {
public:
ScopedAssignment(T& ref, T val) : ref_(ref) {
old_value_ = ref;
ref = val;
}
~ScopedAssignment() { ref_ = old_value_; }
private:
T& ref_;
T old_value_;
};
// Helper function that returns the range union of two source locations. The
// `start` and `end` locations are assumed to refer to the same source file.
Source CombineSourceRange(const Source& start, const Source& end) {
return Source(Source::Range(start.range.begin, end.range.end),
start.file_path, start.file_content);
}
} // namespace
2020-03-02 20:47:43 +00:00
Resolver::Resolver(ProgramBuilder* builder)
Add IntrinsicTable Provides a centeralized table for all intrinsic overloads. IntrinsicTable::Lookup() takes the intrinsic type and list of arguments, returning either the matched overload, or a sensible error message. The validator has expectations that the TypeDeterminer resolves the return type of an intrinsic call, even when the signature doesn't match. To handle this, create semantic::Intrinsic nodes even when the overload fails to match. A significant portion of the Validator's logic for handling intrinsics can be removed (future change). There are a number of benefits to migrating the TypeDeterminer and Validator over to the IntrinsicTable: * There's far less intrininsic-bespoke code to maintain (no more duplicate `kIntrinsicData` tables in TypeDeterminer and Validator). * Adding or adjusting an intrinsic overload involves adding or adjusting a single Register() line. * Error messages give helpful suggestions for related overloads when given incorrect arguments. * Error messages are consistent for all intrinsics. * Error messages are far more understandable than those produced by the TypeDeterminer. * Further improvements on the error messages produced by the IntrinsicTable will benefit _all_ the intrinsics and their overloads. * The IntrinsicTable generates correct parameter information, including whether parameters are pointers or not. * The IntrinsicTable will help with implementing autocomplete for a language server Change-Id: I4bfa88533396b0b372aef41a62fe47b738531aed Reviewed-on: https://dawn-review.googlesource.com/c/tint/+/40504 Commit-Queue: Ben Clayton <bclayton@google.com> Reviewed-by: dan sinclair <dsinclair@chromium.org>
2021-02-08 22:42:54 +00:00
: builder_(builder), intrinsic_table_(IntrinsicTable::Create()) {}
Resolver::~Resolver() = default;
2020-03-02 20:47:43 +00:00
Resolver::BlockInfo::BlockInfo(const ast::BlockStatement* b,
Resolver::BlockInfo::Type ty,
Resolver::BlockInfo* p)
: block(b), type(ty), parent(p) {}
Resolver::BlockInfo::~BlockInfo() = default;
void Resolver::set_referenced_from_function_if_needed(VariableInfo* var,
bool local) {
if (current_function_ == nullptr) {
return;
}
if (var->storage_class == ast::StorageClass::kNone ||
var->storage_class == ast::StorageClass::kFunction) {
return;
}
current_function_->referenced_module_vars.add(var);
if (local) {
current_function_->local_referenced_module_vars.add(var);
}
}
bool Resolver::Resolve() {
bool result = ResolveInternal();
// Even if resolving failed, create all the semantic nodes for information we
// did generate.
CreateSemanticNodes();
return result;
}
// https://gpuweb.github.io/gpuweb/wgsl.html#storable-types
bool Resolver::IsStorable(type::Type* type) {
type = type->UnwrapIfNeeded();
if (type->is_scalar() || type->Is<type::Vector>() ||
type->Is<type::Matrix>()) {
return true;
}
if (type::Array* arr = type->As<type::Array>()) {
return IsStorable(arr->type());
}
if (type::Struct* str = type->As<type::Struct>()) {
for (const auto* member : str->impl()->members()) {
if (!IsStorable(member->type())) {
return false;
}
}
return true;
}
return false;
}
// https://gpuweb.github.io/gpuweb/wgsl.html#host-shareable-types
bool Resolver::IsHostShareable(type::Type* type) {
type = type->UnwrapIfNeeded();
if (type->IsAnyOf<type::I32, type::U32, type::F32>()) {
return true;
}
if (auto* vec = type->As<type::Vector>()) {
return IsHostShareable(vec->type());
}
if (auto* mat = type->As<type::Matrix>()) {
return IsHostShareable(mat->type());
}
if (auto* arr = type->As<type::Array>()) {
return IsHostShareable(arr->type());
}
if (auto* str = type->As<type::Struct>()) {
for (auto* member : str->impl()->members()) {
if (!IsHostShareable(member->type())) {
return false;
}
}
return true;
}
return false;
}
bool Resolver::IsValidAssignment(type::Type* lhs, type::Type* rhs) {
// TODO(crbug.com/tint/659): This is a rough approximation, and is missing
// checks for writability of pointer storage class, access control, etc.
// This will need to be fixed after WGSL agrees the behavior of pointers /
// references.
// Check:
if (lhs->UnwrapIfNeeded() != rhs->UnwrapIfNeeded()) {
// Try RHS dereference
if (lhs->UnwrapIfNeeded() != rhs->UnwrapAll()) {
return false;
}
}
return true;
}
bool Resolver::ResolveInternal() {
// Process everything else in the order they appear in the module. This is
// necessary for validation of use-before-declaration.
for (auto* decl : builder_->AST().GlobalDeclarations()) {
if (decl->Is<type::Type>()) {
if (auto* str = decl->As<type::Struct>()) {
if (!Structure(str)) {
return false;
}
}
} else if (auto* func = decl->As<ast::Function>()) {
if (!Function(func)) {
return false;
}
} else if (auto* var = decl->As<ast::Variable>()) {
if (!GlobalVariable(var)) {
return false;
}
} else {
TINT_UNREACHABLE(diagnostics_)
<< "unhandled global declaration: " << decl->TypeInfo().name;
return false;
}
}
return true;
}
Resolver::VariableInfo* Resolver::Variable(ast::Variable* var,
type::Type* type /*=nullptr*/) {
auto it = variable_to_info_.find(var);
if (it != variable_to_info_.end()) {
return it->second;
}
auto* ctype = Canonical(type ? type : var->declared_type());
auto* info = variable_infos_.Create(var, ctype);
variable_to_info_.emplace(var, info);
// Resolve variable's type
if (auto* arr = info->type->As<type::Array>()) {
if (!Array(arr, var->source())) {
return nullptr;
}
}
return info;
}
bool Resolver::GlobalVariable(ast::Variable* var) {
if (variable_stack_.has(var->symbol())) {
diagnostics_.add_error("v-0011",
"redeclared global identifier '" +
builder_->Symbols().NameFor(var->symbol()) + "'",
var->source());
return false;
}
auto* info = Variable(var);
if (!info) {
return false;
}
variable_stack_.set_global(var->symbol(), info);
if (!var->is_const() && info->storage_class == ast::StorageClass::kNone) {
diagnostics_.add_error(
"v-0022", "global variables must have a storage class", var->source());
return false;
}
if (var->is_const() && !(info->storage_class == ast::StorageClass::kNone)) {
diagnostics_.add_error("v-global01",
"global constants shouldn't have a storage class",
var->source());
return false;
}
for (auto* deco : var->decorations()) {
if (!(deco->Is<ast::BindingDecoration>() ||
deco->Is<ast::BuiltinDecoration>() ||
deco->Is<ast::ConstantIdDecoration>() ||
deco->Is<ast::GroupDecoration>() ||
deco->Is<ast::LocationDecoration>())) {
diagnostics_.add_error("decoration is not valid for variables",
deco->source());
return false;
}
}
if (var->has_constructor()) {
if (!Expression(var->constructor())) {
return false;
}
}
if (!ApplyStorageClassUsageToType(var->declared_storage_class(), info->type,
var->source())) {
diagnostics_.add_note("while instantiating variable " +
builder_->Symbols().NameFor(var->symbol()),
var->source());
return false;
}
return true;
}
bool Resolver::ValidateVariable(const ast::Variable* var) {
auto* type = variable_to_info_[var]->type;
if (auto* r = type->UnwrapAll()->As<type::Array>()) {
if (r->IsRuntimeArray()) {
diagnostics_.add_error(
"v-0015",
"runtime arrays may only appear as the last member of a struct",
var->source());
return false;
}
}
return true;
}
bool Resolver::ValidateParameter(const ast::Variable* param) {
return ValidateVariable(param);
}
bool Resolver::ValidateFunction(const ast::Function* func) {
if (symbol_to_function_.find(func->symbol()) != symbol_to_function_.end()) {
diagnostics_.add_error("v-0016",
"function names must be unique '" +
builder_->Symbols().NameFor(func->symbol()) +
"'",
func->source());
return false;
}
for (auto* param : func->params()) {
if (!ValidateParameter(param)) {
return false;
}
}
if (!func->return_type()->Is<type::Void>()) {
if (func->body()) {
if (!func->get_last_statement() ||
!func->get_last_statement()->Is<ast::ReturnStatement>()) {
diagnostics_.add_error(
"v-0002", "non-void function must end with a return statement",
func->source());
return false;
}
} else if (!ast::HasDecoration<ast::InternalDecoration>(
func->decorations())) {
TINT_ICE(diagnostics_)
<< "Function " << builder_->Symbols().NameFor(func->symbol())
<< " has no body and does not have the [[internal]] decoration";
}
for (auto* deco : func->return_type_decorations()) {
if (!deco->IsAnyOf<ast::BuiltinDecoration, ast::LocationDecoration>()) {
diagnostics_.add_error(
"decoration is not valid for function return types",
deco->source());
return false;
}
}
}
if (func->IsEntryPoint()) {
if (!ValidateEntryPoint(func)) {
return false;
}
}
return true;
}
bool Resolver::ValidateEntryPoint(const ast::Function* func) {
auto stage_deco_count = 0;
for (auto* deco : func->decorations()) {
if (deco->Is<ast::StageDecoration>()) {
stage_deco_count++;
} else if (!deco->Is<ast::WorkgroupDecoration>()) {
diagnostics_.add_error("decoration is not valid for functions",
deco->source());
return false;
}
}
if (stage_deco_count > 1) {
diagnostics_.add_error(
"v-0020", "only one stage decoration permitted per entry point",
func->source());
return false;
}
// Use a lambda to validate the entry point decorations for a type.
