dawn-cmake/src/resolver/resolver.cc

4715 lines
157 KiB
C++
Raw Normal View History

2020-03-02 20:47:43 +00:00
// Copyright 2020 The Tint Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "src/resolver/resolver.h"
2020-03-02 20:47:43 +00:00
#include <algorithm>
#include <cmath>
#include <iomanip>
#include <limits>
#include <utility>
#include "src/ast/alias.h"
#include "src/ast/array.h"
#include "src/ast/assignment_statement.h"
#include "src/ast/bitcast_expression.h"
#include "src/ast/break_statement.h"
#include "src/ast/call_statement.h"
#include "src/ast/continue_statement.h"
#include "src/ast/depth_texture.h"
#include "src/ast/disable_validation_decoration.h"
#include "src/ast/discard_statement.h"
#include "src/ast/fallthrough_statement.h"
#include "src/ast/for_loop_statement.h"
#include "src/ast/if_statement.h"
#include "src/ast/internal_decoration.h"
#include "src/ast/interpolate_decoration.h"
#include "src/ast/loop_statement.h"
#include "src/ast/matrix.h"
#include "src/ast/override_decoration.h"
#include "src/ast/pointer.h"
#include "src/ast/return_statement.h"
#include "src/ast/sampled_texture.h"
#include "src/ast/sampler.h"
#include "src/ast/storage_texture.h"
#include "src/ast/struct_block_decoration.h"
#include "src/ast/switch_statement.h"
#include "src/ast/traverse_expressions.h"
#include "src/ast/type_name.h"
#include "src/ast/unary_op_expression.h"
#include "src/ast/variable_decl_statement.h"
#include "src/ast/vector.h"
#include "src/ast/workgroup_decoration.h"
#include "src/sem/array.h"
#include "src/sem/atomic_type.h"
#include "src/sem/call.h"
#include "src/sem/depth_multisampled_texture_type.h"
#include "src/sem/depth_texture_type.h"
#include "src/sem/for_loop_statement.h"
#include "src/sem/function.h"
#include "src/sem/if_statement.h"
#include "src/sem/loop_statement.h"
#include "src/sem/member_accessor_expression.h"
#include "src/sem/multisampled_texture_type.h"
#include "src/sem/pointer_type.h"
#include "src/sem/reference_type.h"
#include "src/sem/sampled_texture_type.h"
#include "src/sem/sampler_type.h"
#include "src/sem/statement.h"
#include "src/sem/storage_texture_type.h"
#include "src/sem/struct.h"
#include "src/sem/switch_statement.h"
#include "src/sem/type_constructor.h"
#include "src/sem/type_conversion.h"
#include "src/sem/variable.h"
#include "src/utils/defer.h"
#include "src/utils/get_or_create.h"
#include "src/utils/math.h"
#include "src/utils/reverse.h"
#include "src/utils/scoped_assignment.h"
#include "src/utils/transform.h"
2020-03-02 20:47:43 +00:00
namespace tint {
namespace resolver {
namespace {
using IntrinsicType = tint::sem::IntrinsicType;
bool IsValidStorageTextureDimension(ast::TextureDimension dim) {
switch (dim) {
case ast::TextureDimension::k1d:
case ast::TextureDimension::k2d:
case ast::TextureDimension::k2dArray:
case ast::TextureDimension::k3d:
return true;
default:
return false;
}
}
bool IsValidStorageTextureImageFormat(ast::ImageFormat format) {
switch (format) {
case ast::ImageFormat::kR32Uint:
case ast::ImageFormat::kR32Sint:
case ast::ImageFormat::kR32Float:
case ast::ImageFormat::kRg32Uint:
case ast::ImageFormat::kRg32Sint:
case ast::ImageFormat::kRg32Float:
case ast::ImageFormat::kRgba8Unorm:
case ast::ImageFormat::kRgba8Snorm:
case ast::ImageFormat::kRgba8Uint:
case ast::ImageFormat::kRgba8Sint:
case ast::ImageFormat::kRgba16Uint:
case ast::ImageFormat::kRgba16Sint:
case ast::ImageFormat::kRgba16Float:
case ast::ImageFormat::kRgba32Uint:
case ast::ImageFormat::kRgba32Sint:
case ast::ImageFormat::kRgba32Float:
return true;
default:
return false;
}
}
/// @returns true if the decoration list contains a
/// ast::DisableValidationDecoration with the validation mode equal to
/// `validation`
bool IsValidationDisabled(const ast::DecorationList& decorations,
ast::DisabledValidation validation) {
for (auto* decoration : decorations) {
if (auto* dv = decoration->As<ast::DisableValidationDecoration>()) {
if (dv->validation == validation) {
return true;
}
}
}
return false;
}
/// @returns true if the decoration list does not contains a
/// ast::DisableValidationDecoration with the validation mode equal to
/// `validation`
bool IsValidationEnabled(const ast::DecorationList& decorations,
ast::DisabledValidation validation) {
return !IsValidationDisabled(decorations, validation);
}
// Helper to stringify a pipeline IO decoration.
std::string deco_to_str(const ast::Decoration* deco) {
std::stringstream str;
if (auto* builtin = deco->As<ast::BuiltinDecoration>()) {
str << "builtin(" << builtin->builtin << ")";
} else if (auto* location = deco->As<ast::LocationDecoration>()) {
str << "location(" << location->value << ")";
}
return str.str();
}
} // namespace
2020-03-02 20:47:43 +00:00
Resolver::Resolver(ProgramBuilder* builder)
: builder_(builder),
diagnostics_(builder->Diagnostics()),
intrinsic_table_(IntrinsicTable::Create(*builder)) {}
Resolver::~Resolver() = default;
2020-03-02 20:47:43 +00:00
bool Resolver::Resolve() {
if (builder_->Diagnostics().contains_errors()) {
return false;
}
bool result = ResolveInternal();
if (!result && !diagnostics_.contains_errors()) {
TINT_ICE(Resolver, diagnostics_)
<< "resolving failed, but no error was raised";
return false;
}
return result;
}
// https://gpuweb.github.io/gpuweb/wgsl/#plain-types-section
bool Resolver::IsPlain(const sem::Type* type) const {
return type->is_scalar() ||
type->IsAnyOf<sem::Atomic, sem::Vector, sem::Matrix, sem::Array,
sem::Struct>();
}
// https://gpuweb.github.io/gpuweb/wgsl.html#storable-types
bool Resolver::IsStorable(const sem::Type* type) const {
return IsPlain(type) || type->IsAnyOf<sem::Texture, sem::Sampler>();
}
// https://gpuweb.github.io/gpuweb/wgsl.html#host-shareable-types
bool Resolver::IsHostShareable(const sem::Type* type) const {
if (type->IsAnyOf<sem::I32, sem::U32, sem::F32>()) {
return true;
}
if (auto* vec = type->As<sem::Vector>()) {
return IsHostShareable(vec->type());
}
if (auto* mat = type->As<sem::Matrix>()) {
return IsHostShareable(mat->type());
}
if (auto* arr = type->As<sem::Array>()) {
return IsHostShareable(arr->ElemType());
}
if (auto* str = type->As<sem::Struct>()) {
for (auto* member : str->Members()) {
if (!IsHostShareable(member->Type())) {
return false;
}
}
return true;
}
if (auto* atomic = type->As<sem::Atomic>()) {
return IsHostShareable(atomic->Type());
}
return false;
}
bool Resolver::ResolveInternal() {
Mark(&builder_->AST());
// Process everything else in the order they appear in the module. This is
// necessary for validation of use-before-declaration.
for (auto* decl : builder_->AST().GlobalDeclarations()) {
if (auto* td = decl->As<ast::TypeDecl>()) {
Mark(td);
if (!TypeDecl(td)) {
return false;
}
} else if (auto* func = decl->As<ast::Function>()) {
Mark(func);
if (!Function(func)) {
return false;
}
} else if (auto* var = decl->As<ast::Variable>()) {
Mark(var);
if (!GlobalVariable(var)) {
return false;
}
} else {
TINT_UNREACHABLE(Resolver, diagnostics_)
<< "unhandled global declaration: " << decl->TypeInfo().name;
return false;
}
}
AllocateOverridableConstantIds();
if (!ValidatePipelineStages()) {
return false;
}
bool result = true;
for (auto* node : builder_->ASTNodes().Objects()) {
if (marked_.count(node) == 0) {
TINT_ICE(Resolver, diagnostics_) << "AST node '" << node->TypeInfo().name
<< "' was not reached by the resolver\n"
<< "At: " << node->source << "\n"
<< "Pointer: " << node;
result = false;
}
}
return result;
}
sem::Type* Resolver::Type(const ast::Type* ty) {
Mark(ty);
auto* s = [&]() -> sem::Type* {
if (ty->Is<ast::Void>()) {
return builder_->create<sem::Void>();
}
if (ty->Is<ast::Bool>()) {
return builder_->create<sem::Bool>();
}
if (ty->Is<ast::I32>()) {
return builder_->create<sem::I32>();
}
if (ty->Is<ast::U32>()) {
return builder_->create<sem::U32>();
}
if (ty->Is<ast::F32>()) {
return builder_->create<sem::F32>();
}
if (auto* t = ty->As<ast::Vector>()) {
if (auto* el = Type(t->type)) {
if (auto* vector = builder_->create<sem::Vector>(el, t->width)) {
if (ValidateVector(vector, t->source)) {
return vector;
}
}
}
return nullptr;
}
if (auto* t = ty->As<ast::Matrix>()) {
if (auto* el = Type(t->type)) {
if (auto* column_type = builder_->create<sem::Vector>(el, t->rows)) {
if (auto* matrix =
builder_->create<sem::Matrix>(column_type, t->columns)) {
if (ValidateMatrix(matrix, t->source)) {
return matrix;
}
}
}
}
return nullptr;
}
if (auto* t = ty->As<ast::Array>()) {
return Array(t);
}
if (auto* t = ty->As<ast::Atomic>()) {
if (auto* el = Type(t->type)) {
auto* a = builder_->create<sem::Atomic>(el);
if (!ValidateAtomic(t, a)) {
return nullptr;
}
return a;
}
return nullptr;
}
if (auto* t = ty->As<ast::Pointer>()) {
if (auto* el = Type(t->type)) {
auto access = t->access;
if (access == ast::kUndefined) {
access = DefaultAccessForStorageClass(t->storage_class);
}
return builder_->create<sem::Pointer>(el, t->storage_class, access);
}
return nullptr;
}
if (auto* t = ty->As<ast::Sampler>()) {
return builder_->create<sem::Sampler>(t->kind);
}
if (auto* t = ty->As<ast::SampledTexture>()) {
if (auto* el = Type(t->type)) {
return builder_->create<sem::SampledTexture>(t->dim, el);
}
return nullptr;
}
if (auto* t = ty->As<ast::MultisampledTexture>()) {
if (auto* el = Type(t->type)) {
return builder_->create<sem::MultisampledTexture>(t->dim, el);
}
return nullptr;
}
if (auto* t = ty->As<ast::DepthTexture>()) {
return builder_->create<sem::DepthTexture>(t->dim);
}
if (auto* t = ty->As<ast::DepthMultisampledTexture>()) {
return builder_->create<sem::DepthMultisampledTexture>(t->dim);
}
if (auto* t = ty->As<ast::StorageTexture>()) {
if (auto* el = Type(t->type)) {
if (!ValidateStorageTexture(t)) {
return nullptr;
}
return builder_->create<sem::StorageTexture>(t->dim, t->format,
t->access, el);
}
return nullptr;
}
if (ty->As<ast::ExternalTexture>()) {
return builder_->create<sem::ExternalTexture>();
}
if (auto* t = ty->As<ast::TypeName>()) {
auto it = named_type_info_.find(t->name);
if (it == named_type_info_.end()) {
AddError("unknown type '" + builder_->Symbols().NameFor(t->name) + "'",
t->source);
return nullptr;
}
return it->second.sem;
}
TINT_UNREACHABLE(Resolver, diagnostics_)
<< "Unhandled ast::Type: " << ty->TypeInfo().name;
return nullptr;
}();
if (s) {
builder_->Sem().Add(ty, s);
}
return s;
}
bool Resolver::ValidateAtomic(const ast::Atomic* a, const sem::Atomic* s) {
// https://gpuweb.github.io/gpuweb/wgsl/#atomic-types
// T must be either u32 or i32.
if (!s->Type()->IsAnyOf<sem::U32, sem::I32>()) {
AddError("atomic only supports i32 or u32 types",
a->type ? a->type->source : a->source);
return false;
}
return true;
}
bool Resolver::ValidateStorageTexture(const ast::StorageTexture* t) {
switch (t->access) {
case ast::Access::kWrite:
break;
case ast::Access::kUndefined:
AddError("storage texture missing access control", t->source);
return false;
default:
AddError("storage textures currently only support 'write' access control",
t->source);
return false;
}
if (!IsValidStorageTextureDimension(t->dim)) {
AddError("cube dimensions for storage textures are not supported",
t->source);
return false;
}
if (!IsValidStorageTextureImageFormat(t->format)) {
AddError(
"image format must be one of the texel formats specified for storage "
"textues in https://gpuweb.github.io/gpuweb/wgsl/#texel-formats",
t->source);
return false;
}
return true;
}
sem::Variable* Resolver::Variable(const ast::Variable* var,
VariableKind kind,
uint32_t index /* = 0 */) {
const sem::Type* storage_ty = nullptr;
// If the variable has a declared type, resolve it.
if (auto* ty = var->type) {
storage_ty = Type(ty);
if (!storage_ty) {
return nullptr;
}
}
const sem::Expression* rhs = nullptr;
// Does the variable have a constructor?
if (var->constructor) {
rhs = Expression(var->constructor);
if (!rhs) {
return nullptr;
}
// If the variable has no declared type, infer it from the RHS
if (!storage_ty) {
if (!var->is_const && kind == VariableKind::kGlobal) {
AddError("global var declaration must specify a type", var->source);
return nullptr;
}
storage_ty = rhs->Type()->UnwrapRef(); // Implicit load of RHS
}
} else if (var->is_const && kind != VariableKind::kParameter &&
!ast::HasDecoration<ast::OverrideDecoration>(var->decorations)) {
AddError("let declaration must have an initializer", var->source);
return nullptr;
} else if (!var->type) {
AddError(
(kind == VariableKind::kGlobal)
? "module scope var declaration requires a type and initializer"
: "function scope var declaration requires a type or initializer",
var->source);
return nullptr;
}
if (!storage_ty) {
TINT_ICE(Resolver, diagnostics_)
<< "failed to determine storage type for variable '" +
builder_->Symbols().NameFor(var->symbol) + "'\n"
<< "Source: " << var->source;
return nullptr;
}
auto storage_class = var->declared_storage_class;
if (storage_class == ast::StorageClass::kNone && !var->is_const) {
// No declared storage class. Infer from usage / type.
if (kind == VariableKind::kLocal) {
storage_class = ast::StorageClass::kFunction;
} else if (storage_ty->UnwrapRef()->is_handle()) {
// https://gpuweb.github.io/gpuweb/wgsl/#module-scope-variables
// If the store type is a texture type or a sampler type, then the
// variable declaration must not have a storage class decoration. The
// storage class will always be handle.
storage_class = ast::StorageClass::kUniformConstant;
}
}
if (kind == VariableKind::kLocal && !var->is_const &&
storage_class != ast::StorageClass::kFunction &&
IsValidationEnabled(var->decorations,
ast::DisabledValidation::kIgnoreStorageClass)) {
AddError("function variable has a non-function storage class", var->source);
return nullptr;
}
auto access = var->declared_access;
if (access == ast::Access::kUndefined) {
access = DefaultAccessForStorageClass(storage_class);
}
auto* var_ty = storage_ty;
if (!var->is_const) {
// Variable declaration. Unlike `let`, `var` has storage.