// Persistent state is used to track which builtins and locations have already
// been seen, in order to catch conflicts.
// TODO(jrprice): This state could be stored in FunctionInfo instead, and then
// passed to semantic::Function since it would be useful there too.
std::unordered_set<ast::Builtin> builtins;
std::unordered_set<uint32_t> locations;
enum class ParamOrRetType {
kParameter,
kReturnType,
};
// Helper to stringify a pipeline IO decoration.
auto deco_to_str = [](const ast::Decoration* deco) {
std::stringstream str;
if (auto* builtin = deco->As<ast::BuiltinDecoration>()) {
str << "builtin(" << builtin->value() << ")";
} else if (auto* location = deco->As<ast::LocationDecoration>()) {
str << "location(" << location->value() << ")";
}
return str.str();
};
// Inner lambda that is applied to a type and all of its members.
auto validate_entry_point_decorations_inner =
[&](const ast::DecorationList& decos, type::Type* ty, Source source,
ParamOrRetType param_or_ret, bool is_struct_member) {
// Scan decorations for pipeline IO attributes.
// Check for overlap with attributes that have been seen previously.
ast::Decoration* pipeline_io_attribute = nullptr;
for (auto* deco : decos) {
if (auto* builtin = deco->As<ast::BuiltinDecoration>()) {
if (pipeline_io_attribute) {
diagnostics_.add_error("multiple entry point IO attributes",
deco->source());
diagnostics_.add_note(
"previously consumed " + deco_to_str(pipeline_io_attribute),
pipeline_io_attribute->source());
return false;
}
pipeline_io_attribute = deco;
if (builtins.count(builtin->value())) {
diagnostics_.add_error(
deco_to_str(builtin) +
" attribute appears multiple times as pipeline " +
(param_or_ret == ParamOrRetType::kParameter ? "input"
: "output"),
func->source());
return false;
}
builtins.emplace(builtin->value());
} else if (auto* location = deco->As<ast::LocationDecoration>()) {
if (pipeline_io_attribute) {
diagnostics_.add_error("multiple entry point IO attributes",
deco->source());
diagnostics_.add_note(
"previously consumed " + deco_to_str(pipeline_io_attribute),
pipeline_io_attribute->source());
return false;
}
pipeline_io_attribute = deco;
if (locations.count(location->value())) {
diagnostics_.add_error(
deco_to_str(location) +
" attribute appears multiple times as pipeline " +
(param_or_ret == ParamOrRetType::kParameter ? "input"
: "output"),
func->source());
return false;
}
locations.emplace(location->value());
}
}
// Check that we saw a pipeline IO attribute iff we need one.
if (Canonical(ty)->Is<type::Struct>()) {
if (pipeline_io_attribute) {
diagnostics_.add_error(
"entry point IO attributes must not be used on structure " +
std::string(param_or_ret == ParamOrRetType::kParameter
? "parameters"
: "return types"),
pipeline_io_attribute->source());
return false;
}
} else {
if (!pipeline_io_attribute) {
std::string err = "missing entry point IO attribute";
if (!is_struct_member) {
err += (param_or_ret == ParamOrRetType::kParameter
? " on parameter"
: " on return type");
}
diagnostics_.add_error(err, source);
return false;
}
}
return true;
};
// Outer lambda for validating the entry point decorations for a type.
auto validate_entry_point_decorations = [&](const ast::DecorationList& decos,
type::Type* ty, Source source,
ParamOrRetType param_or_ret) {
// Validate the decorations for the type.
if (!validate_entry_point_decorations_inner(decos, ty, source, param_or_ret,
false)) {
return false;
}
if (auto* struct_ty = Canonical(ty)->As<type::Struct>()) {
// Validate the decorations for each struct members, and also check for
// invalid member types.
for (auto* member : struct_ty->impl()->members()) {
auto* member_ty = Canonical(member->type());
if (member_ty->Is<type::Struct>()) {
diagnostics_.add_error(
"entry point IO types cannot contain nested structures",
member->source());
diagnostics_.add_note("while analysing entry point " +
builder_->Symbols().NameFor(func->symbol()),
func->source());
return false;
} else if (auto* arr = member_ty->As<type::Array>()) {
if (arr->IsRuntimeArray()) {
diagnostics_.add_error(
"entry point IO types cannot contain runtime sized arrays",
member->source());
diagnostics_.add_note(
"while analysing entry point " +
builder_->Symbols().NameFor(func->symbol()),
func->source());
return false;
}
}
if (!validate_entry_point_decorations_inner(member->decorations(),
member_ty, member->source(),
param_or_ret, true)) {
diagnostics_.add_note("while analysing entry point " +
builder_->Symbols().NameFor(func->symbol()),
func->source());
return false;
}
}
}
return true;
};
for (auto* param : func->params()) {
if (!validate_entry_point_decorations(
param->decorations(), param->declared_type(), param->source(),
ParamOrRetType::kParameter)) {
return false;
}
}
if (!func->return_type()->Is<type::Void>()) {
builtins.clear();
locations.clear();
if (!validate_entry_point_decorations(func->return_type_decorations(),
func->return_type(), func->source(),
ParamOrRetType::kReturnType)) {
return false;
}
}
return true;
}
bool Resolver::Function(ast::Function* func) {
auto* func_info = function_infos_.Create<FunctionInfo>(func);
ScopedAssignment<FunctionInfo*> sa(current_function_, func_info);
variable_stack_.push_scope();
for (auto* param : func->params()) {
auto* param_info = Variable(param);
if (!param_info) {
return false;
}
variable_stack_.set(param->symbol(), param_info);
func_info->parameters.emplace_back(param_info);
if (!ApplyStorageClassUsageToType(param->declared_storage_class(),
param->declared_type(),
param->source())) {
diagnostics_.add_note("while instantiating parameter " +
builder_->Symbols().NameFor(param->symbol()),
param->source());
return false;
}
if (auto* str = param_info->type->As<type::Struct>()) {
auto* info = Structure(str);
if (!info) {
return false;
}
switch (func->pipeline_stage()) {
case ast::PipelineStage::kVertex:
info->pipeline_stage_uses.emplace(
semantic::PipelineStageUsage::kVertexInput);
break;
case ast::PipelineStage::kFragment:
info->pipeline_stage_uses.emplace(
semantic::PipelineStageUsage::kFragmentInput);
break;
case ast::PipelineStage::kCompute:
info->pipeline_stage_uses.emplace(
semantic::PipelineStageUsage::kComputeInput);
break;
case ast::PipelineStage::kNone:
break;
}
}
}
if (auto* str = Canonical(func->return_type())->As<type::Struct>()) {
if (!ApplyStorageClassUsageToType(ast::StorageClass::kNone, str,
func->source())) {
diagnostics_.add_note("while instantiating return type for " +
builder_->Symbols().NameFor(func->symbol()),
func->source());
return false;
}
auto* info = Structure(str);
if (!info) {
return false;
}
switch (func->pipeline_stage()) {
case ast::PipelineStage::kVertex:
info->pipeline_stage_uses.emplace(
semantic::PipelineStageUsage::kVertexOutput);
break;
case ast::PipelineStage::kFragment:
info->pipeline_stage_uses.emplace(
semantic::PipelineStageUsage::kFragmentOutput);
break;
case ast::PipelineStage::kCompute:
info->pipeline_stage_uses.emplace(
semantic::PipelineStageUsage::kComputeOutput);
break;
case ast::PipelineStage::kNone:
break;
}
}
if (func->body()) {
if (!BlockStatement(func->body())) {
return false;
}
}
variable_stack_.pop_scope();
if (!ValidateFunction(func)) {
return false;
}
// Register the function information _after_ processing the statements. This
// allows us to catch a function calling itself when determining the call
// information as this function doesn't exist until it's finished.
symbol_to_function_[func->symbol()] = func_info;
function_to_info_.emplace(func, func_info);
2020-03-02 20:47:43 +00:00
return true;
}
bool Resolver::BlockStatement(const ast::BlockStatement* stmt) {
return BlockScope(stmt, BlockInfo::Type::kGeneric,
[&] { return Statements(stmt->list()); });
}
bool Resolver::Statements(const ast::StatementList& stmts) {
for (auto* stmt : stmts) {
if (!Statement(stmt)) {
return false;
}
}
return true;
}
bool Resolver::Statement(ast::Statement* stmt) {
auto* sem_statement =
builder_->create<semantic::Statement>(stmt, current_block_->block);
builder_->Sem().Add(stmt, sem_statement);
ScopedAssignment<semantic::Statement*> sa(current_statement_, sem_statement);
if (auto* a = stmt->As<ast::AssignmentStatement>()) {
return Assignment(a);
}
if (auto* b = stmt->As<ast::BlockStatement>()) {
return BlockStatement(b);
}
if (stmt->Is<ast::BreakStatement>()) {
if (!current_block_->FindFirstParent(BlockInfo::Type::kLoop) &&
!current_block_->FindFirstParent(BlockInfo::Type::kSwitchCase)) {
diagnostics_.add_error("break statement must be in a loop or switch case",
stmt->source());
return false;
}
return true;
}
if (auto* c = stmt->As<ast::CallStatement>()) {
return Expression(c->expr());
}
if (auto* c = stmt->As<ast::CaseStatement>()) {
return CaseStatement(c);
}
if (stmt->Is<ast::ContinueStatement>()) {
// Set if we've hit the first continue statement in our parent loop
if (auto* loop_block =
current_block_->FindFirstParent(BlockInfo::Type::kLoop)) {
if (loop_block->first_continue == size_t(~0)) {
loop_block->first_continue = loop_block->decls.size();
}
} else {
diagnostics_.add_error("continue statement must be in a loop",
stmt->source());
return false;
}
return true;
}
if (stmt->Is<ast::DiscardStatement>()) {
return true;
}
if (stmt->Is<ast::FallthroughStatement>()) {
return true;
}
if (auto* i = stmt->As<ast::IfStatement>()) {
return IfStatement(i);
}
if (auto* l = stmt->As<ast::LoopStatement>()) {
// We don't call DetermineBlockStatement on the body and continuing block as
// these would make their BlockInfo siblings as in the AST, but we want the
// body BlockInfo to parent the continuing BlockInfo for semantics and
// validation. Also, we need to set their types differently.
return BlockScope(l->body(), BlockInfo::Type::kLoop, [&] {
if (!Statements(l->body()->list())) {
return false;
}
if (l->has_continuing()) {
if (!BlockScope(l->continuing(), BlockInfo::Type::kLoopContinuing,
[&] { return Statements(l->continuing()->list()); })) {
return false;
}
}
return true;
});
}
if (auto* r = stmt->As<ast::ReturnStatement>()) {
return Return(r);
}
if (auto* s = stmt->As<ast::SwitchStatement>()) {
return Switch(s);
}
if (auto* v = stmt->As<ast::VariableDeclStatement>()) {
return VariableDeclStatement(v);
}
diagnostics_.add_error(
"unknown statement type for type determination: " + builder_->str(stmt),
stmt->source());
return false;
}
bool Resolver::CaseStatement(ast::CaseStatement* stmt) {
return BlockScope(stmt->body(), BlockInfo::Type::kSwitchCase,
[&] { return Statements(stmt->body()->list()); });
}
bool Resolver::IfStatement(ast::IfStatement* stmt) {
if (!Expression(stmt->condition())) {
return false;
}
auto* cond_type = TypeOf(stmt->condition())->UnwrapAll();
if (cond_type != builder_->ty.bool_()) {
diagnostics_.add_error("if statement condition must be bool, got " +
cond_type->FriendlyName(builder_->Symbols()),
stmt->condition()->source());
return false;
}
if (!BlockStatement(stmt->body())) {
return false;
}
for (auto* else_stmt : stmt->else_statements()) {
// Else statements are a bit unusual - they're owned by the if-statement,
// not a BlockStatement.
constexpr ast::BlockStatement* no_block_statement = nullptr;
auto* sem_else_stmt =
builder_->create<semantic::Statement>(else_stmt, no_block_statement);
builder_->Sem().Add(else_stmt, sem_else_stmt);
ScopedAssignment<semantic::Statement*> sa(current_statement_,
sem_else_stmt);
if (!Expression(else_stmt->condition())) {
return false;
}
if (!BlockStatement(else_stmt->body())) {
return false;
}
}
return true;
}
bool Resolver::Expressions(const ast::ExpressionList& list) {
for (auto* expr : list) {
if (!Expression(expr)) {
return false;
}
}
return true;
}
bool Resolver::Expression(ast::Expression* expr) {
// This is blindly called above, so in some cases the expression won't exist.
if (!expr) {
return true;
}
if (TypeOf(expr)) {
return true; // Already resolved
}
if (auto* a = expr->As<ast::ArrayAccessorExpression>()) {
return ArrayAccessor(a);
}
if (auto* b = expr->As<ast::BinaryExpression>()) {
return Binary(b);
}
if (auto* b = expr->As<ast::BitcastExpression>()) {
return Bitcast(b);
}
if (auto* c = expr->As<ast::CallExpression>()) {
return Call(c);
}
if (auto* c = expr->As<ast::ConstructorExpression>()) {
return Constructor(c);
}
if (auto* i = expr->As<ast::IdentifierExpression>()) {
return Identifier(i);
}
if (auto* m = expr->As<ast::MemberAccessorExpression>()) {
return MemberAccessor(m);
}
if (auto* u = expr->As<ast::UnaryOpExpression>()) {
return UnaryOp(u);
}
diagnostics_.add_error("unknown expression for type determination",
expr->source());
return false;
}
bool Resolver::ArrayAccessor(ast::ArrayAccessorExpression* expr) {
if (!Expression(expr->array())) {
return false;
}
if (!Expression(expr->idx_expr())) {
return false;
}
auto* res = TypeOf(expr->array());
auto* parent_type = res->UnwrapAll();
type::Type* ret = nullptr;
if (auto* arr = parent_type->As<type::Array>()) {
ret = arr->type();
} else if (auto* vec = parent_type->As<type::Vector>()) {
ret = vec->type();
} else if (auto* mat = parent_type->As<type::Matrix>()) {
ret = builder_->create<type::Vector>(mat->type(), mat->rows());
} else {
diagnostics_.add_error("invalid parent type (" + parent_type->type_name() +
") in array accessor",
expr->source());
return false;
}
// If we're extracting from a pointer, we return a pointer.
if (auto* ptr = res->As<type::Pointer>()) {
ret = builder_->create<type::Pointer>(ret, ptr->storage_class());
} else if (auto* arr = parent_type->As<type::Array>()) {
if (!arr->type()->is_scalar()) {
// If we extract a non-scalar from an array then we also get a pointer. We
// will generate a Function storage class variable to store this into.
ret = builder_->create<type::Pointer>(ret, ast::StorageClass::kFunction);
}
}
SetType(expr, ret);
return true;
}
bool Resolver::Bitcast(ast::BitcastExpression* expr) {
if (!Expression(expr->expr())) {
return false;
}
SetType(expr, expr->type());
return true;
}
bool Resolver::Call(ast::CallExpression* call) {
if (!Expressions(call->params())) {
return false;
}
// The expression has to be an identifier as you can't store function pointers
// but, if it isn't we'll just use the normal result determination to be on
// the safe side.
auto* ident = call->func()->As<ast::IdentifierExpression>();
if (!ident) {
diagnostics_.add_error("call target is not an identifier", call->source());
return false;
}
auto name = builder_->Symbols().NameFor(ident->symbol());
auto intrinsic_type = semantic::ParseIntrinsicType(name);
if (intrinsic_type != IntrinsicType::kNone) {
if (!IntrinsicCall(call, intrinsic_type)) {
return false;
}
} else {
if (current_function_) {
auto callee_func_it = symbol_to_function_.find(ident->symbol());
if (callee_func_it == symbol_to_function_.end()) {
if (current_function_->declaration->symbol() == ident->symbol()) {
diagnostics_.add_error("v-0004",
"recursion is not permitted. '" + name +
"' attempted to call itself.",
call->source());
} else {
diagnostics_.add_error(
"v-0006: unable to find called function: " + name,
call->source());
}
return false;
}
auto* callee_func = callee_func_it->second;
// Note: Requires called functions to be resolved first.