// Variables are always of a reference type to the declared storage type.
var_ty =
builder_->create<sem::Reference>(storage_ty, storage_class, access);
}
if (rhs && !ValidateVariableConstructorOrCast(var, storage_class, storage_ty,
rhs->Type())) {
return nullptr;
}
if (!ApplyStorageClassUsageToType(
storage_class, const_cast<sem::Type*>(var_ty), var->source)) {
AddNote(
std::string("while instantiating ") +
((kind == VariableKind::kParameter) ? "parameter " : "variable ") +
builder_->Symbols().NameFor(var->symbol),
var->source);
return nullptr;
}
if (kind == VariableKind::kParameter) {
if (auto* ptr = var_ty->As<sem::Pointer>()) {
// For MSL, we push module-scope variables into the entry point as pointer
// parameters, so we also need to handle their store type.
if (!ApplyStorageClassUsageToType(
ptr->StorageClass(), const_cast<sem::Type*>(ptr->StoreType()),
var->source)) {
AddNote("while instantiating parameter " +
builder_->Symbols().NameFor(var->symbol),
var->source);
return nullptr;
}
}
}
switch (kind) {
case VariableKind::kGlobal: {
sem::BindingPoint binding_point;
if (auto bp = var->BindingPoint()) {
binding_point = {bp.group->value, bp.binding->value};
}
auto* override =
ast::GetDecoration<ast::OverrideDecoration>(var->decorations);
bool has_const_val = rhs && var->is_const && !override;
auto* global = builder_->create<sem::GlobalVariable>(
var, var_ty, storage_class, access,
has_const_val ? rhs->ConstantValue() : sem::Constant{},
binding_point);
if (override) {
global->SetIsOverridable();
if (override->has_value) {
global->SetConstantId(static_cast<uint16_t>(override->value));
}
}
builder_->Sem().Add(var, global);
return global;
}
case VariableKind::kLocal: {
auto* local = builder_->create<sem::LocalVariable>(
var, var_ty, storage_class, access,
(rhs && var->is_const) ? rhs->ConstantValue() : sem::Constant{});
builder_->Sem().Add(var, local);
return local;
}
case VariableKind::kParameter: {
auto* param = builder_->create<sem::Parameter>(var, index, var_ty,
storage_class, access);
builder_->Sem().Add(var, param);
return param;
}
}
TINT_UNREACHABLE(Resolver, diagnostics_)
<< "unhandled VariableKind " << static_cast<int>(kind);
return nullptr;
}
ast::Access Resolver::DefaultAccessForStorageClass(
ast::StorageClass storage_class) {
// https://gpuweb.github.io/gpuweb/wgsl/#storage-class
switch (storage_class) {
case ast::StorageClass::kStorage:
case ast::StorageClass::kUniform:
case ast::StorageClass::kUniformConstant:
return ast::Access::kRead;
default:
break;
}
return ast::Access::kReadWrite;
}
void Resolver::AllocateOverridableConstantIds() {
// The next pipeline constant ID to try to allocate.
uint16_t next_constant_id = 0;
// Allocate constant IDs in global declaration order, so that they are
// deterministic.
// TODO(crbug.com/tint/1192): If a transform changes the order or removes an
// unused constant, the allocation may change on the next Resolver pass.
for (auto* decl : builder_->AST().GlobalDeclarations()) {
auto* var = decl->As<ast::Variable>();
if (!var) {
continue;
}
auto* override_deco =
ast::GetDecoration<ast::OverrideDecoration>(var->decorations);
if (!override_deco) {
continue;
}
uint16_t constant_id;
if (override_deco->has_value) {
constant_id = static_cast<uint16_t>(override_deco->value);
} else {
// No ID was specified, so allocate the next available ID.
constant_id = next_constant_id;
while (constant_ids_.count(constant_id)) {
if (constant_id == UINT16_MAX) {
TINT_ICE(Resolver, builder_->Diagnostics())
<< "no more pipeline constant IDs available";
return;
}
constant_id++;
}
next_constant_id = constant_id + 1;
}
auto* sem = Sem<sem::GlobalVariable>(var);
const_cast<sem::GlobalVariable*>(sem)->SetConstantId(constant_id);
}
}
bool Resolver::ValidateVariableConstructorOrCast(
const ast::Variable* var,
ast::StorageClass storage_class,
const sem::Type* storage_ty,
const sem::Type* rhs_ty) {
auto* value_type = rhs_ty->UnwrapRef(); // Implicit load of RHS
// Value type has to match storage type
if (storage_ty != value_type) {
std::string decl = var->is_const ? "let" : "var";
AddError("cannot initialize " + decl + " of type '" +
TypeNameOf(storage_ty) + "' with value of type '" +
TypeNameOf(rhs_ty) + "'",
var->source);
return false;
}
if (!var->is_const) {
switch (storage_class) {
case ast::StorageClass::kPrivate:
case ast::StorageClass::kFunction:
break; // Allowed an initializer
default:
// https://gpuweb.github.io/gpuweb/wgsl/#var-and-let
// Optionally has an initializer expression, if the variable is in the
// private or function storage classes.
AddError("var of storage class '" +
std::string(ast::ToString(storage_class)) +
"' cannot have an initializer. var initializers are only "
"supported for the storage classes "
"'private' and 'function'",
var->source);
return false;
}
}
return true;
}
bool Resolver::GlobalVariable(const ast::Variable* var) {
if (!ValidateNoDuplicateDefinition(var->symbol, var->source,
/* check_global_scope_only */ true)) {
return false;
}
auto* sem = Variable(var, VariableKind::kGlobal);
if (!sem) {
return false;
}
variable_stack_.Set(var->symbol, sem);
auto storage_class = sem->StorageClass();
if (!var->is_const && storage_class == ast::StorageClass::kNone) {
AddError("global variables must have a storage class", var->source);
return false;
}
if (var->is_const && storage_class != ast::StorageClass::kNone) {
AddError("global constants shouldn't have a storage class", var->source);
return false;
}
for (auto* deco : var->decorations) {
Mark(deco);
if (auto* override_deco = deco->As<ast::OverrideDecoration>()) {
// Track the constant IDs that are specified in the shader.
if (override_deco->has_value) {
constant_ids_.emplace(override_deco->value, sem);
}
}
}
if (!ValidateNoDuplicateDecorations(var->decorations)) {
return false;
}
if (!ValidateGlobalVariable(sem)) {
return false;
}
// TODO(bclayton): Call this at the end of resolve on all uniform and storage
// referenced structs
if (!ValidateStorageClassLayout(sem)) {
return false;
}
return true;
}
bool Resolver::ValidateStorageClassLayout(const sem::Struct* str,
ast::StorageClass sc) {
// https://gpuweb.github.io/gpuweb/wgsl/#storage-class-layout-constraints
auto is_uniform_struct_or_array = [sc](const sem::Type* ty) {
return sc == ast::StorageClass::kUniform &&
ty->IsAnyOf<sem::Array, sem::Struct>();
};
auto is_uniform_struct = [sc](const sem::Type* ty) {
return sc == ast::StorageClass::kUniform && ty->Is<sem::Struct>();
};
auto required_alignment_of = [&](const sem::Type* ty) {
uint32_t actual_align = ty->Align();
uint32_t required_align = actual_align;
if (is_uniform_struct_or_array(ty)) {
required_align = utils::RoundUp(16u, actual_align);
}
return required_align;
};
auto member_name_of = [this](const sem::StructMember* sm) {
return builder_->Symbols().NameFor(sm->Declaration()->symbol);
};
auto type_name_of = [this](const sem::StructMember* sm) {
return TypeNameOf(sm->Type());
};
// TODO(amaiorano): Output struct and member decorations so that this output
// can be copied verbatim back into source
auto get_struct_layout_string = [&](const sem::Struct* st) -> std::string {
std::stringstream ss;
if (st->Members().empty()) {
TINT_ICE(Resolver, diagnostics_) << "Validation should have ensured that "
"structs have at least one member";
return {};
}
const auto* const last_member = st->Members().back();
const uint32_t last_member_struct_padding_offset =
last_member->Offset() + last_member->Size();
// Compute max widths to align output
const auto offset_w =
static_cast<int>(::log10(last_member_struct_padding_offset)) + 1;
const auto size_w = static_cast<int>(::log10(st->Size())) + 1;
const auto align_w = static_cast<int>(::log10(st->Align())) + 1;
auto print_struct_begin_line = [&](size_t align, size_t size,
std::string struct_name) {
ss << "/* " << std::setw(offset_w) << " "
<< "align(" << std::setw(align_w) << align << ") size("
<< std::setw(size_w) << size << ") */ struct " << struct_name
<< " {\n";
};
auto print_struct_end_line = [&]() {
ss << "/* "
<< std::setw(offset_w + size_w + align_w) << " "
<< "*/ };";
};
auto print_member_line = [&](size_t offset, size_t align, size_t size,
std::string s) {
ss << "/* offset(" << std::setw(offset_w) << offset << ") align("
<< std::setw(align_w) << align << ") size(" << std::setw(size_w)
<< size << ") */ " << s << ";\n";
};
print_struct_begin_line(st->Align(), st->Size(), TypeNameOf(st));
for (size_t i = 0; i < st->Members().size(); ++i) {
auto* const m = st->Members()[i];
// Output field alignment padding, if any
auto* const prev_member = (i == 0) ? nullptr : str->Members()[i - 1];
if (prev_member) {
uint32_t padding =
m->Offset() - (prev_member->Offset() + prev_member->Size());
if (padding > 0) {
size_t padding_offset = m->Offset() - padding;
print_member_line(padding_offset, 1, padding,
"// -- implicit field alignment padding --");
}
}
// Output member
std::string member_name = member_name_of(m);
print_member_line(m->Offset(), m->Align(), m->Size(),
member_name_of(m) + " : " + type_name_of(m));
}
// Output struct size padding, if any
uint32_t struct_padding = st->Size() - last_member_struct_padding_offset;
if (struct_padding > 0) {
print_member_line(last_member_struct_padding_offset, 1, struct_padding,
"// -- implicit struct size padding --");
}
print_struct_end_line();
return ss.str();
};
if (!ast::IsHostShareable(sc)) {
return true;
}
for (size_t i = 0; i < str->Members().size(); ++i) {
auto* const m = str->Members()[i];
uint32_t required_align = required_alignment_of(m->Type());
// Validate that member is at a valid byte offset
if (m->Offset() % required_align != 0) {
AddError("the offset of a struct member of type '" + type_name_of(m) +
"' in storage class '" + ast::ToString(sc) +
"' must be a multiple of " + std::to_string(required_align) +
" bytes, but '" + member_name_of(m) +
"' is currently at offset " + std::to_string(m->Offset()) +
". Consider setting [[align(" +
std::to_string(required_align) + ")]] on this member",
m->Declaration()->source);
AddNote("see layout of struct:\n" + get_struct_layout_string(str),
str->Declaration()->source);
if (auto* member_str = m->Type()->As<sem::Struct>()) {
AddNote("and layout of struct member:\n" +
get_struct_layout_string(member_str),
member_str->Declaration()->source);
}
return false;
}
// For uniform buffers, validate that the number of bytes between the
// previous member of type struct and the current is a multiple of 16 bytes.
auto* const prev_member = (i == 0) ? nullptr : str->Members()[i - 1];
if (prev_member && is_uniform_struct(prev_member->Type())) {
const uint32_t prev_to_curr_offset = m->Offset() - prev_member->Offset();
if (prev_to_curr_offset % 16 != 0) {
AddError(
"uniform storage requires that the number of bytes between the "
"start of the previous member of type struct and the current "
"member be a multiple of 16 bytes, but there are currently " +
std::to_string(prev_to_curr_offset) + " bytes between '" +
member_name_of(prev_member) + "' and '" + member_name_of(m) +
"'. Consider setting [[align(16)]] on this member",
m->Declaration()->source);
AddNote("see layout of struct:\n" + get_struct_layout_string(str),
str->Declaration()->source);
auto* prev_member_str = prev_member->Type()->As<sem::Struct>();
AddNote("and layout of previous member struct:\n" +
get_struct_layout_string(prev_member_str),
prev_member_str->Declaration()->source);
return false;
}
}
// For uniform buffer array members, validate that array elements are
// aligned to 16 bytes
if (auto* arr = m->Type()->As<sem::Array>()) {
if (sc == ast::StorageClass::kUniform) {
// We already validated that this array member is itself aligned to 16
// bytes above, so we only need to validate that stride is a multiple of
// 16 bytes.
if (arr->Stride() % 16 != 0) {
AddError(
"uniform storage requires that array elements be aligned to 16 "
"bytes, but array stride of '" +
member_name_of(m) + "' is currently " +
std::to_string(arr->Stride()) +
". Consider setting [[stride(" +
std::to_string(
utils::RoundUp(required_align, arr->Stride())) +
")]] on the array type",
m->Declaration()->type->source);
AddNote("see layout of struct:\n" + get_struct_layout_string(str),
str->Declaration()->source);
return false;
}
}
}
// If member is struct, recurse
if (auto* str_member = m->Type()->As<sem::Struct>()) {
// Cache result of struct + storage class pair
if (valid_struct_storage_layouts_.emplace(str_member, sc).second) {
if (!ValidateStorageClassLayout(str_member, sc)) {
return false;
}
}
}
}
return true;
}
bool Resolver::ValidateStorageClassLayout(const sem::Variable* var) {
if (auto* str = var->Type()->UnwrapRef()->As<sem::Struct>()) {
if (!ValidateStorageClassLayout(str, var->StorageClass())) {
AddNote("see declaration of variable", var->Declaration()->source);
return false;
}
}
return true;
}
bool Resolver::ValidateGlobalVariable(const sem::Variable* var) {
auto* decl = var->Declaration();
if (!ValidateNoDuplicateDecorations(decl->decorations)) {
return false;
}
for (auto* deco : decl->decorations) {
if (decl->is_const) {
if (auto* override_deco = deco->As<ast::OverrideDecoration>()) {
if (override_deco->has_value) {
uint32_t id = override_deco->value;
auto it = constant_ids_.find(id);
if (it != constant_ids_.end() && it->second != var) {
AddError("pipeline constant IDs must be unique", deco->source);
AddNote("a pipeline constant with an ID of " + std::to_string(id) +
" was previously declared "
"here:",
ast::GetDecoration<ast::OverrideDecoration>(
it->second->Declaration()->decorations)
->source);
return false;
}
if (id > 65535) {
AddError("pipeline constant IDs must be between 0 and 65535",
deco->source);
return false;
}
}
} else {
AddError("decoration is not valid for constants", deco->source);
return false;
}
} else {
bool is_shader_io_decoration =
deco->IsAnyOf<ast::BuiltinDecoration, ast::InterpolateDecoration,
ast::InvariantDecoration, ast::LocationDecoration>();
bool has_io_storage_class =
var->StorageClass() == ast::StorageClass::kInput ||
var->StorageClass() == ast::StorageClass::kOutput;
if (!(deco->IsAnyOf<ast::BindingDecoration, ast::GroupDecoration,
ast::InternalDecoration>()) &&
(!is_shader_io_decoration || !has_io_storage_class)) {
AddError("decoration is not valid for variables", deco->source);
return false;
}
}
}
auto binding_point = decl->BindingPoint();
switch (var->StorageClass()) {
case ast::StorageClass::kUniform:
case ast::StorageClass::kStorage:
case ast::StorageClass::kUniformConstant: {
// https://gpuweb.github.io/gpuweb/wgsl/#resource-interface
// Each resource variable must be declared with both group and binding
// attributes.
if (!binding_point) {
AddError(
"resource variables require [[group]] and [[binding]] "
"decorations",
decl->source);
return false;
}
break;
}
default:
if (binding_point.binding || binding_point.group) {
// https://gpuweb.github.io/gpuweb/wgsl/#attribute-binding
// Must only be applied to a resource variable
AddError(
"non-resource variables must not have [[group]] or [[binding]] "
"decorations",
decl->source);
return false;
}
}
// https://gpuweb.github.io/gpuweb/wgsl/#variable-declaration
// The access mode always has a default, and except for variables in the
// storage storage class, must not be written.
if (var->StorageClass() != ast::StorageClass::kStorage &&
decl->declared_access != ast::Access::kUndefined) {
AddError(
"only variables in <storage> storage class may declare an access mode",
decl->source);
return false;
}
switch (var->StorageClass()) {
case ast::StorageClass::kStorage: {
// https://gpuweb.github.io/gpuweb/wgsl/#module-scope-variables
// A variable in the storage storage class is a storage buffer variable.
// Its store type must be a host-shareable structure type with block
// attribute, satisfying the storage class constraints.
auto* str = var->Type()->UnwrapRef()->As<sem::Struct>();
if (!str) {
AddError(
"variables declared in the <storage> storage class must be of a "
"structure type",
decl->source);
return false;
}
if (!str->IsBlockDecorated()) {
AddError(
"structure used as a storage buffer must be declared with the "
"[[block]] decoration",
str->Declaration()->source);
if (decl->source.range.begin.line) {
AddNote("structure used as storage buffer here", decl->source);
}
return false;
}
break;
}
case ast::StorageClass::kUniform: {
// https://gpuweb.github.io/gpuweb/wgsl/#module-scope-variables
// A variable in the uniform storage class is a uniform buffer variable.
// Its store type must be a host-shareable structure type with block
// attribute, satisfying the storage class constraints.
auto* str = var->Type()->UnwrapRef()->As<sem::Struct>();
if (!str) {
AddError(
"variables declared in the <uniform> storage class must be of a "
"structure type",
decl->source);
return false;
}
if (!str->IsBlockDecorated()) {
AddError(
"structure used as a uniform buffer must be declared with the "
"[[block]] decoration",
str->Declaration()->source);
if (decl->source.range.begin.line) {
AddNote("structure used as uniform buffer here", decl->source);
}
return false;
}
for (auto* member : str->Members()) {
if (auto* arr = member->Type()->As<sem::Array>()) {
if (arr->IsRuntimeSized()) {
AddError(
"structure containing a runtime sized array "
"cannot be used as a uniform buffer",
decl->source);
AddNote("structure is declared here", str->Declaration()->source);
return false;
}
}
}
break;
}
default:
break;
}
if (!decl->is_const) {
if (!ValidateAtomicVariable(var)) {
return false;
}
}
return ValidateVariable(var);
}
// https://gpuweb.github.io/gpuweb/wgsl/#atomic-types
// Atomic types may only be instantiated by variables in the workgroup storage
// class or by storage buffer variables with a read_write access mode.
bool Resolver::ValidateAtomicVariable(const sem::Variable* var) {
auto sc = var->StorageClass();
auto* decl = var->Declaration();
auto access = var->Access();
auto* type = var->Type()->UnwrapRef();
auto source = decl->type ? decl->type->source : decl->source;
if (type->Is<sem::Atomic>()) {
if (sc != ast::StorageClass::kWorkgroup) {
AddError(
"atomic variables must have <storage> or <workgroup> storage class",
source);
return false;
}
} else if (type->IsAnyOf<sem::Struct, sem::Array>()) {
auto found = atomic_composite_info_.find(type);
if (found != atomic_composite_info_.end()) {
if (sc != ast::StorageClass::kStorage &&
sc != ast::StorageClass::kWorkgroup) {
AddError(
"atomic variables must have <storage> or <workgroup> storage class",
source);
AddNote(
"atomic sub-type of '" + TypeNameOf(type) + "' is declared here",
found->second);
return false;
} else if (sc == ast::StorageClass::kStorage &&
access != ast::Access::kReadWrite) {
AddError(
"atomic variables in <storage> storage class must have read_write "
"access mode",
source);
AddNote(
"atomic sub-type of '" + TypeNameOf(type) + "' is declared here",
found->second);
return false;
}
}
}
return true;
}
bool Resolver::ValidateVariable(const sem::Variable* var) {
auto* decl = var->Declaration();
auto* storage_ty = var->Type()->UnwrapRef();
if (!decl->is_const && !IsStorable(storage_ty)) {
AddError(TypeNameOf(storage_ty) + " cannot be used as the type of a var",
decl->source);
return false;
}
if (decl->is_const && !var->Is<sem::Parameter>() &&
!(storage_ty->IsConstructible() || storage_ty->Is<sem::Pointer>())) {
AddError(TypeNameOf(storage_ty) + " cannot be used as the type of a let",
decl->source);
return false;
}
if (auto* r = storage_ty->As<sem::Array>()) {
if (r->IsRuntimeSized()) {
AddError("runtime arrays may only appear as the last member of a struct",
decl->source);
return false;
}
}
if (auto* r = storage_ty->As<sem::MultisampledTexture>()) {
if (r->dim() != ast::TextureDimension::k2d) {
AddError("only 2d multisampled textures are supported", decl->source);
return false;
}
if (!r->type()->UnwrapRef()->is_numeric_scalar()) {
AddError("texture_multisampled_2d<type>: type must be f32, i32 or u32",
decl->source);
return false;
}
}
if (var->Is<sem::LocalVariable>() && !decl->is_const &&
IsValidationEnabled(decl->decorations,
ast::DisabledValidation::kIgnoreStorageClass)) {
if (!var->Type()->UnwrapRef()->IsConstructible()) {
AddError("function variable must have a constructible type",
decl->type ? decl->type->source : decl->source);
return false;
}
}
if (storage_ty->is_handle() &&
decl->declared_storage_class != ast::StorageClass::kNone) {
// https://gpuweb.github.io/gpuweb/wgsl/#module-scope-variables
// If the store type is a texture type or a sampler type, then the
// variable declaration must not have a storage class decoration. The
// storage class will always be handle.
AddError("variables of type '" + TypeNameOf(storage_ty) +
"' must not have a storage class",
decl->source);
return false;
}
if (IsValidationEnabled(decl->decorations,
ast::DisabledValidation::kIgnoreStorageClass) &&
(decl->declared_storage_class == ast::StorageClass::kInput ||
decl->declared_storage_class == ast::StorageClass::kOutput)) {
AddError("invalid use of input/output storage class", decl->source);
return false;
}
return true;
}
bool Resolver::ValidateFunctionParameter(const ast::Function* func,
const sem::Variable* var) {
if (!ValidateVariable(var)) {
return false;
}
auto* decl = var->Declaration();
for (auto* deco : decl->decorations) {
if (!func->IsEntryPoint() && !deco->Is<ast::InternalDecoration>()) {
AddError(
"decoration is not valid for non-entry point function parameters",
deco->source);
return false;
} else if (!deco->IsAnyOf<ast::BuiltinDecoration, ast::InvariantDecoration,
ast::LocationDecoration,
ast::InterpolateDecoration,
ast::InternalDecoration>() &&
(IsValidationEnabled(
decl->decorations,
ast::DisabledValidation::kEntryPointParameter) &&
IsValidationEnabled(
decl->decorations,
ast::DisabledValidation::
kIgnoreConstructibleFunctionParameter))) {
AddError("decoration is not valid for function parameters", deco->source);
return false;
}
}
if (auto* ref = var->Type()->As<sem::Pointer>()) {
auto sc = ref->StorageClass();
if (!(sc == ast::StorageClass::kFunction ||
sc == ast::StorageClass::kPrivate ||
sc == ast::StorageClass::kWorkgroup) &&
IsValidationEnabled(decl->decorations,
ast::DisabledValidation::kIgnoreStorageClass)) {
std::stringstream ss;
ss << "function parameter of pointer type cannot be in '" << sc
<< "' storage class";
AddError(ss.str(), decl->source);
return false;
}
}
if (IsPlain(var->Type())) {
if (!var->Type()->IsConstructible() &&
IsValidationEnabled(
decl->decorations,
ast::DisabledValidation::kIgnoreConstructibleFunctionParameter)) {
AddError("store type of function parameter must be a constructible type",
decl->source);
return false;
}
} else if (!var->Type()
->IsAnyOf<sem::Texture, sem::Sampler, sem::Pointer>()) {
AddError(
"store type of function parameter cannot be " + TypeNameOf(var->Type()),
decl->source);
return false;
}
return true;
}
bool Resolver::ValidateBuiltinDecoration(const ast::BuiltinDecoration* deco,
const sem::Type* storage_ty,
const bool is_input) {
auto* type = storage_ty->UnwrapRef();
const auto stage = current_function_
? current_function_->Declaration()->PipelineStage()
: ast::PipelineStage::kNone;
std::stringstream stage_name;
stage_name << stage;
bool is_stage_mismatch = false;
bool is_output = !is_input;
switch (deco->builtin) {
case ast::Builtin::kPosition:
if (stage != ast::PipelineStage::kNone &&
!((is_input && stage == ast::PipelineStage::kFragment) ||
(is_output && stage == ast::PipelineStage::kVertex))) {
is_stage_mismatch = true;
}
if (!(type->is_float_vector() && type->As<sem::Vector>()->Width() == 4)) {
AddError("store type of " + deco_to_str(deco) + " must be 'vec4<f32>'",
deco->source);
return false;
}
break;
case ast::Builtin::kGlobalInvocationId:
case ast::Builtin::kLocalInvocationId:
case ast::Builtin::kNumWorkgroups:
case ast::Builtin::kWorkgroupId:
if (stage != ast::PipelineStage::kNone &&
!(stage == ast::PipelineStage::kCompute && is_input)) {
is_stage_mismatch = true;
}
if (!(type->is_unsigned_integer_vector() &&
type->As<sem::Vector>()->Width() == 3)) {
AddError("store type of " + deco_to_str(deco) + " must be 'vec3<u32>'",
deco->source);
return false;
}
break;
case ast::Builtin::kFragDepth:
if (stage != ast::PipelineStage::kNone &&
!(stage == ast::PipelineStage::kFragment && !is_input)) {
is_stage_mismatch = true;
}
if (!type->Is<sem::F32>()) {
AddError("store type of " + deco_to_str(deco) + " must be 'f32'",
deco->source);
return false;
}
break;
case ast::Builtin::kFrontFacing:
if (stage != ast::PipelineStage::kNone &&
!(stage == ast::PipelineStage::kFragment && is_input)) {
is_stage_mismatch = true;
}
if (!type->Is<sem::Bool>()) {
AddError("store type of " + deco_to_str(deco) + " must be 'bool'",
deco->source);
return false;
}
break;
case ast::Builtin::kLocalInvocationIndex:
if (stage != ast::PipelineStage::kNone &&
!(stage == ast::PipelineStage::kCompute && is_input)) {
is_stage_mismatch = true;
}
if (!type->Is<sem::U32>()) {
AddError("store type of " + deco_to_str(deco) + " must be 'u32'",
deco->source);
return false;
}
break;
case ast::Builtin::kVertexIndex:
case ast::Builtin::kInstanceIndex:
if (stage != ast::PipelineStage::kNone &&
!(stage == ast::PipelineStage::kVertex && is_input)) {
is_stage_mismatch = true;
}
if (!type->Is<sem::U32>()) {
AddError("store type of " + deco_to_str(deco) + " must be 'u32'",
deco->source);
return false;
}
break;
case ast::Builtin::kSampleMask:
if (stage != ast::PipelineStage::kNone &&
!(stage == ast::PipelineStage::kFragment)) {
is_stage_mismatch = true;
}
if (!type->Is<sem::U32>()) {
AddError("store type of " + deco_to_str(deco) + " must be 'u32'",
deco->source);
return false;
}
break;
case ast::Builtin::kSampleIndex:
if (stage != ast::PipelineStage::kNone &&
!(stage == ast::PipelineStage::kFragment && is_input)) {
is_stage_mismatch = true;
}
if (!type->Is<sem::U32>()) {
AddError("store type of " + deco_to_str(deco) + " must be 'u32'",
deco->source);
return false;
}
break;
default:
break;
}
if (is_stage_mismatch) {
AddError(deco_to_str(deco) + " cannot be used in " +
(is_input ? "input of " : "output of ") + stage_name.str() +
" pipeline stage",
deco->source);
return false;
}
return true;
}
bool Resolver::ValidateInterpolateDecoration(
const ast::InterpolateDecoration* deco,
const sem::Type* storage_ty) {
auto* type = storage_ty->UnwrapRef();
if (type->is_integer_scalar_or_vector() &&
deco->type != ast::InterpolationType::kFlat) {
AddError(
"interpolation type must be 'flat' for integral user-defined IO types",
deco->source);
return false;
}
if (deco->type == ast::InterpolationType::kFlat &&
deco->sampling != ast::InterpolationSampling::kNone) {
AddError("flat interpolation attribute must not have a sampling parameter",
deco->source);
return false;
}
return true;
}
bool Resolver::ValidateFunction(const sem::Function* func) {
auto* decl = func->Declaration();
if (!ValidateNoDuplicateDefinition(decl->symbol, decl->source,
/* check_global_scope_only */ true)) {
return false;
}
auto workgroup_deco_count = 0;
for (auto* deco : decl->decorations) {
if (deco->Is<ast::WorkgroupDecoration>()) {
workgroup_deco_count++;
if (decl->PipelineStage() != ast::PipelineStage::kCompute) {
AddError(
"the workgroup_size attribute is only valid for compute stages",
deco->source);
return false;
}
} else if (!deco->IsAnyOf<ast::StageDecoration,
ast::InternalDecoration>()) {
AddError("decoration is not valid for functions", deco->source);
return false;
}
}
if (decl->params.size() > 255) {
AddError("functions may declare at most 255 parameters", decl->source);
return false;
}
for (size_t i = 0; i < decl->params.size(); i++) {
if (!ValidateFunctionParameter(decl, func->Parameters()[i])) {
return false;
}
}
if (!func->ReturnType()->Is<sem::Void>()) {
if (!func->ReturnType()->IsConstructible()) {
AddError("function return type must be a constructible type",
decl->return_type->source);
return false;
}
if (decl->body) {
if (!decl->body->Last() ||
!decl->body->Last()->Is<ast::ReturnStatement>()) {
AddError("non-void function must end with a return statement",
decl->source);
return false;
}
} else if (IsValidationEnabled(
decl->decorations,
ast::DisabledValidation::kFunctionHasNoBody)) {
TINT_ICE(Resolver, diagnostics_)
<< "Function " << builder_->Symbols().NameFor(decl->symbol)
<< " has no body";
}
for (auto* deco : decl->return_type_decorations) {
if (!decl->IsEntryPoint()) {
AddError(
"decoration is not valid for non-entry point function return types",
deco->source);
return false;
}
if (!deco->IsAnyOf<ast::BuiltinDecoration, ast::InternalDecoration,
ast::LocationDecoration, ast::InterpolateDecoration,
ast::InvariantDecoration>() &&
(IsValidationEnabled(decl->decorations,
ast::DisabledValidation::kEntryPointParameter) &&
IsValidationEnabled(decl->decorations,
ast::DisabledValidation::
kIgnoreConstructibleFunctionParameter))) {
AddError("decoration is not valid for entry point return types",
deco->source);
return false;
}
}
}
if (decl->IsEntryPoint()) {
if (!ValidateEntryPoint(func)) {
return false;
}
}
return true;
}
bool Resolver::ValidateEntryPoint(const sem::Function* func) {
auto* decl = func->Declaration();
// Use a lambda to validate the entry point decorations for a type.