// This is currently guaranteed as functions must be declared before use.
current_function_->transitive_calls.add(callee_func);
for (auto* transitive_call : callee_func->transitive_calls) {
current_function_->transitive_calls.add(transitive_call);
}
// We inherit any referenced variables from the callee.
for (auto* var : callee_func->referenced_module_vars) {
set_referenced_from_function_if_needed(var, false);
}
}
auto iter = symbol_to_function_.find(ident->symbol());
if (iter == symbol_to_function_.end()) {
diagnostics_.add_error(
"v-0005: function must be declared before use: '" + name + "'",
call->source());
return false;
}
auto* function = iter->second;
function_calls_.emplace(call,
FunctionCallInfo{function, current_statement_});
SetType(call, function->declaration->return_type());
}
return true;
}
bool Resolver::IntrinsicCall(ast::CallExpression* call,
semantic::IntrinsicType intrinsic_type) {
std::vector<type::Type*> arg_tys;
arg_tys.reserve(call->params().size());
for (auto* expr : call->params()) {
arg_tys.emplace_back(TypeOf(expr));
}
auto result = intrinsic_table_->Lookup(*builder_, intrinsic_type, arg_tys,
call->source());
Add IntrinsicTable Provides a centeralized table for all intrinsic overloads. IntrinsicTable::Lookup() takes the intrinsic type and list of arguments, returning either the matched overload, or a sensible error message. The validator has expectations that the TypeDeterminer resolves the return type of an intrinsic call, even when the signature doesn't match. To handle this, create semantic::Intrinsic nodes even when the overload fails to match. A significant portion of the Validator's logic for handling intrinsics can be removed (future change). There are a number of benefits to migrating the TypeDeterminer and Validator over to the IntrinsicTable: * There's far less intrininsic-bespoke code to maintain (no more duplicate `kIntrinsicData` tables in TypeDeterminer and Validator). * Adding or adjusting an intrinsic overload involves adding or adjusting a single Register() line. * Error messages give helpful suggestions for related overloads when given incorrect arguments. * Error messages are consistent for all intrinsics. * Error messages are far more understandable than those produced by the TypeDeterminer. * Further improvements on the error messages produced by the IntrinsicTable will benefit _all_ the intrinsics and their overloads. * The IntrinsicTable generates correct parameter information, including whether parameters are pointers or not. * The IntrinsicTable will help with implementing autocomplete for a language server Change-Id: I4bfa88533396b0b372aef41a62fe47b738531aed Reviewed-on: https://dawn-review.googlesource.com/c/tint/+/40504 Commit-Queue: Ben Clayton <bclayton@google.com> Reviewed-by: dan sinclair <dsinclair@chromium.org>
2021-02-08 22:42:54 +00:00
if (!result.intrinsic) {
// Intrinsic lookup failed.
diagnostics_.add(result.diagnostics);
Add IntrinsicTable Provides a centeralized table for all intrinsic overloads. IntrinsicTable::Lookup() takes the intrinsic type and list of arguments, returning either the matched overload, or a sensible error message. The validator has expectations that the TypeDeterminer resolves the return type of an intrinsic call, even when the signature doesn't match. To handle this, create semantic::Intrinsic nodes even when the overload fails to match. A significant portion of the Validator's logic for handling intrinsics can be removed (future change). There are a number of benefits to migrating the TypeDeterminer and Validator over to the IntrinsicTable: * There's far less intrininsic-bespoke code to maintain (no more duplicate `kIntrinsicData` tables in TypeDeterminer and Validator). * Adding or adjusting an intrinsic overload involves adding or adjusting a single Register() line. * Error messages give helpful suggestions for related overloads when given incorrect arguments. * Error messages are consistent for all intrinsics. * Error messages are far more understandable than those produced by the TypeDeterminer. * Further improvements on the error messages produced by the IntrinsicTable will benefit _all_ the intrinsics and their overloads. * The IntrinsicTable generates correct parameter information, including whether parameters are pointers or not. * The IntrinsicTable will help with implementing autocomplete for a language server Change-Id: I4bfa88533396b0b372aef41a62fe47b738531aed Reviewed-on: https://dawn-review.googlesource.com/c/tint/+/40504 Commit-Queue: Ben Clayton <bclayton@google.com> Reviewed-by: dan sinclair <dsinclair@chromium.org>
2021-02-08 22:42:54 +00:00
return false;
}
builder_->Sem().Add(call, builder_->create<semantic::Call>(
call, result.intrinsic, current_statement_));
SetType(call, result.intrinsic->ReturnType());
return true;
}
bool Resolver::Constructor(ast::ConstructorExpression* expr) {
if (auto* type_ctor = expr->As<ast::TypeConstructorExpression>()) {
for (auto* value : type_ctor->values()) {
if (!Expression(value)) {
return false;
}
}
SetType(expr, type_ctor->type());
// Now that the argument types have been determined, make sure that they
// obey the constructor type rules laid out in
// https://gpuweb.github.io/gpuweb/wgsl.html#type-constructor-expr.
if (auto* vec_type = type_ctor->type()->As<type::Vector>()) {
return VectorConstructor(vec_type, type_ctor->values());
}
if (auto* mat_type = type_ctor->type()->As<type::Matrix>()) {
return MatrixConstructor(mat_type, type_ctor->values());
}
// TODO(crbug.com/tint/634): Validate array constructor
} else if (auto* scalar_ctor = expr->As<ast::ScalarConstructorExpression>()) {
SetType(expr, scalar_ctor->literal()->type());
} else {
TINT_ICE(diagnostics_) << "unexpected constructor expression type";
}
return true;
}
bool Resolver::VectorConstructor(const type::Vector* vec_type,
const ast::ExpressionList& values) {
type::Type* elem_type = vec_type->type()->UnwrapAll();
size_t value_cardinality_sum = 0;
for (auto* value : values) {
type::Type* value_type = TypeOf(value)->UnwrapAll();
if (value_type->is_scalar()) {
if (elem_type != value_type) {
diagnostics_.add_error(
"type in vector constructor does not match vector type: "
"expected '" +
elem_type->FriendlyName(builder_->Symbols()) + "', found '" +
value_type->FriendlyName(builder_->Symbols()) + "'",
value->source());
return false;
}
value_cardinality_sum++;
} else if (auto* value_vec = value_type->As<type::Vector>()) {
type::Type* value_elem_type = value_vec->type()->UnwrapAll();
// A mismatch of vector type parameter T is only an error if multiple
// arguments are present. A single argument constructor constitutes a
// type conversion expression.
// NOTE: A conversion expression from a vec<bool> to any other vecN<T>
// is disallowed (see
// https://gpuweb.github.io/gpuweb/wgsl.html#conversion-expr).
if (elem_type != value_elem_type &&
(values.size() > 1u || value_vec->is_bool_vector())) {
diagnostics_.add_error(
"type in vector constructor does not match vector type: "
"expected '" +
elem_type->FriendlyName(builder_->Symbols()) + "', found '" +
value_elem_type->FriendlyName(builder_->Symbols()) + "'",
value->source());
return false;
}
value_cardinality_sum += value_vec->size();
} else {
// A vector constructor can only accept vectors and scalars.
diagnostics_.add_error(
"expected vector or scalar type in vector constructor; found: " +
value_type->FriendlyName(builder_->Symbols()),
value->source());
return false;
}
}
// A correct vector constructor must either be a zero-value expression
// or the number of components of all constructor arguments must add up
// to the vector cardinality.
if (value_cardinality_sum > 0 && value_cardinality_sum != vec_type->size()) {
if (values.empty()) {
TINT_ICE(diagnostics_)
<< "constructor arguments expected to be non-empty!";
}
const Source& values_start = values[0]->source();
const Source& values_end = values[values.size() - 1]->source();
diagnostics_.add_error(
"attempted to construct '" +
vec_type->FriendlyName(builder_->Symbols()) + "' with " +
std::to_string(value_cardinality_sum) + " component(s)",
CombineSourceRange(values_start, values_end));
return false;
}
return true;
}
bool Resolver::MatrixConstructor(const type::Matrix* matrix_type,
const ast::ExpressionList& values) {
// Zero Value expression
if (values.empty()) {
return true;
}
type::Type* elem_type = matrix_type->type()->UnwrapAll();
if (matrix_type->columns() != values.size()) {
const Source& values_start = values[0]->source();
const Source& values_end = values[values.size() - 1]->source();
diagnostics_.add_error(
"expected " + std::to_string(matrix_type->columns()) + " '" +
VectorPretty(matrix_type->rows(), elem_type) + "' arguments in '" +
matrix_type->FriendlyName(builder_->Symbols()) +
"' constructor, found " + std::to_string(values.size()),
CombineSourceRange(values_start, values_end));
return false;
}
for (auto* value : values) {
type::Type* value_type = TypeOf(value)->UnwrapAll();
auto* value_vec = value_type->As<type::Vector>();
if (!value_vec || value_vec->size() != matrix_type->rows() ||
elem_type != value_vec->type()->UnwrapAll()) {
diagnostics_.add_error(
"expected argument type '" +
VectorPretty(matrix_type->rows(), elem_type) + "' in '" +
matrix_type->FriendlyName(builder_->Symbols()) +
"' constructor, found '" +
value_type->FriendlyName(builder_->Symbols()) + "'",
value->source());
return false;
}
}
return true;
}
bool Resolver::Identifier(ast::IdentifierExpression* expr) {
auto symbol = expr->symbol();
VariableInfo* var;
if (variable_stack_.get(symbol, &var)) {
// A constant is the type, but a variable is always a pointer so synthesize
// the pointer around the variable type.
if (var->declaration->is_const()) {
SetType(expr, var->type);
} else if (var->type->Is<type::Pointer>()) {
SetType(expr, var->type);
} else {
SetType(expr,
builder_->create<type::Pointer>(var->type, var->storage_class));
}
var->users.push_back(expr);
set_referenced_from_function_if_needed(var, true);
if (current_block_) {
// If identifier is part of a loop continuing block, make sure it doesn't
// refer to a variable that is bypassed by a continue statement in the
// loop's body block.