// Persistent state is used to track which builtins and locations have
// already been seen, in order to catch conflicts.
// TODO(jrprice): This state could be stored in sem::Function instead, and
// then passed to sem::Function since it would be useful there too.
std::unordered_set<ast::Builtin> builtins;
std::unordered_set<uint32_t> locations;
enum class ParamOrRetType {
kParameter,
kReturnType,
};
// Inner lambda that is applied to a type and all of its members.
auto validate_entry_point_decorations_inner = [&](const ast::DecorationList&
decos,
const sem::Type* ty,
Source source,
ParamOrRetType param_or_ret,
bool is_struct_member) {
// Scan decorations for pipeline IO attributes.
// Check for overlap with attributes that have been seen previously.
const ast::Decoration* pipeline_io_attribute = nullptr;
const ast::InterpolateDecoration* interpolate_attribute = nullptr;
const ast::InvariantDecoration* invariant_attribute = nullptr;
for (auto* deco : decos) {
auto is_invalid_compute_shader_decoration = false;
if (auto* builtin = deco->As<ast::BuiltinDecoration>()) {
if (pipeline_io_attribute) {
AddError("multiple entry point IO attributes", deco->source);
AddNote("previously consumed " + deco_to_str(pipeline_io_attribute),
pipeline_io_attribute->source);
return false;
}
pipeline_io_attribute = deco;
if (builtins.count(builtin->builtin)) {
AddError(deco_to_str(builtin) +
" attribute appears multiple times as pipeline " +
(param_or_ret == ParamOrRetType::kParameter ? "input"
: "output"),
decl->source);
return false;
}
if (!ValidateBuiltinDecoration(
builtin, ty,
/* is_input */ param_or_ret == ParamOrRetType::kParameter)) {
return false;
}
builtins.emplace(builtin->builtin);
} else if (auto* location = deco->As<ast::LocationDecoration>()) {
if (pipeline_io_attribute) {
AddError("multiple entry point IO attributes", deco->source);
AddNote("previously consumed " + deco_to_str(pipeline_io_attribute),
pipeline_io_attribute->source);
return false;
}
pipeline_io_attribute = deco;
bool is_input = param_or_ret == ParamOrRetType::kParameter;
if (!ValidateLocationDecoration(location, ty, locations, source,
is_input)) {
return false;
}
} else if (auto* interpolate = deco->As<ast::InterpolateDecoration>()) {
if (decl->PipelineStage() == ast::PipelineStage::kCompute) {
is_invalid_compute_shader_decoration = true;
} else if (!ValidateInterpolateDecoration(interpolate, ty)) {
return false;
}
interpolate_attribute = interpolate;
} else if (auto* invariant = deco->As<ast::InvariantDecoration>()) {
if (decl->PipelineStage() == ast::PipelineStage::kCompute) {
is_invalid_compute_shader_decoration = true;
}
invariant_attribute = invariant;
}
if (is_invalid_compute_shader_decoration) {
std::string input_or_output =
param_or_ret == ParamOrRetType::kParameter ? "inputs" : "output";
AddError(
"decoration is not valid for compute shader " + input_or_output,
deco->source);
return false;
}
}
if (IsValidationEnabled(decos,
ast::DisabledValidation::kEntryPointParameter)) {
if (is_struct_member && ty->Is<sem::Struct>()) {
AddError("nested structures cannot be used for entry point IO", source);
return false;
}
if (!ty->Is<sem::Struct>() && !pipeline_io_attribute) {
std::string err = "missing entry point IO attribute";
if (!is_struct_member) {
err +=
(param_or_ret == ParamOrRetType::kParameter ? " on parameter"
: " on return type");
}
AddError(err, source);
return false;
}
if (pipeline_io_attribute &&
pipeline_io_attribute->Is<ast::LocationDecoration>()) {
if (ty->is_integer_scalar_or_vector() && !interpolate_attribute) {
// TODO(crbug.com/tint/1224): Make these errors once downstream
// usages have caught up (no sooner than M99).
if (decl->PipelineStage() == ast::PipelineStage::kVertex &&
param_or_ret == ParamOrRetType::kReturnType) {
AddWarning(
"integral user-defined vertex outputs must have a flat "
"interpolation attribute",
source);
}
if (decl->PipelineStage() == ast::PipelineStage::kFragment &&
param_or_ret == ParamOrRetType::kParameter) {
AddWarning(
"integral user-defined fragment inputs must have a flat "
"interpolation attribute",
source);
}
}
}
if (invariant_attribute) {
bool has_position = false;
if (pipeline_io_attribute) {
if (auto* builtin =
pipeline_io_attribute->As<ast::BuiltinDecoration>()) {
has_position = (builtin->builtin == ast::Builtin::kPosition);
}
}
if (!has_position) {
AddError(
"invariant attribute must only be applied to a position "
"builtin",
invariant_attribute->source);
return false;
}
}
}
return true;
};
// Outer lambda for validating the entry point decorations for a type.
auto validate_entry_point_decorations = [&](const ast::DecorationList& decos,
const sem::Type* ty,
Source source,
ParamOrRetType param_or_ret) {
if (!validate_entry_point_decorations_inner(decos, ty, source, param_or_ret,
/*is_struct_member*/ false)) {
return false;
}
if (auto* str = ty->As<sem::Struct>()) {
for (auto* member : str->Members()) {
if (!validate_entry_point_decorations_inner(
member->Declaration()->decorations, member->Type(),
member->Declaration()->source, param_or_ret,
/*is_struct_member*/ true)) {
AddNote("while analysing entry point '" +
builder_->Symbols().NameFor(decl->symbol) + "'",
decl->source);
return false;
}
}
}
return true;
};
for (auto* param : func->Parameters()) {
auto* param_decl = param->Declaration();
if (!validate_entry_point_decorations(param_decl->decorations,
param->Type(), param_decl->source,
ParamOrRetType::kParameter)) {
return false;
}
}
// Clear IO sets after parameter validation. Builtin and location attributes
// in return types should be validated independently from those used in
// parameters.
builtins.clear();
locations.clear();
if (!func->ReturnType()->Is<sem::Void>()) {
if (!validate_entry_point_decorations(decl->return_type_decorations,
func->ReturnType(), decl->source,
ParamOrRetType::kReturnType)) {
return false;
}
}
if (decl->PipelineStage() == ast::PipelineStage::kVertex &&
builtins.count(ast::Builtin::kPosition) == 0) {
// Check module-scope variables, as the SPIR-V sanitizer generates these.
bool found = false;
for (auto* global : func->TransitivelyReferencedGlobals()) {
if (auto* builtin = ast::GetDecoration<ast::BuiltinDecoration>(
global->Declaration()->decorations)) {
if (builtin->builtin == ast::Builtin::kPosition) {
found = true;
break;
}
}
}
if (!found) {
AddError(
"a vertex shader must include the 'position' builtin in its return "
"type",
decl->source);
return false;
}
}
if (decl->PipelineStage() == ast::PipelineStage::kCompute) {
if (!ast::HasDecoration<ast::WorkgroupDecoration>(decl->decorations)) {
AddError(
"a compute shader must include 'workgroup_size' in its "
"attributes",
decl->source);
return false;
}
}
// Validate there are no resource variable binding collisions
std::unordered_map<sem::BindingPoint, const ast::Variable*> binding_points;
for (auto* var : func->TransitivelyReferencedGlobals()) {
auto* var_decl = var->Declaration();
if (!var_decl->BindingPoint()) {
continue;
}
auto bp = var->BindingPoint();
auto res = binding_points.emplace(bp, var_decl);
if (!res.second &&
IsValidationEnabled(decl->decorations,
ast::DisabledValidation::kBindingPointCollision) &&
IsValidationEnabled(res.first->second->decorations,
ast::DisabledValidation::kBindingPointCollision)) {
// https://gpuweb.github.io/gpuweb/wgsl/#resource-interface
// Bindings must not alias within a shader stage: two different
// variables in the resource interface of a given shader must not have
// the same group and binding values, when considered as a pair of
// values.
auto func_name = builder_->Symbols().NameFor(decl->symbol);
AddError("entry point '" + func_name +
"' references multiple variables that use the "
"same resource binding [[group(" +
std::to_string(bp.group) + "), binding(" +
std::to_string(bp.binding) + ")]]",
var_decl->source);
AddNote("first resource binding usage declared here",
res.first->second->source);
return false;
}
}
return true;
}
sem::Function* Resolver::Function(const ast::Function* decl) {
variable_stack_.Push();
TINT_DEFER(variable_stack_.Pop());
uint32_t parameter_index = 0;
std::unordered_map<Symbol, Source> parameter_names;
std::vector<sem::Parameter*> parameters;
// Resolve all the parameters
for (auto* param : decl->params) {
Mark(param);
{ // Check the parameter name is unique for the function
auto emplaced = parameter_names.emplace(param->symbol, param->source);
if (!emplaced.second) {
auto name = builder_->Symbols().NameFor(param->symbol);
AddError("redefinition of parameter '" + name + "'", param->source);
AddNote("previous definition is here", emplaced.first->second);
return nullptr;
}
}
auto* var = As<sem::Parameter>(
Variable(param, VariableKind::kParameter, parameter_index++));
if (!var) {
return nullptr;
}
for (auto* deco : param->decorations) {
Mark(deco);
}
if (!ValidateNoDuplicateDecorations(param->decorations)) {
return nullptr;
}
variable_stack_.Set(param->symbol, var);
parameters.emplace_back(var);
auto* var_ty = const_cast<sem::Type*>(var->Type());
if (auto* str = var_ty->As<sem::Struct>()) {
switch (decl->PipelineStage()) {
case ast::PipelineStage::kVertex:
str->AddUsage(sem::PipelineStageUsage::kVertexInput);
break;
case ast::PipelineStage::kFragment:
str->AddUsage(sem::PipelineStageUsage::kFragmentInput);
break;
case ast::PipelineStage::kCompute:
str->AddUsage(sem::PipelineStageUsage::kComputeInput);
break;
case ast::PipelineStage::kNone:
break;
}
}
}
// Resolve the return type
sem::Type* return_type = nullptr;
if (auto* ty = decl->return_type) {
return_type = Type(ty);
if (!return_type) {
return nullptr;
}
} else {
return_type = builder_->create<sem::Void>();
}
if (auto* str = return_type->As<sem::Struct>()) {
if (!ApplyStorageClassUsageToType(ast::StorageClass::kNone, str,
decl->source)) {
AddNote("while instantiating return type for " +
builder_->Symbols().NameFor(decl->symbol),
decl->source);
return nullptr;
}
switch (decl->PipelineStage()) {
case ast::PipelineStage::kVertex:
str->AddUsage(sem::PipelineStageUsage::kVertexOutput);
break;
case ast::PipelineStage::kFragment:
str->AddUsage(sem::PipelineStageUsage::kFragmentOutput);
break;
case ast::PipelineStage::kCompute:
str->AddUsage(sem::PipelineStageUsage::kComputeOutput);
break;
case ast::PipelineStage::kNone:
break;
}
}
sem::WorkgroupSize ws{};
if (!WorkgroupSizeFor(decl, ws)) {
return nullptr;
}
auto* func =
builder_->create<sem::Function>(decl, return_type, parameters, ws);
builder_->Sem().Add(decl, func);
if (decl->IsEntryPoint()) {
entry_points_.emplace_back(func);
}
TINT_SCOPED_ASSIGNMENT(current_function_, func);
if (decl->body) {
Mark(decl->body);
if (current_compound_statement_) {
TINT_ICE(Resolver, diagnostics_)
<< "Resolver::Function() called with a current compound statement";
return nullptr;
}
auto* sem_block = builder_->create<sem::FunctionBlockStatement>(func);
builder_->Sem().Add(decl->body, sem_block);
if (!Scope(sem_block, [&] { return Statements(decl->body->statements); })) {
return nullptr;
}
}
for (auto* deco : decl->decorations) {
Mark(deco);
}
if (!ValidateNoDuplicateDecorations(decl->decorations)) {
return nullptr;
}
for (auto* deco : decl->return_type_decorations) {
Mark(deco);
}
if (!ValidateNoDuplicateDecorations(decl->return_type_decorations)) {
return nullptr;
}
if (!ValidateFunction(func)) {
return nullptr;
}
// Register the function information _after_ processing the statements. This
// allows us to catch a function calling itself when determining the call
// information as this function doesn't exist until it's finished.
symbol_to_function_[decl->symbol] = func;
// If this is an entry point, mark all transitively called functions as being
// used by this entry point.
if (decl->IsEntryPoint()) {
for (auto* f : func->TransitivelyCalledFunctions()) {
const_cast<sem::Function*>(f)->AddAncestorEntryPoint(func);
}
}
return func;
}
bool Resolver::WorkgroupSizeFor(const ast::Function* func,
sem::WorkgroupSize& ws) {
// Set work-group size defaults.
for (int i = 0; i < 3; i++) {
ws[i].value = 1;
ws[i].overridable_const = nullptr;
}
auto* deco = ast::GetDecoration<ast::WorkgroupDecoration>(func->decorations);
if (!deco) {
return true;
}
auto values = deco->Values();
auto any_i32 = false;
auto any_u32 = false;
for (int i = 0; i < 3; i++) {
// Each argument to this decoration can either be a literal, an
// identifier for a module-scope constants, or nullptr if not specified.
auto* expr = values[i];
if (!expr) {
// Not specified, just use the default.
continue;
}
auto* expr_sem = Expression(expr);
if (!expr_sem) {
return false;
}
constexpr const char* kErrBadType =
"workgroup_size argument must be either literal or module-scope "
"constant of type i32 or u32";
constexpr const char* kErrInconsistentType =
"workgroup_size arguments must be of the same type, either i32 "
"or u32";
auto* ty = TypeOf(expr);
bool is_i32 = ty->UnwrapRef()->Is<sem::I32>();
bool is_u32 = ty->UnwrapRef()->Is<sem::U32>();
if (!is_i32 && !is_u32) {
AddError(kErrBadType, expr->source);
return false;
}
any_i32 = any_i32 || is_i32;
any_u32 = any_u32 || is_u32;
if (any_i32 && any_u32) {
AddError(kErrInconsistentType, expr->source);
return false;
}
sem::Constant value;
if (auto* user = Sem(expr)->As<sem::VariableUser>()) {
// We have an variable of a module-scope constant.
auto* decl = user->Variable()->Declaration();
if (!decl->is_const) {
AddError(kErrBadType, expr->source);
return false;
}
// Capture the constant if an [[override]] attribute is present.
if (ast::HasDecoration<ast::OverrideDecoration>(decl->decorations)) {
ws[i].overridable_const = decl;
}
if (decl->constructor) {
value = Sem(decl->constructor)->ConstantValue();
} else {
// No constructor means this value must be overriden by the user.
ws[i].value = 0;
continue;
}
} else if (expr->Is<ast::LiteralExpression>()) {
value = Sem(expr)->ConstantValue();
} else {
AddError(
"workgroup_size argument must be either a literal or a "
"module-scope constant",
values[i]->source);
return false;
}
if (!value) {
TINT_ICE(Resolver, diagnostics_)
<< "could not resolve constant workgroup_size constant value";
continue;
}
// Validate and set the default value for this dimension.