if (auto* continuing_block = current_block_->FindFirstParent(
BlockInfo::Type::kLoopContinuing)) {
auto* loop_block =
continuing_block->FindFirstParent(BlockInfo::Type::kLoop);
if (loop_block->first_continue != size_t(~0)) {
auto& decls = loop_block->decls;
// If our identifier is in loop_block->decls, make sure its index is
// less than first_continue
auto iter = std::find_if(
decls.begin(), decls.end(),
[&symbol](auto* v) { return v->symbol() == symbol; });
if (iter != decls.end()) {
auto var_decl_index =
static_cast<size_t>(std::distance(decls.begin(), iter));
if (var_decl_index >= loop_block->first_continue) {
diagnostics_.add_error(
"continue statement bypasses declaration of '" +
builder_->Symbols().NameFor(symbol) +
"' in continuing block",
expr->source());
return false;
}
}
}
}
}
return true;
}
auto iter = symbol_to_function_.find(symbol);
if (iter != symbol_to_function_.end()) {
diagnostics_.add_error("missing '(' for function call",
expr->source().End());
return false;
}
std::string name = builder_->Symbols().NameFor(symbol);
if (semantic::ParseIntrinsicType(name) != IntrinsicType::kNone) {
diagnostics_.add_error("missing '(' for intrinsic call",
expr->source().End());
return false;
}
diagnostics_.add_error(
"v-0006: identifier must be declared before use: " + name,
expr->source());
return false;
}
bool Resolver::MemberAccessor(ast::MemberAccessorExpression* expr) {
if (!Expression(expr->structure())) {
return false;
}
auto* res = TypeOf(expr->structure());
auto* data_type = res->UnwrapPtrIfNeeded()->UnwrapIfNeeded();
type::Type* ret = nullptr;
std::vector<uint32_t> swizzle;
if (auto* ty = data_type->As<type::Struct>()) {
auto* str = Structure(ty);
auto symbol = expr->member()->symbol();
const semantic::StructMember* member = nullptr;
for (auto* m : str->members) {
if (m->Declaration()->symbol() == symbol) {
ret = m->Declaration()->type();
member = m;
break;
}
}
if (ret == nullptr) {
diagnostics_.add_error(
"struct member " + builder_->Symbols().NameFor(symbol) + " not found",
expr->source());
return false;
}
// If we're extracting from a pointer, we return a pointer.
if (auto* ptr = res->As<type::Pointer>()) {
ret = builder_->create<type::Pointer>(ret, ptr->storage_class());
}
builder_->Sem().Add(expr, builder_->create<semantic::StructMemberAccess>(
expr, ret, current_statement_, member));
} else if (auto* vec = data_type->As<type::Vector>()) {
std::string str = builder_->Symbols().NameFor(expr->member()->symbol());
auto size = str.size();
swizzle.reserve(str.size());
for (auto c : str) {
switch (c) {
case 'x':
case 'r':
swizzle.emplace_back(0);
break;
case 'y':
case 'g':
swizzle.emplace_back(1);
break;
case 'z':
case 'b':
swizzle.emplace_back(2);
break;
case 'w':
case 'a':
swizzle.emplace_back(3);
break;
default:
diagnostics_.add_error(
"invalid vector swizzle character",
expr->member()->source().Begin() + swizzle.size());
return false;
}
}
if (size < 1 || size > 4) {
diagnostics_.add_error("invalid vector swizzle size",
expr->member()->source());
return false;
}
// All characters are valid, check if they're being mixed
auto is_rgba = [](char c) {
return c == 'r' || c == 'g' || c == 'b' || c == 'a';
};
auto is_xyzw = [](char c) {
return c == 'x' || c == 'y' || c == 'z' || c == 'w';
};
if (!std::all_of(str.begin(), str.end(), is_rgba) &&
!std::all_of(str.begin(), str.end(), is_xyzw)) {
diagnostics_.add_error(
"invalid mixing of vector swizzle characters rgba with xyzw",
expr->member()->source());
return false;
}
if (size == 1) {
// A single element swizzle is just the type of the vector.
ret = vec->type();
// If we're extracting from a pointer, we return a pointer.
if (auto* ptr = res->As<type::Pointer>()) {
ret = builder_->create<type::Pointer>(ret, ptr->storage_class());
}
} else {
// The vector will have a number of components equal to the length of
// the swizzle.
ret = builder_->create<type::Vector>(vec->type(),
static_cast<uint32_t>(size));
}
builder_->Sem().Add(
expr, builder_->create<semantic::Swizzle>(expr, ret, current_statement_,
std::move(swizzle)));
} else {
diagnostics_.add_error(
"invalid use of member accessor on a non-vector/non-struct " +
data_type->type_name(),
expr->source());
return false;
}
SetType(expr, ret);
return true;
}
bool Resolver::ValidateBinary(ast::BinaryExpression* expr) {
using Bool = type::Bool;
using F32 = type::F32;
using I32 = type::I32;
using U32 = type::U32;
using Matrix = type::Matrix;
using Vector = type::Vector;
auto* lhs_declared_type = TypeOf(expr->lhs())->UnwrapAll();
auto* rhs_declared_type = TypeOf(expr->rhs())->UnwrapAll();
auto* lhs_type = Canonical(lhs_declared_type);
auto* rhs_type = Canonical(rhs_declared_type);
auto* lhs_vec = lhs_type->As<Vector>();
auto* lhs_vec_elem_type = lhs_vec ? lhs_vec->type() : nullptr;
auto* rhs_vec = rhs_type->As<Vector>();
auto* rhs_vec_elem_type = rhs_vec ? rhs_vec->type() : nullptr;
const bool matching_vec_elem_types =
lhs_vec_elem_type && rhs_vec_elem_type &&
(lhs_vec_elem_type == rhs_vec_elem_type) &&
(lhs_vec->size() == rhs_vec->size());
const bool matching_types = matching_vec_elem_types || (lhs_type == rhs_type);
// Binary logical expressions
if (expr->IsLogicalAnd() || expr->IsLogicalOr()) {
if (matching_types && lhs_type->Is<Bool>()) {
return true;
}
}
if (expr->IsOr() || expr->IsAnd()) {
if (matching_types && lhs_type->Is<Bool>()) {
return true;
}
if (matching_types && lhs_vec_elem_type && lhs_vec_elem_type->Is<Bool>()) {
return true;
}
}
// Arithmetic expressions
if (expr->IsArithmetic()) {
// Binary arithmetic expressions over scalars
if (matching_types && lhs_type->IsAnyOf<I32, F32, U32>()) {
return true;
}
// Binary arithmetic expressions over vectors
if (matching_types && lhs_vec_elem_type &&
lhs_vec_elem_type->IsAnyOf<I32, F32, U32>()) {
return true;
}
}
// Binary arithmetic expressions with mixed scalar, vector, and matrix
// operands
if (expr->IsMultiply()) {
// Multiplication of a vector and a scalar
if (lhs_type->Is<F32>() && rhs_vec_elem_type &&
rhs_vec_elem_type->Is<F32>()) {
return true;
}
if (lhs_vec_elem_type && lhs_vec_elem_type->Is<F32>() &&
rhs_type->Is<F32>()) {
return true;
}
auto* lhs_mat = lhs_type->As<Matrix>();
auto* lhs_mat_elem_type = lhs_mat ? lhs_mat->type() : nullptr;
auto* rhs_mat = rhs_type->As<Matrix>();
auto* rhs_mat_elem_type = rhs_mat ? rhs_mat->type() : nullptr;
// Multiplication of a matrix and a scalar
if (lhs_type->Is<F32>() && rhs_mat_elem_type &&
rhs_mat_elem_type->Is<F32>()) {
return true;
}
if (lhs_mat_elem_type && lhs_mat_elem_type->Is<F32>() &&
rhs_type->Is<F32>()) {
return true;
}
// Vector times matrix
if (lhs_vec_elem_type && lhs_vec_elem_type->Is<F32>() &&
rhs_mat_elem_type && rhs_mat_elem_type->Is<F32>() &&
(lhs_vec->size() == rhs_mat->rows())) {
return true;
}
// Matrix times vector
if (lhs_mat_elem_type && lhs_mat_elem_type->Is<F32>() &&
rhs_vec_elem_type && rhs_vec_elem_type->Is<F32>() &&
(lhs_mat->columns() == rhs_vec->size())) {
return true;
}
// Matrix times matrix
if (lhs_mat_elem_type && lhs_mat_elem_type->Is<F32>() &&
rhs_mat_elem_type && rhs_mat_elem_type->Is<F32>() &&
(lhs_mat->columns() == rhs_mat->rows())) {
return true;
}
}
// Comparison expressions
if (expr->IsComparison()) {
if (matching_types) {
// Special case for bools: only == and !=
if (lhs_type->Is<Bool>() && (expr->IsEqual() || expr->IsNotEqual())) {
return true;
}
// For the rest, we can compare i32, u32, and f32
if (lhs_type->IsAnyOf<I32, U32, F32>()) {
return true;
}
}
// Same for vectors
if (matching_vec_elem_types) {
if (lhs_vec_elem_type->Is<Bool>() &&
(expr->IsEqual() || expr->IsNotEqual())) {
return true;
}
if (lhs_vec_elem_type->IsAnyOf<I32, U32, F32>()) {
return true;
}
}
}
// Binary bitwise operations
if (expr->IsBitwise()) {
if (matching_types && lhs_type->IsAnyOf<I32, U32>()) {
return true;
}
}
// Bit shift expressions
if (expr->IsBitshift()) {
// Type validation rules are the same for left or right shift, despite
// differences in computation rules (i.e. right shift can be arithmetic or
// logical depending on lhs type).