if (is_i32 ? value.Elements()[0].i32 < 1 : value.Elements()[0].u32 < 1) {
AddError("workgroup_size argument must be at least 1", values[i]->source);
return false;
}
ws[i].value = is_i32 ? static_cast<uint32_t>(value.Elements()[0].i32)
: value.Elements()[0].u32;
}
2020-03-02 20:47:43 +00:00
return true;
}
bool Resolver::Statements(const ast::StatementList& stmts) {
for (auto* stmt : stmts) {
Mark(stmt);
if (!Statement(stmt)) {
return false;
}
}
if (!ValidateStatements(stmts)) {
return false;
}
return true;
}
bool Resolver::ValidateStatements(const ast::StatementList& stmts) {
bool unreachable = false;
for (auto* stmt : stmts) {
if (unreachable) {
AddError("code is unreachable", stmt->source);
return false;
}
auto* nested_stmt = stmt;
while (auto* block = nested_stmt->As<ast::BlockStatement>()) {
if (block->Empty()) {
break;
}
nested_stmt = block->statements.back();
}
if (nested_stmt->IsAnyOf<ast::ReturnStatement, ast::BreakStatement,
ast::ContinueStatement, ast::DiscardStatement>()) {
unreachable = true;
}
}
return true;
}
bool Resolver::Statement(const ast::Statement* stmt) {
if (stmt->Is<ast::CaseStatement>()) {
AddError("case statement can only be used inside a switch statement",
stmt->source);
return false;
}
if (stmt->Is<ast::ElseStatement>()) {
TINT_ICE(Resolver, diagnostics_)
<< "Resolver::Statement() encountered an Else statement. Else "
"statements are embedded in If statements, so should never be "
"encountered as top-level statements";
return false;
}
// Compound statements. These create their own sem::CompoundStatement
// bindings.
if (auto* b = stmt->As<ast::BlockStatement>()) {
return BlockStatement(b);
}
if (auto* l = stmt->As<ast::ForLoopStatement>()) {
return ForLoopStatement(l);
}
if (auto* l = stmt->As<ast::LoopStatement>()) {
return LoopStatement(l);
}
if (auto* i = stmt->As<ast::IfStatement>()) {
return IfStatement(i);
}
if (auto* s = stmt->As<ast::SwitchStatement>()) {
return SwitchStatement(s);
}
// Non-Compound statements
sem::Statement* sem_statement = builder_->create<sem::Statement>(
stmt, current_compound_statement_, current_function_);
builder_->Sem().Add(stmt, sem_statement);
TINT_SCOPED_ASSIGNMENT(current_statement_, sem_statement);
if (auto* a = stmt->As<ast::AssignmentStatement>()) {
return Assignment(a);
}
if (stmt->Is<ast::BreakStatement>()) {
if (!sem_statement->FindFirstParent<sem::LoopBlockStatement>() &&
!sem_statement->FindFirstParent<sem::SwitchCaseBlockStatement>()) {
AddError("break statement must be in a loop or switch case",
stmt->source);
return false;
}
return true;
}
if (auto* c = stmt->As<ast::CallStatement>()) {
if (!Expression(c->expr)) {
return false;
}
return true;
}
if (auto* c = stmt->As<ast::ContinueStatement>()) {
// Set if we've hit the first continue statement in our parent loop
if (auto* block =
current_block_->FindFirstParent<
sem::LoopBlockStatement, sem::LoopContinuingBlockStatement>()) {
if (auto* loop_block = block->As<sem::LoopBlockStatement>()) {
if (!loop_block->FirstContinue()) {
const_cast<sem::LoopBlockStatement*>(loop_block)
->SetFirstContinue(c, loop_block->Decls().size());
}
} else {
AddError("continuing blocks must not contain a continue statement",
stmt->source);
return false;
}
} else {
AddError("continue statement must be in a loop", stmt->source);
return false;
}
return true;
}
if (stmt->Is<ast::DiscardStatement>()) {
if (auto* continuing =
sem_statement
->FindFirstParent<sem::LoopContinuingBlockStatement>()) {
AddError("continuing blocks must not contain a discard statement",
stmt->source);
if (continuing != sem_statement->Parent()) {
AddNote("see continuing block here", continuing->Declaration()->source);
}
return false;
}
current_function_->SetHasDiscard();
return true;
}
if (stmt->Is<ast::FallthroughStatement>()) {
return true;
}
if (auto* r = stmt->As<ast::ReturnStatement>()) {
return Return(r);
}
if (auto* v = stmt->As<ast::VariableDeclStatement>()) {
return VariableDeclStatement(v);
}
AddError("unknown statement type for type determination: " +
std::string(stmt->TypeInfo().name),
stmt->source);
return false;
}
bool Resolver::CaseStatement(const ast::CaseStatement* stmt) {
auto* sem = builder_->create<sem::SwitchCaseBlockStatement>(
stmt->body, current_compound_statement_, current_function_);
builder_->Sem().Add(stmt, sem);
builder_->Sem().Add(stmt->body, sem);
Mark(stmt->body);
for (auto* sel : stmt->selectors) {
Mark(sel);
}
return Scope(sem, [&] { return Statements(stmt->body->statements); });
}
bool Resolver::IfStatement(const ast::IfStatement* stmt) {
auto* sem = builder_->create<sem::IfStatement>(
stmt, current_compound_statement_, current_function_);
builder_->Sem().Add(stmt, sem);
return Scope(sem, [&] {
if (!Expression(stmt->condition)) {
return false;
}
auto* cond_type = TypeOf(stmt->condition)->UnwrapRef();
if (!cond_type->Is<sem::Bool>()) {
AddError(
"if statement condition must be bool, got " + TypeNameOf(cond_type),
stmt->condition->source);
return false;
}
Mark(stmt->body);
auto* body = builder_->create<sem::BlockStatement>(
stmt->body, current_compound_statement_, current_function_);
builder_->Sem().Add(stmt->body, body);
if (!Scope(body, [&] { return Statements(stmt->body->statements); })) {
return false;
}
for (auto* else_stmt : stmt->else_statements) {
Mark(else_stmt);
if (!ElseStatement(else_stmt)) {
return false;
}
}
return true;
});
}
bool Resolver::ElseStatement(const ast::ElseStatement* stmt) {
auto* sem = builder_->create<sem::ElseStatement>(
stmt, current_compound_statement_, current_function_);
builder_->Sem().Add(stmt, sem);
return Scope(sem, [&] {
if (auto* cond = stmt->condition) {
if (!Expression(cond)) {
return false;
}
auto* else_cond_type = TypeOf(cond)->UnwrapRef();
if (!else_cond_type->Is<sem::Bool>()) {
AddError("else statement condition must be bool, got " +
TypeNameOf(else_cond_type),
cond->source);
return false;
}
}
Mark(stmt->body);
auto* body = builder_->create<sem::BlockStatement>(
stmt->body, current_compound_statement_, current_function_);
builder_->Sem().Add(stmt->body, body);
return Scope(body, [&] { return Statements(stmt->body->statements); });
});
}
bool Resolver::BlockStatement(const ast::BlockStatement* stmt) {
auto* sem = builder_->create<sem::BlockStatement>(
stmt->As<ast::BlockStatement>(), current_compound_statement_,
current_function_);
builder_->Sem().Add(stmt, sem);
return Scope(sem, [&] { return Statements(stmt->statements); });
}
bool Resolver::LoopStatement(const ast::LoopStatement* stmt) {
auto* sem = builder_->create<sem::LoopStatement>(
stmt, current_compound_statement_, current_function_);
builder_->Sem().Add(stmt, sem);
return Scope(sem, [&] {
Mark(stmt->body);
auto* body = builder_->create<sem::LoopBlockStatement>(
stmt->body, current_compound_statement_, current_function_);
builder_->Sem().Add(stmt->body, body);
return Scope(body, [&] {
if (!Statements(stmt->body->statements)) {
return false;
}
if (stmt->continuing) {
Mark(stmt->continuing);
if (!stmt->continuing->Empty()) {
auto* continuing =
builder_->create<sem::LoopContinuingBlockStatement>(
stmt->continuing, current_compound_statement_,
current_function_);
builder_->Sem().Add(stmt->continuing, continuing);
if (!Scope(continuing, [&] {
return Statements(stmt->continuing->statements);
})) {
return false;
}
}
}
return true;
});
});
}
bool Resolver::ForLoopStatement(const ast::ForLoopStatement* stmt) {
auto* sem = builder_->create<sem::ForLoopStatement>(
stmt, current_compound_statement_, current_function_);
builder_->Sem().Add(stmt, sem);
return Scope(sem, [&] {
if (auto* initializer = stmt->initializer) {
Mark(initializer);
if (!Statement(initializer)) {
return false;
}
}
if (auto* condition = stmt->condition) {
if (!Expression(condition)) {
return false;
}
auto* cond_ty = TypeOf(condition)->UnwrapRef();
if (!cond_ty->Is<sem::Bool>()) {
AddError("for-loop condition must be bool, got " + TypeNameOf(cond_ty),
condition->source);
return false;
}
}
if (auto* continuing = stmt->continuing) {
Mark(continuing);
if (!Statement(continuing)) {
return false;
}
}
Mark(stmt->body);
auto* body = builder_->create<sem::LoopBlockStatement>(
stmt->body, current_compound_statement_, current_function_);
builder_->Sem().Add(stmt->body, body);
return Scope(body, [&] { return Statements(stmt->body->statements); });
});
}
sem::Expression* Resolver::Expression(const ast::Expression* root) {
std::vector<const ast::Expression*> sorted;
if (!ast::TraverseExpressions<ast::TraverseOrder::RightToLeft>(
root, diagnostics_, [&](const ast::Expression* expr) {
Mark(expr);
sorted.emplace_back(expr);
return ast::TraverseAction::Descend;
})) {
return nullptr;
}
for (auto* expr : utils::Reverse(sorted)) {
sem::Expression* sem_expr = nullptr;
if (auto* array = expr->As<ast::IndexAccessorExpression>()) {
sem_expr = IndexAccessor(array);
} else if (auto* bin_op = expr->As<ast::BinaryExpression>()) {
sem_expr = Binary(bin_op);
} else if (auto* bitcast = expr->As<ast::BitcastExpression>()) {
sem_expr = Bitcast(bitcast);
} else if (auto* call = expr->As<ast::CallExpression>()) {
sem_expr = Call(call);
} else if (auto* ident = expr->As<ast::IdentifierExpression>()) {
sem_expr = Identifier(ident);
} else if (auto* literal = expr->As<ast::LiteralExpression>()) {
sem_expr = Literal(literal);
} else if (auto* member = expr->As<ast::MemberAccessorExpression>()) {
sem_expr = MemberAccessor(member);
} else if (auto* unary = expr->As<ast::UnaryOpExpression>()) {
sem_expr = UnaryOp(unary);
} else if (expr->Is<ast::PhonyExpression>()) {
sem_expr = builder_->create<sem::Expression>(
expr, builder_->create<sem::Void>(), current_statement_,
sem::Constant{});
} else {
TINT_ICE(Resolver, diagnostics_)
<< "unhandled expression type: " << expr->TypeInfo().name;
return nullptr;
}
if (!sem_expr) {
return nullptr;
}
builder_->Sem().Add(expr, sem_expr);
if (expr == root) {
return sem_expr;
}
}
TINT_ICE(Resolver, diagnostics_) << "Expression() did not find root node";
return nullptr;
}
sem::Expression* Resolver::IndexAccessor(
const ast::IndexAccessorExpression* expr) {
auto* idx = expr->index;
auto* parent_raw_ty = TypeOf(expr->object);
auto* parent_ty = parent_raw_ty->UnwrapRef();
const sem::Type* ty = nullptr;
if (auto* arr = parent_ty->As<sem::Array>()) {
ty = arr->ElemType();
} else if (auto* vec = parent_ty->As<sem::Vector>()) {
ty = vec->type();
} else if (auto* mat = parent_ty->As<sem::Matrix>()) {
ty = builder_->create<sem::Vector>(mat->type(), mat->rows());
} else {
AddError("cannot index type '" + TypeNameOf(parent_ty) + "'", expr->source);
return nullptr;
}
auto* idx_ty = TypeOf(idx)->UnwrapRef();
if (!idx_ty->IsAnyOf<sem::I32, sem::U32>()) {
AddError("index must be of type 'i32' or 'u32', found: '" +
TypeNameOf(idx_ty) + "'",
idx->source);
return nullptr;
}
if (parent_ty->IsAnyOf<sem::Array, sem::Matrix>()) {
if (!parent_raw_ty->Is<sem::Reference>()) {
// TODO(bclayton): expand this to allow any const_expr expression
// https://github.com/gpuweb/gpuweb/issues/1272
if (!idx->As<ast::IntLiteralExpression>()) {
AddError("index must be signed or unsigned integer literal",
idx->source);
return nullptr;
}
}
}
// If we're extracting from a reference, we return a reference.
if (auto* ref = parent_raw_ty->As<sem::Reference>()) {
ty = builder_->create<sem::Reference>(ty, ref->StorageClass(),
ref->Access());
}
auto val = EvaluateConstantValue(expr, ty);
return builder_->create<sem::Expression>(expr, ty, current_statement_, val);
}
sem::Expression* Resolver::Bitcast(const ast::BitcastExpression* expr) {
auto* ty = Type(expr->type);
if (!ty) {
return nullptr;
}
if (ty->Is<sem::Pointer>()) {
AddError("cannot cast to a pointer", expr->source);
return nullptr;
}
auto val = EvaluateConstantValue(expr, ty);
return builder_->create<sem::Expression>(expr, ty, current_statement_, val);
}
sem::Call* Resolver::Call(const ast::CallExpression* expr) {
std::vector<const sem::Expression*> args(expr->args.size());
std::vector<const sem::Type*> arg_tys(args.size());
for (size_t i = 0; i < expr->args.size(); i++) {
auto* arg = Sem(expr->args[i]);
if (!arg) {
return nullptr;
}
args[i] = arg;
arg_tys[i] = args[i]->Type();
}
auto type_ctor_or_conv = [&](const sem::Type* ty) -> sem::Call* {
// The call has resolved to a type constructor or cast.
if (args.size() == 1) {
auto* target = ty;
auto* source = args[0]->Type()->UnwrapRef();
if ((source != target) && //
((source->is_scalar() && target->is_scalar()) ||
(source->Is<sem::Vector>() && target->Is<sem::Vector>()) ||
(source->Is<sem::Matrix>() && target->Is<sem::Matrix>()))) {
// Note: Matrix types currently cannot be converted (the element type
// must only be f32). We implement this for the day we support other
// matrix element types.
return TypeConversion(expr, ty, args[0], arg_tys[0]);
}
}
return TypeConstructor(expr, ty, std::move(args), std::move(arg_tys));
};
// Resolve the target of the CallExpression to determine whether this is a
// function call, cast or type constructor expression.
if (expr->target.type) {
auto* ty = Type(expr->target.type);
if (!ty) {
return nullptr;
}
return type_ctor_or_conv(ty);
}
auto* ident = expr->target.name;
Mark(ident);
auto it = named_type_info_.find(ident->symbol);
if (it != named_type_info_.end()) {
// We have a type.
return type_ctor_or_conv(it->second.sem);
}
// Not a type, treat as a intrinsic / function call.
auto name = builder_->Symbols().NameFor(ident->symbol);
auto intrinsic_type = sem::ParseIntrinsicType(name);
auto* call = (intrinsic_type != IntrinsicType::kNone)
? IntrinsicCall(expr, intrinsic_type, std::move(args),
std::move(arg_tys))
: FunctionCall(expr, std::move(args));
current_function_->AddDirectCall(call);
return call;
}
sem::Call* Resolver::IntrinsicCall(
const ast::CallExpression* expr,
sem::IntrinsicType intrinsic_type,
const std::vector<const sem::Expression*> args,
const std::vector<const sem::Type*> arg_tys) {
auto* intrinsic = intrinsic_table_->Lookup(intrinsic_type, std::move(arg_tys),
expr->source);
if (!intrinsic) {
return nullptr;
}
if (intrinsic->IsDeprecated()) {
AddWarning("use of deprecated intrinsic", expr->source);
}
auto* call = builder_->create<sem::Call>(expr, intrinsic, std::move(args),
current_statement_, sem::Constant{});
current_function_->AddDirectlyCalledIntrinsic(intrinsic);
if (IsTextureIntrinsic(intrinsic_type) &&
!ValidateTextureIntrinsicFunction(call)) {
return nullptr;
}
if (!ValidateIntrinsicCall(call)) {
return nullptr;
}
return call;
}
bool Resolver::ValidateIntrinsicCall(const sem::Call* call) {
if (call->Type()->Is<sem::Void>()) {
bool is_call_statement = false;
if (auto* call_stmt = As<ast::CallStatement>(call->Stmt()->Declaration())) {
if (call_stmt->expr == call->Declaration()) {
is_call_statement = true;
}
}
if (!is_call_statement) {
// https://gpuweb.github.io/gpuweb/wgsl/#function-call-expr
// If the called function does not return a value, a function call
// statement should be used instead.
auto* ident = call->Declaration()->target.name;
auto name = builder_->Symbols().NameFor(ident->symbol);
AddError("intrinsic '" + name + "' does not return a value",
call->Declaration()->source);
return false;
}
}
return true;
}
sem::Call* Resolver::FunctionCall(
const ast::CallExpression* expr,
const std::vector<const sem::Expression*> args) {
auto sym = expr->target.name->symbol;
auto name = builder_->Symbols().NameFor(sym);
auto target_it = symbol_to_function_.find(sym);
if (target_it == symbol_to_function_.end()) {
if (current_function_ && current_function_->Declaration()->symbol == sym) {
AddError("recursion is not permitted. '" + name +
"' attempted to call itself.",
expr->source);
} else {
AddError("unable to find called function: " + name, expr->source);
}
return nullptr;
}
auto* target = target_it->second;
auto* call = builder_->create<sem::Call>(expr, target, std::move(args),
current_statement_, sem::Constant{});
if (current_function_) {
target->AddCallSite(call);
// Note: Requires called functions to be resolved first.