if (lhs_type->IsAnyOf<I32, U32>() && rhs_type->Is<U32>()) {
return true;
}
if (lhs_vec_elem_type && lhs_vec_elem_type->IsAnyOf<I32, U32>() &&
rhs_vec_elem_type && rhs_vec_elem_type->Is<U32>()) {
return true;
}
}
diagnostics_.add_error(
"Binary expression operand types are invalid for this operation: " +
lhs_declared_type->FriendlyName(builder_->Symbols()) + " " +
FriendlyName(expr->op()) + " " +
rhs_declared_type->FriendlyName(builder_->Symbols()),
expr->source());
return false;
}
bool Resolver::Binary(ast::BinaryExpression* expr) {
if (!Expression(expr->lhs()) || !Expression(expr->rhs())) {
return false;
}
if (!ValidateBinary(expr)) {
return false;
}
// Result type matches first parameter type
if (expr->IsAnd() || expr->IsOr() || expr->IsXor() || expr->IsShiftLeft() ||
expr->IsShiftRight() || expr->IsAdd() || expr->IsSubtract() ||
expr->IsDivide() || expr->IsModulo()) {
SetType(expr, TypeOf(expr->lhs())->UnwrapPtrIfNeeded());
return true;
}
// Result type is a scalar or vector of boolean type
if (expr->IsLogicalAnd() || expr->IsLogicalOr() || expr->IsEqual() ||
expr->IsNotEqual() || expr->IsLessThan() || expr->IsGreaterThan() ||
expr->IsLessThanEqual() || expr->IsGreaterThanEqual()) {
auto* bool_type = builder_->create<type::Bool>();
auto* param_type = TypeOf(expr->lhs())->UnwrapAll();
type::Type* result_type = bool_type;
if (auto* vec = param_type->As<type::Vector>()) {
result_type = builder_->create<type::Vector>(bool_type, vec->size());
}
SetType(expr, result_type);
return true;
}
if (expr->IsMultiply()) {
auto* lhs_type = TypeOf(expr->lhs())->UnwrapAll();
auto* rhs_type = TypeOf(expr->rhs())->UnwrapAll();
// Note, the ordering here matters. The later checks depend on the prior
// checks having been done.
auto* lhs_mat = lhs_type->As<type::Matrix>();
auto* rhs_mat = rhs_type->As<type::Matrix>();
auto* lhs_vec = lhs_type->As<type::Vector>();
auto* rhs_vec = rhs_type->As<type::Vector>();
type::Type* result_type;
if (lhs_mat && rhs_mat) {
result_type = builder_->create<type::Matrix>(
lhs_mat->type(), lhs_mat->rows(), rhs_mat->columns());
} else if (lhs_mat && rhs_vec) {
result_type =
builder_->create<type::Vector>(lhs_mat->type(), lhs_mat->rows());
} else if (lhs_vec && rhs_mat) {
result_type =
builder_->create<type::Vector>(rhs_mat->type(), rhs_mat->columns());
} else if (lhs_mat) {
// matrix * scalar
result_type = lhs_type;
} else if (rhs_mat) {
// scalar * matrix
result_type = rhs_type;
} else if (lhs_vec && rhs_vec) {
result_type = lhs_type;
} else if (lhs_vec) {
// Vector * scalar
result_type = lhs_type;
} else if (rhs_vec) {
// Scalar * vector
result_type = rhs_type;
} else {
// Scalar * Scalar
result_type = lhs_type;
}
SetType(expr, result_type);
return true;
}
diagnostics_.add_error("Unknown binary expression", expr->source());
return false;
}
bool Resolver::UnaryOp(ast::UnaryOpExpression* expr) {
// Result type matches the parameter type.
if (!Expression(expr->expr())) {
return false;
}
auto* result_type = TypeOf(expr->expr())->UnwrapPtrIfNeeded();
SetType(expr, result_type);
return true;
}
bool Resolver::VariableDeclStatement(const ast::VariableDeclStatement* stmt) {
ast::Variable* var = stmt->variable();
type::Type* type = var->declared_type();
bool is_global = false;
if (variable_stack_.get(var->symbol(), nullptr, &is_global)) {
const char* error_code = is_global ? "v-0013" : "v-0014";
diagnostics_.add_error(error_code,
"redeclared identifier '" +
builder_->Symbols().NameFor(var->symbol()) + "'",
stmt->source());
return false;
}
if (auto* ctor = stmt->variable()->constructor()) {
if (!Expression(ctor)) {
return false;
}
auto* rhs_type = TypeOf(ctor);
// If the variable has no type, infer it from the rhs
if (type == nullptr) {
type = rhs_type->UnwrapPtrIfNeeded();
}
if (!IsValidAssignment(type, rhs_type)) {
diagnostics_.add_error(
"variable of type '" + type->FriendlyName(builder_->Symbols()) +
"' cannot be initialized with a value of type '" +
rhs_type->FriendlyName(builder_->Symbols()) + "'",
stmt->source());
return false;
}
}
auto* info = Variable(var, type);
if (!info) {
return false;
}
// TODO(amaiorano): Remove this and fix tests. We're overriding the semantic
// type stored in info->type here with a possibly non-canonicalized type.
info->type = type;
variable_stack_.set(var->symbol(), info);
current_block_->decls.push_back(var);
if (!ValidateVariable(var)) {
return false;
}
if (!var->is_const()) {
if (info->storage_class != ast::StorageClass::kFunction) {
if (info->storage_class != ast::StorageClass::kNone) {
diagnostics_.add_error(
"function variable has a non-function storage class",
stmt->source());
return false;
}
info->storage_class = ast::StorageClass::kFunction;
}
}
if (!ApplyStorageClassUsageToType(info->storage_class, info->type,
var->source())) {
diagnostics_.add_note("while instantiating variable " +
builder_->Symbols().NameFor(var->symbol()),
var->source());
return false;
}
return true;
}
type::Type* Resolver::TypeOf(ast::Expression* expr) {
auto it = expr_info_.find(expr);
if (it != expr_info_.end()) {
return it->second.type;
}
return nullptr;
}
void Resolver::SetType(ast::Expression* expr, type::Type* type) {
if (expr_info_.count(expr)) {
TINT_ICE(builder_->Diagnostics())
<< "SetType() called twice for the same expression";
}
expr_info_.emplace(expr, ExpressionInfo{type, current_statement_});
}
void Resolver::CreateSemanticNodes() const {
auto& sem = builder_->Sem();
// Collate all the 'ancestor_entry_points' - this is a map of function symbol
// to all the entry points that transitively call the function.
std::unordered_map<Symbol, std::vector<Symbol>> ancestor_entry_points;
for (auto* func : builder_->AST().Functions()) {
auto it = function_to_info_.find(func);
if (it == function_to_info_.end()) {
continue; // Resolver has likely errored. Process what we can.
}
auto* info = it->second;
if (!func->IsEntryPoint()) {
continue;
}
for (auto* call : info->transitive_calls) {
auto& vec = ancestor_entry_points[call->declaration->symbol()];
vec.emplace_back(func->symbol());
}
}
// Create semantic nodes for all ast::Variables
for (auto it : variable_to_info_) {
auto* var = it.first;
auto* info = it.second;
auto* sem_var = builder_->create<semantic::Variable>(var, info->type,
info->storage_class);
std::vector<const semantic::VariableUser*> users;
for (auto* user : info->users) {
// Create semantic node for the identifier expression if necessary
auto* sem_expr = sem.Get(user);
if (sem_expr == nullptr) {
auto* type = expr_info_.at(user).type;
auto* stmt = expr_info_.at(user).statement;
auto* sem_user =
builder_->create<semantic::VariableUser>(user, type, stmt, sem_var);
sem_var->AddUser(sem_user);
sem.Add(user, sem_user);
} else {
auto* sem_user = sem_expr->As<semantic::VariableUser>();
if (!sem_user) {
TINT_ICE(builder_->Diagnostics())
<< "expected semantic::VariableUser, got "
<< sem_expr->TypeInfo().name;
}
sem_var->AddUser(sem_user);
}
}
sem.Add(var, sem_var);
}
auto remap_vars = [&sem](const std::vector<VariableInfo*>& in) {
std::vector<const semantic::Variable*> out;
out.reserve(in.size());
for (auto* info : in) {
out.emplace_back(sem.Get(info->declaration));
}
return out;
};
// Create semantic nodes for all ast::Functions
std::unordered_map<FunctionInfo*, semantic::Function*> func_info_to_sem_func;
for (auto it : function_to_info_) {
auto* func = it.first;
auto* info = it.second;
auto* sem_func = builder_->create<semantic::Function>(
info->declaration, remap_vars(info->parameters),
remap_vars(info->referenced_module_vars),
remap_vars(info->local_referenced_module_vars), info->return_statements,
ancestor_entry_points[func->symbol()]);
func_info_to_sem_func.emplace(info, sem_func);
sem.Add(func, sem_func);
}
// Create semantic nodes for all ast::CallExpressions
for (auto it : function_calls_) {
auto* call = it.first;
auto info = it.second;
auto* sem_func = func_info_to_sem_func.at(info.function);
sem.Add(call,
builder_->create<semantic::Call>(call, sem_func, info.statement));
}
// Create semantic nodes for all remaining expression types
for (auto it : expr_info_) {
auto* expr = it.first;
auto& info = it.second;
if (sem.Get(expr)) {
// Expression has already been assigned a semantic node
continue;
}
sem.Add(expr, builder_->create<semantic::Expression>(expr, info.type,
info.statement));
}
// Create semantic nodes for all structs
for (auto it : struct_info_) {
auto* str = it.first;
auto* info = it.second;
builder_->Sem().Add(
str, builder_->create<semantic::Struct>(
str, std::move(info->members), info->align, info->size,
info->size_no_padding, info->storage_class_usage,
info->pipeline_stage_uses));
}
}
bool Resolver::DefaultAlignAndSize(type::Type* ty,
uint32_t& align,
uint32_t& size,
const Source& source) {
static constexpr uint32_t vector_size[] = {
/* padding */ 0,
/* padding */ 0,
/*vec2*/ 8,
/*vec3*/ 12,
/*vec4*/ 16,
};
static constexpr uint32_t vector_align[] = {
/* padding */ 0,
/* padding */ 0,
/*vec2*/ 8,
/*vec3*/ 16,
/*vec4*/ 16,
};
auto* cty = Canonical(ty);
if (cty->is_scalar()) {
// Note: Also captures booleans, but these are not host-shareable.