// This is currently guaranteed as functions must be declared before
// use.
current_function_->AddTransitivelyCalledFunction(target);
for (auto* transitive_call : target->TransitivelyCalledFunctions()) {
current_function_->AddTransitivelyCalledFunction(transitive_call);
}
// We inherit any referenced variables from the callee.
for (auto* var : target->TransitivelyReferencedGlobals()) {
current_function_->AddTransitivelyReferencedGlobal(var);
}
}
if (!ValidateFunctionCall(call)) {
return nullptr;
}
return call;
}
bool Resolver::ValidateTextureIntrinsicFunction(const sem::Call* call) {
auto* intrinsic = call->Target()->As<sem::Intrinsic>();
if (!intrinsic) {
return false;
}
std::string func_name = intrinsic->str();
auto& signature = intrinsic->Signature();
auto index = signature.IndexOf(sem::ParameterUsage::kOffset);
if (index > -1) {
auto* arg = call->Arguments()[index];
if (auto values = arg->ConstantValue()) {
// Assert that the constant values are of the expected type.
if (!values.Type()->Is<sem::Vector>() ||
!values.ElementType()->Is<sem::I32>()) {
TINT_ICE(Resolver, diagnostics_)
<< "failed to resolve '" + func_name + "' offset parameter type";
return false;
}
// Currently const_expr is restricted to literals and type constructors.
// Check that that's all we have for the offset parameter.
bool is_const_expr = true;
ast::TraverseExpressions(
arg->Declaration(), diagnostics_, [&](const ast::Expression* e) {
if (e->IsAnyOf<ast::LiteralExpression, ast::CallExpression>()) {
return ast::TraverseAction::Descend;
}
is_const_expr = false;
return ast::TraverseAction::Stop;
});
if (is_const_expr) {
for (auto offset : values.Elements()) {
auto offset_value = offset.i32;
if (offset_value < -8 || offset_value > 7) {
AddError("each offset component of '" + func_name +
"' must be at least -8 and at most 7. "
"found: '" +
std::to_string(offset_value) + "'",
arg->Declaration()->source);
return false;
}
}
return true;
}
}
AddError("'" + func_name + "' offset parameter must be a const_expression",
arg->Declaration()->source);
return false;
}
return true;
}
bool Resolver::ValidateFunctionCall(const sem::Call* call) {
auto* decl = call->Declaration();
auto* target = call->Target()->As<sem::Function>();
auto sym = decl->target.name->symbol;
auto name = builder_->Symbols().NameFor(sym);
if (target->Declaration()->IsEntryPoint()) {
// https://www.w3.org/TR/WGSL/#function-restriction
// An entry point must never be the target of a function call.
AddError("entry point functions cannot be the target of a function call",
decl->source);
return false;
}
if (decl->args.size() != target->Parameters().size()) {
bool more = decl->args.size() > target->Parameters().size();
AddError("too " + (more ? std::string("many") : std::string("few")) +
" arguments in call to '" + name + "', expected " +
std::to_string(target->Parameters().size()) + ", got " +
std::to_string(call->Arguments().size()),
decl->source);
return false;
}
for (size_t i = 0; i < call->Arguments().size(); ++i) {
const sem::Variable* param = target->Parameters()[i];
const ast::Expression* arg_expr = decl->args[i];
auto* param_type = param->Type();
auto* arg_type = TypeOf(arg_expr)->UnwrapRef();
if (param_type != arg_type) {
AddError("type mismatch for argument " + std::to_string(i + 1) +
" in call to '" + name + "', expected '" +
TypeNameOf(param_type) + "', got '" + TypeNameOf(arg_type) +
"'",
arg_expr->source);
return false;
}
if (param_type->Is<sem::Pointer>()) {
auto is_valid = false;
if (auto* ident_expr = arg_expr->As<ast::IdentifierExpression>()) {
auto* var = variable_stack_.Get(ident_expr->symbol);
if (!var) {
TINT_ICE(Resolver, diagnostics_) << "failed to resolve identifier";
return false;
}
if (var->Is<sem::Parameter>()) {
is_valid = true;
}
} else if (auto* unary = arg_expr->As<ast::UnaryOpExpression>()) {
if (unary->op == ast::UnaryOp::kAddressOf) {
if (auto* ident_unary =
unary->expr->As<ast::IdentifierExpression>()) {
auto* var = variable_stack_.Get(ident_unary->symbol);
if (!var) {
TINT_ICE(Resolver, diagnostics_)
<< "failed to resolve identifier";
return false;
}
if (var->Declaration()->is_const) {
TINT_ICE(Resolver, diagnostics_)
<< "Resolver::FunctionCall() encountered an address-of "
"expression of a constant identifier expression";
return false;
}
is_valid = true;
}
}
}
if (!is_valid &&
IsValidationEnabled(
param->Declaration()->decorations,
ast::DisabledValidation::kIgnoreInvalidPointerArgument)) {
AddError(
"expected an address-of expression of a variable identifier "
"expression or a function parameter",
arg_expr->source);
return false;
}
}
}
if (call->Type()->Is<sem::Void>()) {
bool is_call_statement = false;
if (auto* call_stmt = As<ast::CallStatement>(call->Stmt()->Declaration())) {
if (call_stmt->expr == call->Declaration()) {
is_call_statement = true;
}
}
if (!is_call_statement) {
// https://gpuweb.github.io/gpuweb/wgsl/#function-call-expr
// If the called function does not return a value, a function call
// statement should be used instead.
AddError("function '" + name + "' does not return a value", decl->source);
return false;
}
}
return true;
}
sem::Call* Resolver::TypeConversion(const ast::CallExpression* expr,
const sem::Type* target,
const sem::Expression* arg,
const sem::Type* source) {
// It is not valid to have a type-cast call expression inside a call
// statement.
if (current_statement_) {
if (auto* stmt =
current_statement_->Declaration()->As<ast::CallStatement>()) {
if (stmt->expr == expr) {
AddError("type cast evaluated but not used", expr->source);
return nullptr;
}
}
}
auto* call_target = utils::GetOrCreate(
type_conversions_, TypeConversionSig{target, source},
[&]() -> sem::TypeConversion* {
// Now that the argument types have been determined, make sure that they
// obey the conversion rules laid out in
// https://gpuweb.github.io/gpuweb/wgsl/#conversion-expr.
bool ok = true;
if (auto* vec_type = target->As<sem::Vector>()) {
ok = ValidateVectorConstructorOrCast(expr, vec_type);
} else if (auto* mat_type = target->As<sem::Matrix>()) {
// Note: Matrix types currently cannot be converted (the element type
// must only be f32). We implement this for the day we support other
// matrix element types.
ok = ValidateMatrixConstructorOrCast(expr, mat_type);
} else if (target->is_scalar()) {
ok = ValidateScalarConstructorOrCast(expr, target);
} else if (auto* arr_type = target->As<sem::Array>()) {
ok = ValidateArrayConstructorOrCast(expr, arr_type);
} else if (auto* struct_type = target->As<sem::Struct>()) {
ok = ValidateStructureConstructorOrCast(expr, struct_type);
} else {
AddError("type is not constructible", expr->source);
return nullptr;
}
if (!ok) {
return nullptr;
}
auto* param = builder_->create<sem::Parameter>(
nullptr, // declaration
0, // index
source->UnwrapRef(), // type
ast::StorageClass::kNone, // storage_class
ast::Access::kUndefined); // access
return builder_->create<sem::TypeConversion>(target, param);
});
if (!call_target) {
return nullptr;
}
auto val = EvaluateConstantValue(expr, target);
return builder_->create<sem::Call>(expr, call_target,
std::vector<const sem::Expression*>{arg},
current_statement_, val);
}
sem::Call* Resolver::TypeConstructor(
const ast::CallExpression* expr,
const sem::Type* ty,
const std::vector<const sem::Expression*> args,
const std::vector<const sem::Type*> arg_tys) {
// It is not valid to have a type-constructor call expression as a call
// statement.
if (current_statement_) {
if (auto* stmt =
current_statement_->Declaration()->As<ast::CallStatement>()) {
if (stmt->expr == expr) {
AddError("type constructor evaluated but not used", expr->source);
return nullptr;
}
}
}
auto* call_target = utils::GetOrCreate(
type_ctors_, TypeConstructorSig{ty, arg_tys},
[&]() -> sem::TypeConstructor* {
// Now that the argument types have been determined, make sure that they
// obey the constructor type rules laid out in
// https://gpuweb.github.io/gpuweb/wgsl/#type-constructor-expr.
bool ok = true;
if (auto* vec_type = ty->As<sem::Vector>()) {
ok = ValidateVectorConstructorOrCast(expr, vec_type);
} else if (auto* mat_type = ty->As<sem::Matrix>()) {
ok = ValidateMatrixConstructorOrCast(expr, mat_type);
} else if (ty->is_scalar()) {
ok = ValidateScalarConstructorOrCast(expr, ty);
} else if (auto* arr_type = ty->As<sem::Array>()) {
ok = ValidateArrayConstructorOrCast(expr, arr_type);
} else if (auto* struct_type = ty->As<sem::Struct>()) {
ok = ValidateStructureConstructorOrCast(expr, struct_type);
} else {
AddError("type is not constructible", expr->source);
return nullptr;
}
if (!ok) {
return nullptr;
}
return builder_->create<sem::TypeConstructor>(
ty, utils::Transform(
arg_tys,
[&](const sem::Type* t, size_t i) -> const sem::Parameter* {
return builder_->create<sem::Parameter>(
nullptr, // declaration
i, // index
t->UnwrapRef(), // type
ast::StorageClass::kNone, // storage_class
ast::Access::kUndefined); // access
}));
});
if (!call_target) {
return nullptr;
}
auto val = EvaluateConstantValue(expr, ty);
return builder_->create<sem::Call>(expr, call_target, std::move(args),
current_statement_, val);
}
sem::Expression* Resolver::Literal(const ast::LiteralExpression* literal) {
auto* ty = TypeOf(literal);
if (!ty) {
return nullptr;
}
auto val = EvaluateConstantValue(literal, ty);
return builder_->create<sem::Expression>(literal, ty, current_statement_,
val);
}
bool Resolver::ValidateStructureConstructorOrCast(
const ast::CallExpression* ctor,
const sem::Struct* struct_type) {
if (!struct_type->IsConstructible()) {
AddError("struct constructor has non-constructible type", ctor->source);
return false;
}
if (ctor->args.size() > 0) {
if (ctor->args.size() != struct_type->Members().size()) {
std::string fm =
ctor->args.size() < struct_type->Members().size() ? "few" : "many";
AddError("struct constructor has too " + fm + " inputs: expected " +
std::to_string(struct_type->Members().size()) + ", found " +
std::to_string(ctor->args.size()),
ctor->source);
return false;
}
for (auto* member : struct_type->Members()) {
auto* value = ctor->args[member->Index()];
auto* value_ty = TypeOf(value);
if (member->Type() != value_ty->UnwrapRef()) {
AddError(
"type in struct constructor does not match struct member type: "
"expected '" +
TypeNameOf(member->Type()) + "', found '" +
TypeNameOf(value_ty) + "'",
value->source);
return false;
}
}
}
return true;
}
bool Resolver::ValidateArrayConstructorOrCast(const ast::CallExpression* ctor,
const sem::Array* array_type) {
auto& values = ctor->args;
auto* elem_ty = array_type->ElemType();
for (auto* value : values) {
auto* value_ty = TypeOf(value)->UnwrapRef();
if (value_ty != elem_ty) {
AddError(
"type in array constructor does not match array type: "
"expected '" +
TypeNameOf(elem_ty) + "', found '" + TypeNameOf(value_ty) + "'",
value->source);
return false;
}
}
if (array_type->IsRuntimeSized()) {
AddError("cannot init a runtime-sized array", ctor->source);
return false;
} else if (!elem_ty->IsConstructible()) {
AddError("array constructor has non-constructible element type",
ctor->source);
return false;
} else if (!values.empty() && (values.size() != array_type->Count())) {
std::string fm = values.size() < array_type->Count() ? "few" : "many";
AddError("array constructor has too " + fm + " elements: expected " +
std::to_string(array_type->Count()) + ", found " +
std::to_string(values.size()),
ctor->source);
return false;
} else if (values.size() > array_type->Count()) {
AddError("array constructor has too many elements: expected " +
std::to_string(array_type->Count()) + ", found " +
std::to_string(values.size()),
ctor->source);
return false;
}
return true;
}
bool Resolver::ValidateVectorConstructorOrCast(const ast::CallExpression* ctor,
const sem::Vector* vec_type) {
auto& values = ctor->args;
auto* elem_ty = vec_type->type();
size_t value_cardinality_sum = 0;
for (auto* value : values) {
auto* value_ty = TypeOf(value)->UnwrapRef();
if (value_ty->is_scalar()) {
if (elem_ty != value_ty) {
AddError(
"type in vector constructor does not match vector type: "
"expected '" +
TypeNameOf(elem_ty) + "', found '" + TypeNameOf(value_ty) + "'",
value->source);
return false;
}
value_cardinality_sum++;
} else if (auto* value_vec = value_ty->As<sem::Vector>()) {
auto* value_elem_ty = value_vec->type();
// A mismatch of vector type parameter T is only an error if multiple
// arguments are present. A single argument constructor constitutes a
// type conversion expression.
if (elem_ty != value_elem_ty && values.size() > 1u) {
AddError(
"type in vector constructor does not match vector type: "
"expected '" +
TypeNameOf(elem_ty) + "', found '" + TypeNameOf(value_elem_ty) +
"'",
value->source);
return false;
}
value_cardinality_sum += value_vec->Width();
} else {
// A vector constructor can only accept vectors and scalars.