align = 4;
size = 4;
return true;
} else if (auto* vec = cty->As<type::Vector>()) {
if (vec->size() < 2 || vec->size() > 4) {
TINT_UNREACHABLE(diagnostics_)
<< "Invalid vector size: vec" << vec->size();
return false;
}
align = vector_align[vec->size()];
size = vector_size[vec->size()];
return true;
} else if (auto* mat = cty->As<type::Matrix>()) {
if (mat->columns() < 2 || mat->columns() > 4 || mat->rows() < 2 ||
mat->rows() > 4) {
TINT_UNREACHABLE(diagnostics_)
<< "Invalid matrix size: mat" << mat->columns() << "x" << mat->rows();
return false;
}
align = vector_align[mat->rows()];
size = vector_align[mat->rows()] * mat->columns();
return true;
} else if (auto* s = cty->As<type::Struct>()) {
if (auto* si = Structure(s)) {
align = si->align;
size = si->size;
return true;
}
return false;
} else if (cty->Is<type::Array>()) {
if (auto* sem =
Array(ty->UnwrapAliasIfNeeded()->As<type::Array>(), source)) {
align = sem->Align();
size = sem->Size();
return true;
}
return false;
}
TINT_UNREACHABLE(diagnostics_) << "Invalid type " << ty->TypeInfo().name;
return false;
}
const semantic::Array* Resolver::Array(type::Array* arr, const Source& source) {
if (auto* sem = builder_->Sem().Get(arr)) {
// Semantic info already constructed for this array type
return sem;
}
// First check the element type is legal
auto* el_ty = arr->type();
if (!IsStorable(el_ty)) {
builder_->Diagnostics().add_error(
el_ty->FriendlyName(builder_->Symbols()) +
" cannot be used as an element type of an array",
source);
return nullptr;
}
uint32_t el_align = 0;
uint32_t el_size = 0;
if (!DefaultAlignAndSize(el_ty, el_align, el_size, source)) {
return nullptr;
}
auto create_semantic = [&](uint32_t stride) -> semantic::Array* {
auto align = el_align;
// WebGPU requires runtime arrays have at least one element, but the AST
// records an element count of 0 for it.
auto size = std::max<uint32_t>(arr->size(), 1) * stride;
auto* sem = builder_->create<semantic::Array>(arr, align, size, stride);
builder_->Sem().Add(arr, sem);
return sem;
};
// Look for explicit stride via [[stride(n)]] decoration
for (auto* deco : arr->decorations()) {
if (auto* stride = deco->As<ast::StrideDecoration>()) {
auto explicit_stride = stride->stride();
bool is_valid_stride = (explicit_stride >= el_size) &&
(explicit_stride >= el_align) &&
(explicit_stride % el_align == 0);
if (!is_valid_stride) {
// https://gpuweb.github.io/gpuweb/wgsl/#array-layout-rules
// Arrays decorated with the stride attribute must have a stride that is
// at least the size of the element type, and be a multiple of the
// element type's alignment value.
diagnostics_.add_error(
"arrays decorated with the stride attribute must have a stride "
"that is at least the size of the element type, and be a multiple "
"of the element type's alignment value.",
source);
return nullptr;
}
return create_semantic(explicit_stride);
}
}
// Calculate implicit stride
auto implicit_stride = utils::RoundUp(el_align, el_size);
return create_semantic(implicit_stride);
}
bool Resolver::ValidateStructure(const type::Struct* st) {
for (auto* member : st->impl()->members()) {
if (auto* r = member->type()->UnwrapAll()->As<type::Array>()) {
if (r->IsRuntimeArray()) {
if (member != st->impl()->members().back()) {
diagnostics_.add_error(
"v-0015",
"runtime arrays may only appear as the last member of a struct",
member->source());
return false;
}
if (!st->IsBlockDecorated()) {
diagnostics_.add_error("v-0015",
"a struct containing a runtime-sized array "
"requires the [[block]] attribute: '" +
builder_->Symbols().NameFor(st->symbol()) +
"'",
member->source());
return false;
}
for (auto* deco : r->decorations()) {
if (!deco->Is<ast::StrideDecoration>()) {
diagnostics_.add_error("decoration is not valid for array types",
deco->source());
return false;
}
}
}
}
for (auto* deco : member->decorations()) {
if (!(deco->Is<ast::BuiltinDecoration>() ||
deco->Is<ast::LocationDecoration>() ||
deco->Is<ast::StructMemberOffsetDecoration>() ||
deco->Is<ast::StructMemberSizeDecoration>() ||
deco->Is<ast::StructMemberAlignDecoration>())) {
diagnostics_.add_error("decoration is not valid for structure members",
deco->source());
return false;
}
}
}
for (auto* deco : st->impl()->decorations()) {
if (!(deco->Is<ast::StructBlockDecoration>())) {
diagnostics_.add_error("decoration is not valid for struct declarations",
deco->source());
return false;
}
}
return true;
}
Resolver::StructInfo* Resolver::Structure(type::Struct* str) {
auto info_it = struct_info_.find(str);
if (info_it != struct_info_.end()) {
// StructInfo already resolved for this structure type
return info_it->second;
}
if (!ValidateStructure(str)) {
return nullptr;
}
semantic::StructMemberList sem_members;
sem_members.reserve(str->impl()->members().size());
// Calculate the effective size and alignment of each field, and the overall
// size of the structure.
// For size, use the size attribute if provided, otherwise use the default
// size for the type.
// For alignment, use the alignment attribute if provided, otherwise use the
// default alignment for the member type.
// Diagnostic errors are raised if a basic rule is violated.
// Validation of storage-class rules requires analysing the actual variable
// usage of the structure, and so is performed as part of the variable
// validation.
// TODO(crbug.com/tint/628): Actually implement storage-class validation.
uint32_t struct_size = 0;
uint32_t struct_align = 1;
for (auto* member : str->impl()->members()) {
// First check the member type is legal
if (!IsStorable(member->type())) {
builder_->Diagnostics().add_error(
std::string(member->type()->FriendlyName(builder_->Symbols())) +
" cannot be used as the type of a structure member");
return nullptr;
}
uint32_t offset = struct_size;
uint32_t align = 0;
uint32_t size = 0;
if (!DefaultAlignAndSize(member->type(), align, size, member->source())) {
return nullptr;
}
bool has_offset_deco = false;
bool has_align_deco = false;
bool has_size_deco = false;
for (auto* deco : member->decorations()) {
if (auto* o = deco->As<ast::StructMemberOffsetDecoration>()) {
// Offset decorations are not part of the WGSL spec, but are emitted by
// the SPIR-V reader.