AddError("expected vector or scalar type in vector constructor; found: " +
TypeNameOf(value_ty),
value->source);
return false;
}
}
// A correct vector constructor must either be a zero-value expression,
// a single-value initializer (splat) expression, or the number of components
// of all constructor arguments must add up to the vector cardinality.
if (value_cardinality_sum > 1 && value_cardinality_sum != vec_type->Width()) {
if (values.empty()) {
TINT_ICE(Resolver, diagnostics_)
<< "constructor arguments expected to be non-empty!";
}
const Source& values_start = values[0]->source;
const Source& values_end = values[values.size() - 1]->source;
AddError("attempted to construct '" + TypeNameOf(vec_type) + "' with " +
std::to_string(value_cardinality_sum) + " component(s)",
Source::Combine(values_start, values_end));
return false;
}
return true;
}
bool Resolver::ValidateVector(const sem::Vector* ty, const Source& source) {
if (!ty->type()->is_scalar()) {
AddError("vector element type must be 'bool', 'f32', 'i32' or 'u32'",
source);
return false;
}
return true;
}
bool Resolver::ValidateMatrix(const sem::Matrix* ty, const Source& source) {
if (!ty->is_float_matrix()) {
AddError("matrix element type must be 'f32'", source);
return false;
}
return true;
}
bool Resolver::ValidateMatrixConstructorOrCast(const ast::CallExpression* ctor,
const sem::Matrix* matrix_ty) {
auto& values = ctor->args;
// Zero Value expression
if (values.empty()) {
return true;
}
if (!ValidateMatrix(matrix_ty, ctor->source)) {
return false;
}
auto* elem_type = matrix_ty->type();
auto num_elements = matrix_ty->columns() * matrix_ty->rows();
// Print a generic error for an invalid matrix constructor, showing the
// available overloads.
auto print_error = [&]() {
const Source& values_start = values[0]->source;
const Source& values_end = values[values.size() - 1]->source;
auto type_name = TypeNameOf(matrix_ty);
auto elem_type_name = TypeNameOf(elem_type);
std::stringstream ss;
ss << "invalid constructor for " + type_name << std::endl << std::endl;
ss << "3 candidates available:" << std::endl;
ss << " " << type_name << "()" << std::endl;
ss << " " << type_name << "(" << elem_type_name << ",...,"
<< elem_type_name << ")"
<< " // " << std::to_string(num_elements) << " arguments" << std::endl;
ss << " " << type_name << "(";
for (uint32_t c = 0; c < matrix_ty->columns(); c++) {
if (c > 0) {
ss << ", ";
}
ss << VectorPretty(matrix_ty->rows(), elem_type);
}
ss << ")" << std::endl;
AddError(ss.str(), Source::Combine(values_start, values_end));
};
const sem::Type* expected_arg_type = nullptr;
if (num_elements == values.size()) {
// Column-major construction from scalar elements.
expected_arg_type = matrix_ty->type();
} else if (matrix_ty->columns() == values.size()) {
// Column-by-column construction from vectors.
expected_arg_type = matrix_ty->ColumnType();
} else {
print_error();
return false;
}
for (auto* value : values) {
if (TypeOf(value)->UnwrapRef() != expected_arg_type) {
print_error();
return false;
}
}
return true;
}
bool Resolver::ValidateScalarConstructorOrCast(const ast::CallExpression* ctor,
const sem::Type* ty) {
if (ctor->args.size() == 0) {
return true;
}
if (ctor->args.size() > 1) {
AddError("expected zero or one value in constructor, got " +
std::to_string(ctor->args.size()),
ctor->source);
return false;
}
// Validate constructor
auto* value = ctor->args[0];
auto* value_ty = TypeOf(value)->UnwrapRef();
using Bool = sem::Bool;
using I32 = sem::I32;
using U32 = sem::U32;
using F32 = sem::F32;
const bool is_valid = (ty->Is<Bool>() && value_ty->is_scalar()) ||
(ty->Is<I32>() && value_ty->is_scalar()) ||
(ty->Is<U32>() && value_ty->is_scalar()) ||
(ty->Is<F32>() && value_ty->is_scalar());
if (!is_valid) {
AddError("cannot construct '" + TypeNameOf(ty) +
"' with a value of type '" + TypeNameOf(value_ty) + "'",
ctor->source);
return false;
}
return true;
}
sem::Expression* Resolver::Identifier(const ast::IdentifierExpression* expr) {
auto symbol = expr->symbol;
if (auto* var = variable_stack_.Get(symbol)) {
auto* user =
builder_->create<sem::VariableUser>(expr, current_statement_, var);
if (current_statement_) {
// If identifier is part of a loop continuing block, make sure it
// doesn't refer to a variable that is bypassed by a continue statement
// in the loop's body block.
if (auto* continuing_block =
current_statement_
->FindFirstParent<sem::LoopContinuingBlockStatement>()) {
auto* loop_block =
continuing_block->FindFirstParent<sem::LoopBlockStatement>();
if (loop_block->FirstContinue()) {
auto& decls = loop_block->Decls();
// If our identifier is in loop_block->decls, make sure its index is
// less than first_continue
auto iter =
std::find_if(decls.begin(), decls.end(),
[&symbol](auto* v) { return v->symbol == symbol; });
if (iter != decls.end()) {
auto var_decl_index =
static_cast<size_t>(std::distance(decls.begin(), iter));
if (var_decl_index >= loop_block->NumDeclsAtFirstContinue()) {
AddError("continue statement bypasses declaration of '" +
builder_->Symbols().NameFor(symbol) + "'",
loop_block->FirstContinue()->source);
AddNote("identifier '" + builder_->Symbols().NameFor(symbol) +
"' declared here",
(*iter)->source);
AddNote("identifier '" + builder_->Symbols().NameFor(symbol) +
"' referenced in continuing block here",
expr->source);
return nullptr;
}
}
}
}
}
if (current_function_) {
if (auto* global = var->As<sem::GlobalVariable>()) {
current_function_->AddDirectlyReferencedGlobal(global);
}
}
var->AddUser(user);
return user;
}
if (symbol_to_function_.count(symbol)) {
AddError("missing '(' for function call", expr->source.End());
return nullptr;
}
std::string name = builder_->Symbols().NameFor(symbol);
if (sem::ParseIntrinsicType(name) != IntrinsicType::kNone) {
AddError("missing '(' for intrinsic call", expr->source.End());
return nullptr;
}
AddError("identifier must be declared before use: " + name, expr->source);
return nullptr;
}
sem::Expression* Resolver::MemberAccessor(
const ast::MemberAccessorExpression* expr) {
auto* structure = TypeOf(expr->structure);
auto* storage_ty = structure->UnwrapRef();
const sem::Type* ret = nullptr;
std::vector<uint32_t> swizzle;
if (auto* str = storage_ty->As<sem::Struct>()) {
Mark(expr->member);
auto symbol = expr->member->symbol;
const sem::StructMember* member = nullptr;
for (auto* m : str->Members()) {
if (m->Name() == symbol) {
ret = m->Type();
member = m;
break;
}
}
if (ret == nullptr) {
AddError(
"struct member " + builder_->Symbols().NameFor(symbol) + " not found",
expr->source);
return nullptr;
}
// If we're extracting from a reference, we return a reference.
if (auto* ref = structure->As<sem::Reference>()) {
ret = builder_->create<sem::Reference>(ret, ref->StorageClass(),
ref->Access());
}
return builder_->create<sem::StructMemberAccess>(
expr, ret, current_statement_, member);
}
if (auto* vec = storage_ty->As<sem::Vector>()) {
Mark(expr->member);
std::string s = builder_->Symbols().NameFor(expr->member->symbol);
auto size = s.size();
swizzle.reserve(s.size());
for (auto c : s) {
switch (c) {
case 'x':
case 'r':
swizzle.emplace_back(0);
break;
case 'y':
case 'g':
swizzle.emplace_back(1);
break;
case 'z':
case 'b':
swizzle.emplace_back(2);
break;
case 'w':
case 'a':
swizzle.emplace_back(3);
break;
default:
AddError("invalid vector swizzle character",
expr->member->source.Begin() + swizzle.size());
return nullptr;
}
if (swizzle.back() >= vec->Width()) {
AddError("invalid vector swizzle member", expr->member->source);
return nullptr;
}
}
if (size < 1 || size > 4) {
AddError("invalid vector swizzle size", expr->member->source);
return nullptr;
}
// All characters are valid, check if they're being mixed
auto is_rgba = [](char c) {
return c == 'r' || c == 'g' || c == 'b' || c == 'a';
};
auto is_xyzw = [](char c) {
return c == 'x' || c == 'y' || c == 'z' || c == 'w';
};
if (!std::all_of(s.begin(), s.end(), is_rgba) &&
!std::all_of(s.begin(), s.end(), is_xyzw)) {
AddError("invalid mixing of vector swizzle characters rgba with xyzw",
expr->member->source);
return nullptr;
}
if (size == 1) {
// A single element swizzle is just the type of the vector.
ret = vec->type();
// If we're extracting from a reference, we return a reference.
if (auto* ref = structure->As<sem::Reference>()) {
ret = builder_->create<sem::Reference>(ret, ref->StorageClass(),
ref->Access());
}
} else {
// The vector will have a number of components equal to the length of
// the swizzle.
ret = builder_->create<sem::Vector>(vec->type(),
static_cast<uint32_t>(size));
}
return builder_->create<sem::Swizzle>(expr, ret, current_statement_,
std::move(swizzle));
}
AddError(
"invalid member accessor expression. Expected vector or struct, got '" +
TypeNameOf(storage_ty) + "'",
expr->structure->source);
return nullptr;
}
sem::Expression* Resolver::Binary(const ast::BinaryExpression* expr) {
using Bool = sem::Bool;
using F32 = sem::F32;
using I32 = sem::I32;
using U32 = sem::U32;
using Matrix = sem::Matrix;
using Vector = sem::Vector;
auto* lhs_ty = TypeOf(expr->lhs)->UnwrapRef();
auto* rhs_ty = TypeOf(expr->rhs)->UnwrapRef();
auto* lhs_vec = lhs_ty->As<Vector>();
auto* lhs_vec_elem_type = lhs_vec ? lhs_vec->type() : nullptr;
auto* rhs_vec = rhs_ty->As<Vector>();
auto* rhs_vec_elem_type = rhs_vec ? rhs_vec->type() : nullptr;
const bool matching_vec_elem_types =
lhs_vec_elem_type && rhs_vec_elem_type &&
(lhs_vec_elem_type == rhs_vec_elem_type) &&
(lhs_vec->Width() == rhs_vec->Width());
const bool matching_types = matching_vec_elem_types || (lhs_ty == rhs_ty);
auto build = [&](const sem::Type* ty) {
auto val = EvaluateConstantValue(expr, ty);
return builder_->create<sem::Expression>(expr, ty, current_statement_, val);
};
// Binary logical expressions
if (expr->IsLogicalAnd() || expr->IsLogicalOr()) {
if (matching_types && lhs_ty->Is<Bool>()) {
return build(lhs_ty);
}
}
if (expr->IsOr() || expr->IsAnd()) {
if (matching_types && lhs_ty->Is<Bool>()) {
return build(lhs_ty);
}
if (matching_types && lhs_vec_elem_type && lhs_vec_elem_type->Is<Bool>()) {
return build(lhs_ty);
}
}
// Arithmetic expressions
if (expr->IsArithmetic()) {
// Binary arithmetic expressions over scalars
if (matching_types && lhs_ty->is_numeric_scalar()) {
return build(lhs_ty);
}
// Binary arithmetic expressions over vectors
if (matching_types && lhs_vec_elem_type &&
lhs_vec_elem_type->is_numeric_scalar()) {
return build(lhs_ty);
}
// Binary arithmetic expressions with mixed scalar and vector operands
if (lhs_vec_elem_type && (lhs_vec_elem_type == rhs_ty)) {
if (expr->IsModulo()) {
if (rhs_ty->is_integer_scalar()) {
return build(lhs_ty);
}
} else if (rhs_ty->is_numeric_scalar()) {
return build(lhs_ty);
}
}
if (rhs_vec_elem_type && (rhs_vec_elem_type == lhs_ty)) {
if (expr->IsModulo()) {
if (lhs_ty->is_integer_scalar()) {
return build(rhs_ty);
}
} else if (lhs_ty->is_numeric_scalar()) {
return build(rhs_ty);
}
}
}
// Matrix arithmetic
auto* lhs_mat = lhs_ty->As<Matrix>();
auto* lhs_mat_elem_type = lhs_mat ? lhs_mat->type() : nullptr;
auto* rhs_mat = rhs_ty->As<Matrix>();
auto* rhs_mat_elem_type = rhs_mat ? rhs_mat->type() : nullptr;
// Addition and subtraction of float matrices
if ((expr->IsAdd() || expr->IsSubtract()) && lhs_mat_elem_type &&
lhs_mat_elem_type->Is<F32>() && rhs_mat_elem_type &&
rhs_mat_elem_type->Is<F32>() &&
(lhs_mat->columns() == rhs_mat->columns()) &&
(lhs_mat->rows() == rhs_mat->rows())) {
return build(rhs_ty);
}
if (expr->IsMultiply()) {
// Multiplication of a matrix and a scalar
if (lhs_ty->Is<F32>() && rhs_mat_elem_type &&
rhs_mat_elem_type->Is<F32>()) {
return build(rhs_ty);
}
if (lhs_mat_elem_type && lhs_mat_elem_type->Is<F32>() &&
rhs_ty->Is<F32>()) {
return build(lhs_ty);
}
// Vector times matrix
if (lhs_vec_elem_type && lhs_vec_elem_type->Is<F32>() &&
rhs_mat_elem_type && rhs_mat_elem_type->Is<F32>() &&
(lhs_vec->Width() == rhs_mat->rows())) {
return build(
builder_->create<sem::Vector>(lhs_vec->type(), rhs_mat->columns()));
}
// Matrix times vector
if (lhs_mat_elem_type && lhs_mat_elem_type->Is<F32>() &&
rhs_vec_elem_type && rhs_vec_elem_type->Is<F32>() &&
(lhs_mat->columns() == rhs_vec->Width())) {
return build(
builder_->create<sem::Vector>(rhs_vec->type(), lhs_mat->rows()));
}
// Matrix times matrix
if (lhs_mat_elem_type && lhs_mat_elem_type->Is<F32>() &&
rhs_mat_elem_type && rhs_mat_elem_type->Is<F32>() &&
(lhs_mat->columns() == rhs_mat->rows())) {
return build(builder_->create<sem::Matrix>(
builder_->create<sem::Vector>(lhs_mat_elem_type, lhs_mat->rows()),
rhs_mat->columns()));
}
}
// Comparison expressions
if (expr->IsComparison()) {
if (matching_types) {
// Special case for bools: only == and !=
if (lhs_ty->Is<Bool>() && (expr->IsEqual() || expr->IsNotEqual())) {
return build(builder_->create<sem::Bool>());
}
// For the rest, we can compare i32, u32, and f32
if (lhs_ty->IsAnyOf<I32, U32, F32>()) {
return build(builder_->create<sem::Bool>());
}
}
// Same for vectors
if (matching_vec_elem_types) {
if (lhs_vec_elem_type->Is<Bool>() &&
(expr->IsEqual() || expr->IsNotEqual())) {
return build(builder_->create<sem::Vector>(
builder_->create<sem::Bool>(), lhs_vec->Width()));
}
if (lhs_vec_elem_type->is_numeric_scalar()) {
return build(builder_->create<sem::Vector>(
builder_->create<sem::Bool>(), lhs_vec->Width()));
}
}
}
// Binary bitwise operations
if (expr->IsBitwise()) {
if (matching_types && lhs_ty->is_integer_scalar_or_vector()) {
return build(lhs_ty);
}
}
// Bit shift expressions
if (expr->IsBitshift()) {
// Type validation rules are the same for left or right shift, despite
// differences in computation rules (i.e. right shift can be arithmetic or
// logical depending on lhs type).