if (o->offset() < struct_size) {
diagnostics_.add_error("offsets must be in ascending order",
o->source());
return nullptr;
}
offset = o->offset();
align = 1;
has_offset_deco = true;
} else if (auto* a = deco->As<ast::StructMemberAlignDecoration>()) {
if (a->align() <= 0 || !utils::IsPowerOfTwo(a->align())) {
diagnostics_.add_error(
"align value must be a positive, power-of-two integer",
a->source());
return nullptr;
}
align = a->align();
has_align_deco = true;
} else if (auto* s = deco->As<ast::StructMemberSizeDecoration>()) {
if (s->size() < size) {
diagnostics_.add_error(
"size must be at least as big as the type's size (" +
std::to_string(size) + ")",
s->source());
return nullptr;
}
size = s->size();
has_size_deco = true;
}
}
if (has_offset_deco && (has_align_deco || has_size_deco)) {
diagnostics_.add_error(
"offset decorations cannot be used with align or size decorations",
member->source());
return nullptr;
}
offset = utils::RoundUp(align, offset);
auto* sem_member =
builder_->create<semantic::StructMember>(member, offset, align, size);
builder_->Sem().Add(member, sem_member);
sem_members.emplace_back(sem_member);
struct_size = offset + size;
struct_align = std::max(struct_align, align);
}
auto size_no_padding = struct_size;
struct_size = utils::RoundUp(struct_align, struct_size);
auto* info = struct_infos_.Create();
info->members = std::move(sem_members);
info->align = struct_align;
info->size = struct_size;
info->size_no_padding = size_no_padding;
struct_info_.emplace(str, info);
return info;
}
bool Resolver::ValidateReturn(const ast::ReturnStatement* ret) {
type::Type* func_type = current_function_->declaration->return_type();
auto* ret_type = ret->has_value() ? TypeOf(ret->value())->UnwrapAll()
: builder_->ty.void_();
if (func_type->UnwrapAll() != ret_type) {
diagnostics_.add_error(
"v-000y",
"return statement type must match its function "
"return type, returned '" +
ret_type->FriendlyName(builder_->Symbols()) + "', expected '" +
func_type->FriendlyName(builder_->Symbols()) + "'",
ret->source());
return false;
}
return true;
}
bool Resolver::Return(ast::ReturnStatement* ret) {
current_function_->return_statements.push_back(ret);
auto result = Expression(ret->value());
// Validate after processing the return value expression so that its type is
// available for validation
return result && ValidateReturn(ret);
}
bool Resolver::ValidateSwitch(const ast::SwitchStatement* s) {
auto* cond_type = TypeOf(s->condition())->UnwrapAll();
if (!cond_type->is_integer_scalar()) {
diagnostics_.add_error("v-0025",
"switch statement selector expression must be of a "
"scalar integer type",
s->condition()->source());
return false;
}
bool has_default = false;
std::unordered_set<uint32_t> selector_set;
for (auto* case_stmt : s->body()) {
if (case_stmt->IsDefault()) {
if (has_default) {
// More than one default clause
diagnostics_.add_error(
"v-0008", "switch statement must have exactly one default clause",
case_stmt->source());
return false;
}
has_default = true;
}
for (auto* selector : case_stmt->selectors()) {
if (cond_type != selector->type()) {
diagnostics_.add_error("v-0026",
"the case selector values must have the same "
"type as the selector expression.",
case_stmt->source());
return false;
}
auto v = selector->value_as_u32();
if (selector_set.find(v) != selector_set.end()) {
diagnostics_.add_error(
"v-0027",
"a literal value must not appear more than once in "
"the case selectors for a switch statement: '" +
builder_->str(selector) + "'",
case_stmt->source());
return false;
}
selector_set.emplace(v);
}
}
if (!has_default) {
// No default clause
diagnostics_.add_error("switch statement must have a default clause",
s->source());
return false;
}
if (!s->body().empty()) {
auto* last_clause = s->body().back()->As<ast::CaseStatement>();
auto* last_stmt = last_clause->body()->last();
if (last_stmt && last_stmt->Is<ast::FallthroughStatement>()) {
diagnostics_.add_error("v-0028",
"a fallthrough statement must not appear as "
"the last statement in last clause of a switch",
last_stmt->source());
return false;
}
}
return true;
}
bool Resolver::Switch(ast::SwitchStatement* s) {
if (!Expression(s->condition())) {
return false;
}
for (auto* case_stmt : s->body()) {
if (!CaseStatement(case_stmt)) {
return false;
}
}
if (!ValidateSwitch(s)) {
return false;
}
return true;
}
bool Resolver::ValidateAssignment(const ast::AssignmentStatement* a) {
auto* lhs = a->lhs();
auto* rhs = a->rhs();
// TODO(crbug.com/tint/659): This logic needs updating once pointers are
// pinned down in the WGSL spec.
auto* lhs_type = TypeOf(lhs)->UnwrapAll();
auto* rhs_type = TypeOf(rhs);
if (!IsValidAssignment(lhs_type, rhs_type)) {
diagnostics_.add_error("invalid assignment: cannot assign value of type '" +
rhs_type->FriendlyName(builder_->Symbols()) +
"' to a variable of type '" +
lhs_type->FriendlyName(builder_->Symbols()) +
"'",
a->source());
return false;
}
// Pointers are not storable in WGSL, but the right-hand side must be
// storable. The raw right-hand side might be a pointer value which must be
// loaded (dereferenced) to provide the value to be stored.
auto* rhs_result_type = TypeOf(rhs)->UnwrapAll();
if (!IsStorable(rhs_result_type)) {
diagnostics_.add_error(
"v-000x",
"invalid assignment: right-hand-side is not storable: " +
TypeOf(rhs)->FriendlyName(builder_->Symbols()),
a->source());
return false;
}
// lhs must be a pointer or a constant
auto* lhs_result_type = TypeOf(lhs)->UnwrapIfNeeded();
if (!lhs_result_type->Is<type::Pointer>()) {
// In case lhs is a constant identifier, output a nicer message as it's
// likely to be a common programmer error.
if (auto* ident = lhs->As<ast::IdentifierExpression>()) {
VariableInfo* var;
if (variable_stack_.get(ident->symbol(), &var) &&
var->declaration->is_const()) {
diagnostics_.add_error(
"v-0021",
"cannot re-assign a constant: '" +
builder_->Symbols().NameFor(ident->symbol()) + "'",
a->source());
return false;
}
}
// Issue a generic error.
diagnostics_.add_error(
"v-000x",
"invalid assignment: left-hand-side does not reference storage: " +
TypeOf(lhs)->FriendlyName(builder_->Symbols()),
a->source());
return false;
}
return true;
}
bool Resolver::Assignment(ast::AssignmentStatement* a) {
if (!Expression(a->lhs()) || !Expression(a->rhs())) {
return false;
}
return ValidateAssignment(a);
}
bool Resolver::ApplyStorageClassUsageToType(ast::StorageClass sc,
type::Type* ty,
const Source& usage) {
ty = ty->UnwrapIfNeeded();
if (auto* str = ty->As<type::Struct>()) {
auto* info = Structure(str);
if (!info) {
return false;
}
if (info->storage_class_usage.count(sc)) {
return true; // Already applied
}
info->storage_class_usage.emplace(sc);
for (auto* member : str->impl()->members()) {
if (!ApplyStorageClassUsageToType(sc, member->type(), usage)) {
std::stringstream err;
err << "while analysing structure member "
<< str->FriendlyName(builder_->Symbols()) << "."
<< builder_->Symbols().NameFor(member->symbol());
diagnostics_.add_note(err.str(), member->source());
return false;
}
}
return true;
}
if (auto* arr = ty->As<type::Array>()) {
return ApplyStorageClassUsageToType(sc, arr->type(), usage);
}
if (ast::IsHostShareable(sc) && !IsHostShareable(ty)) {
std::stringstream err;
err << "Type '" << ty->FriendlyName(builder_->Symbols())
<< "' cannot be used in storage class '" << sc
<< "' as it is non-host-shareable";
diagnostics_.add_error(err.str(), usage);
return false;
}
return true;
}
template <typename F>
bool Resolver::BlockScope(const ast::BlockStatement* block,
BlockInfo::Type type,
F&& callback) {
BlockInfo block_info(block, type, current_block_);
ScopedAssignment<BlockInfo*> sa(current_block_, &block_info);
variable_stack_.push_scope();
bool result = callback();
variable_stack_.pop_scope();
return result;
}
std::string Resolver::VectorPretty(uint32_t size, type::Type* element_type) {
type::Vector vec_type(element_type, size);
return vec_type.FriendlyName(builder_->Symbols());
}
type::Type* Resolver::Canonical(type::Type* type) {
using AccessControl = type::AccessControl;
using Alias = type::Alias;
using Matrix = type::Matrix;
using Type = type::Type;
using Vector = type::Vector;
std::function<Type*(Type*)> make_canonical;
make_canonical = [&](Type* t) -> type::Type* {
// Unwrap alias sequence
Type* ct = t;
while (auto* p = ct->As<Alias>()) {
ct = p->type();
}
if (auto* v = ct->As<Vector>()) {
return builder_->create<Vector>(make_canonical(v->type()), v->size());
}
if (auto* m = ct->As<Matrix>()) {
return builder_->create<Matrix>(make_canonical(m->type()), m->rows(),
m->columns());
}
if (auto* ac = ct->As<AccessControl>()) {
return builder_->create<AccessControl>(ac->access_control(),
make_canonical(ac->type()));
}
return ct;
};
return utils::GetOrCreate(type_to_canonical_, type,
[&] { return make_canonical(type); });
}
Resolver::VariableInfo::VariableInfo(ast::Variable* decl, type::Type* ctype)
: declaration(decl),
type(ctype),
storage_class(decl->declared_storage_class()) {}
Resolver::VariableInfo::~VariableInfo() = default;
Resolver::FunctionInfo::FunctionInfo(ast::Function* decl) : declaration(decl) {}
Resolver::FunctionInfo::~FunctionInfo() = default;
Resolver::StructInfo::StructInfo() = default;
Resolver::StructInfo::~StructInfo() = default;
} // namespace resolver
2020-03-02 20:47:43 +00:00
} // namespace tint