if (lhs_ty->IsAnyOf<I32, U32>() && rhs_ty->Is<U32>()) {
return build(lhs_ty);
}
if (lhs_vec_elem_type && lhs_vec_elem_type->IsAnyOf<I32, U32>() &&
rhs_vec_elem_type && rhs_vec_elem_type->Is<U32>()) {
return build(lhs_ty);
}
}
AddError("Binary expression operand types are invalid for this operation: " +
TypeNameOf(lhs_ty) + " " + FriendlyName(expr->op) + " " +
TypeNameOf(rhs_ty),
expr->source);
return nullptr;
}
sem::Expression* Resolver::UnaryOp(const ast::UnaryOpExpression* unary) {
auto* expr_ty = TypeOf(unary->expr);
if (!expr_ty) {
return nullptr;
}
const sem::Type* ty = nullptr;
switch (unary->op) {
case ast::UnaryOp::kNot:
// Result type matches the deref'd inner type.
ty = expr_ty->UnwrapRef();
if (!ty->Is<sem::Bool>() && !ty->is_bool_vector()) {
AddError(
"cannot logical negate expression of type '" + TypeNameOf(expr_ty),
unary->expr->source);
return nullptr;
}
break;
case ast::UnaryOp::kComplement:
// Result type matches the deref'd inner type.
ty = expr_ty->UnwrapRef();
if (!ty->is_integer_scalar_or_vector()) {
AddError("cannot bitwise complement expression of type '" +
TypeNameOf(expr_ty),
unary->expr->source);
return nullptr;
}
break;
case ast::UnaryOp::kNegation:
// Result type matches the deref'd inner type.
ty = expr_ty->UnwrapRef();
if (!(ty->IsAnyOf<sem::F32, sem::I32>() ||
ty->is_signed_integer_vector() || ty->is_float_vector())) {
AddError("cannot negate expression of type '" + TypeNameOf(expr_ty),
unary->expr->source);
return nullptr;
}
break;
case ast::UnaryOp::kAddressOf:
if (auto* ref = expr_ty->As<sem::Reference>()) {
if (ref->StoreType()->UnwrapRef()->is_handle()) {
AddError(
"cannot take the address of expression in handle storage class",
unary->expr->source);
return nullptr;
}
auto* array = unary->expr->As<ast::IndexAccessorExpression>();
auto* member = unary->expr->As<ast::MemberAccessorExpression>();
if ((array && TypeOf(array->object)->UnwrapRef()->Is<sem::Vector>()) ||
(member &&
TypeOf(member->structure)->UnwrapRef()->Is<sem::Vector>())) {
AddError("cannot take the address of a vector component",
unary->expr->source);
return nullptr;
}
ty = builder_->create<sem::Pointer>(ref->StoreType(),
ref->StorageClass(), ref->Access());
} else {
AddError("cannot take the address of expression", unary->expr->source);
return nullptr;
}
break;
case ast::UnaryOp::kIndirection:
if (auto* ptr = expr_ty->As<sem::Pointer>()) {
ty = builder_->create<sem::Reference>(
ptr->StoreType(), ptr->StorageClass(), ptr->Access());
} else {
AddError("cannot dereference expression of type '" +
TypeNameOf(expr_ty) + "'",
unary->expr->source);
return nullptr;
}
break;
}
auto val = EvaluateConstantValue(unary, ty);
return builder_->create<sem::Expression>(unary, ty, current_statement_, val);
}
bool Resolver::VariableDeclStatement(const ast::VariableDeclStatement* stmt) {
Mark(stmt->variable);
if (!ValidateNoDuplicateDefinition(stmt->variable->symbol,
stmt->variable->source)) {
return false;
}
auto* var = Variable(stmt->variable, VariableKind::kLocal);
if (!var) {
return false;
}
for (auto* deco : stmt->variable->decorations) {
Mark(deco);
if (!deco->Is<ast::InternalDecoration>()) {
AddError("decorations are not valid on local variables", deco->source);
return false;
}
}
variable_stack_.Set(stmt->variable->symbol, var);
if (current_block_) { // Not all statements are inside a block
current_block_->AddDecl(stmt->variable);
}
if (!ValidateVariable(var)) {
return false;
}
return true;
}
sem::Type* Resolver::TypeDecl(const ast::TypeDecl* named_type) {
sem::Type* result = nullptr;
if (auto* alias = named_type->As<ast::Alias>()) {
result = Type(alias->type);
} else if (auto* str = named_type->As<ast::Struct>()) {
result = Structure(str);
} else {
TINT_UNREACHABLE(Resolver, diagnostics_) << "Unhandled TypeDecl";
}
if (!result) {
return nullptr;
}
named_type_info_.emplace(named_type->name, TypeDeclInfo{named_type, result});
if (!ValidateTypeDecl(named_type)) {
return nullptr;
}
builder_->Sem().Add(named_type, result);
return result;
}
bool Resolver::ValidateTypeDecl(const ast::TypeDecl* named_type) const {
auto iter = named_type_info_.find(named_type->name);
if (iter == named_type_info_.end()) {
TINT_ICE(Resolver, diagnostics_)
<< "ValidateTypeDecl called() before TypeDecl()";
}
if (iter->second.ast != named_type) {
AddError("type with the name '" +
builder_->Symbols().NameFor(named_type->name) +
"' was already declared",
named_type->source);
AddNote("first declared here", iter->second.ast->source);
return false;
}
return true;
}
sem::Type* Resolver::TypeOf(const ast::Expression* expr) {
auto* sem = Sem(expr);
return sem ? const_cast<sem::Type*>(sem->Type()) : nullptr;
}
std::string Resolver::TypeNameOf(const sem::Type* ty) {
return RawTypeNameOf(ty->UnwrapRef());
}
std::string Resolver::RawTypeNameOf(const sem::Type* ty) {
return ty->FriendlyName(builder_->Symbols());
}
sem::Type* Resolver::TypeOf(const ast::LiteralExpression* lit) {
if (lit->Is<ast::SintLiteralExpression>()) {
return builder_->create<sem::I32>();
}
if (lit->Is<ast::UintLiteralExpression>()) {
return builder_->create<sem::U32>();
}
if (lit->Is<ast::FloatLiteralExpression>()) {
return builder_->create<sem::F32>();
}
if (lit->Is<ast::BoolLiteralExpression>()) {
return builder_->create<sem::Bool>();
}
TINT_UNREACHABLE(Resolver, diagnostics_)
<< "Unhandled literal type: " << lit->TypeInfo().name;
return nullptr;
}
bool Resolver::ValidatePipelineStages() {
auto check_workgroup_storage = [&](const sem::Function* func,
const sem::Function* entry_point) {
auto stage = entry_point->Declaration()->PipelineStage();
if (stage != ast::PipelineStage::kCompute) {
for (auto* var : func->DirectlyReferencedGlobals()) {
if (var->StorageClass() == ast::StorageClass::kWorkgroup) {
std::stringstream stage_name;
stage_name << stage;
for (auto* user : var->Users()) {
if (func == user->Stmt()->Function()) {
AddError("workgroup memory cannot be used by " +
stage_name.str() + " pipeline stage",
user->Declaration()->source);
break;
}
}
AddNote("variable is declared here", var->Declaration()->source);
if (func != entry_point) {
TraverseCallChain(entry_point, func, [&](const sem::Function* f) {
AddNote(
"called by function '" +
builder_->Symbols().NameFor(f->Declaration()->symbol) +
"'",
f->Declaration()->source);
});
AddNote("called by entry point '" +
builder_->Symbols().NameFor(
entry_point->Declaration()->symbol) +
"'",
entry_point->Declaration()->source);
}
return false;
}
}
}
return true;
};
for (auto* entry_point : entry_points_) {
if (!check_workgroup_storage(entry_point, entry_point)) {
return false;
}
for (auto* func : entry_point->TransitivelyCalledFunctions()) {
if (!check_workgroup_storage(func, entry_point)) {
return false;
}
}
}
auto check_intrinsic_calls = [&](const sem::Function* func,
const sem::Function* entry_point) {
auto stage = entry_point->Declaration()->PipelineStage();
for (auto* intrinsic : func->DirectlyCalledIntrinsics()) {
if (!intrinsic->SupportedStages().Contains(stage)) {
auto* call = func->FindDirectCallTo(intrinsic);
std::stringstream err;
err << "built-in cannot be used by " << stage << " pipeline stage";
AddError(err.str(), call ? call->Declaration()->source
: func->Declaration()->source);
if (func != entry_point) {
TraverseCallChain(entry_point, func, [&](const sem::Function* f) {
AddNote("called by function '" +
builder_->Symbols().NameFor(f->Declaration()->symbol) +
"'",
f->Declaration()->source);
});
AddNote("called by entry point '" +
builder_->Symbols().NameFor(
entry_point->Declaration()->symbol) +
"'",
entry_point->Declaration()->source);
}
return false;
}
}
return true;
};
for (auto* entry_point : entry_points_) {
if (!check_intrinsic_calls(entry_point, entry_point)) {
return false;
}
for (auto* func : entry_point->TransitivelyCalledFunctions()) {
if (!check_intrinsic_calls(func, entry_point)) {
return false;
}
}
}
return true;
}
template <typename CALLBACK>
void Resolver::TraverseCallChain(const sem::Function* from,
const sem::Function* to,
CALLBACK&& callback) const {
for (auto* f : from->TransitivelyCalledFunctions()) {
if (f == to) {
callback(f);
return;
}
if (f->TransitivelyCalledFunctions().contains(to)) {
TraverseCallChain(f, to, callback);
callback(f);
return;
}
}
TINT_ICE(Resolver, diagnostics_)
<< "TraverseCallChain() 'from' does not transitively call 'to'";
}
sem::Array* Resolver::Array(const ast::Array* arr) {
auto source = arr->source;
auto* elem_type = Type(arr->type);
if (!elem_type) {
return nullptr;
}
if (!IsPlain(elem_type)) { // Check must come before GetDefaultAlignAndSize()
AddError(TypeNameOf(elem_type) +
" cannot be used as an element type of an array",
source);
return nullptr;
}
uint32_t el_align = elem_type->Align();
uint32_t el_size = elem_type->Size();
if (!ValidateNoDuplicateDecorations(arr->decorations)) {
return nullptr;
}
// Look for explicit stride via [[stride(n)]] decoration
uint32_t explicit_stride = 0;
for (auto* deco : arr->decorations) {
Mark(deco);
if (auto* sd = deco->As<ast::StrideDecoration>()) {
explicit_stride = sd->stride;
if (!ValidateArrayStrideDecoration(sd, el_size, el_align, source)) {
return nullptr;
}
continue;
}
AddError("decoration is not valid for array types", deco->source);
return nullptr;
}
// Calculate implicit stride
uint64_t implicit_stride = utils::RoundUp<uint64_t>(el_align, el_size);
uint64_t stride = explicit_stride ? explicit_stride : implicit_stride;
// Evaluate the constant array size expression.
// sem::Array uses a size of 0 for a runtime-sized array.
uint32_t count = 0;
if (auto* count_expr = arr->count) {
auto* count_sem = Expression(count_expr);
if (!count_sem) {
return nullptr;
}
auto size_source = count_expr->source;
auto* ty = count_sem->Type()->UnwrapRef();
if (!ty->is_integer_scalar()) {
AddError("array size must be integer scalar", size_source);
return nullptr;
}
if (auto* ident = count_expr->As<ast::IdentifierExpression>()) {
// Make sure the identifier is a non-overridable module-scope constant.
auto* var = variable_stack_.Get(ident->symbol);
if (!var || !var->Is<sem::GlobalVariable>() ||
!var->Declaration()->is_const) {
AddError("array size identifier must be a module-scope constant",
size_source);
return nullptr;
}
if (ast::HasDecoration<ast::OverrideDecoration>(
var->Declaration()->decorations)) {
AddError("array size expression must not be pipeline-overridable",
size_source);
return nullptr;
}
count_expr = var->Declaration()->constructor;
} else if (!count_expr->Is<ast::LiteralExpression>()) {
AddError(
"array size expression must be either a literal or a module-scope "
"constant",
size_source);
return nullptr;
}
auto count_val = count_sem->ConstantValue();
if (!count_val) {
TINT_ICE(Resolver, diagnostics_)
<< "could not resolve array size expression";
return nullptr;
}
if (ty->is_signed_integer_scalar() ? count_val.Elements()[0].i32 < 1
: count_val.Elements()[0].u32 < 1u) {
AddError("array size must be at least 1", size_source);
return nullptr;
}
count = count_val.Elements()[0].u32;
}
auto size = std::max<uint64_t>(count, 1) * stride;
if (size > std::numeric_limits<uint32_t>::max()) {
std::stringstream msg;
msg << "array size in bytes must not exceed 0x" << std::hex
<< std::numeric_limits<uint32_t>::max() << ", but is 0x" << std::hex
<< size;
AddError(msg.str(), arr->source);
return nullptr;
}
if (stride > std::numeric_limits<uint32_t>::max() ||
implicit_stride > std::numeric_limits<uint32_t>::max()) {
TINT_ICE(Resolver, diagnostics_)
<< "calculated array stride exceeds uint32";
return nullptr;
}
auto* out = builder_->create<sem::Array>(
elem_type, count, el_align, static_cast<uint32_t>(size),
static_cast<uint32_t>(stride), static_cast<uint32_t>(implicit_stride));
if (!ValidateArray(out, source)) {
return nullptr;
}
if (elem_type->Is<sem::Atomic>()) {
atomic_composite_info_.emplace(out, arr->type->source);
} else {
auto found = atomic_composite_info_.find(elem_type);
if (found != atomic_composite_info_.end()) {
atomic_composite_info_.emplace(out, found->second);
}
}
return out;
}
bool Resolver::ValidateArray(const sem::Array* arr, const Source& source) {
auto* el_ty = arr->ElemType();
if (auto* el_str = el_ty->As<sem::Struct>()) {
if (el_str->IsBlockDecorated()) {
// https://gpuweb.github.io/gpuweb/wgsl/#attributes
// A structure type with the block attribute must not be:
// * the element type of an array type
// * the member type in another structure
AddError(
"A structure type with a [[block]] decoration cannot be used as an "
"element of an array",
source);
return false;
}
}
return true;
}
bool Resolver::ValidateArrayStrideDecoration(const ast::StrideDecoration* deco,
uint32_t el_size,
uint32_t el_align,
const Source& source) {
auto stride = deco->stride;
bool is_valid_stride =
(stride >= el_size) && (stride >= el_align) && (stride % el_align == 0);
if (!is_valid_stride) {
// https://gpuweb.github.io/gpuweb/wgsl/#array-layout-rules
// Arrays decorated with the stride attribute must have a stride that is
// at least the size of the element type, and be a multiple of the
// element type's alignment value.
AddError(
"arrays decorated with the stride attribute must have a stride "
"that is at least the size of the element type, and be a multiple "
"of the element type's alignment value.",
source);
return false;
}
return true;
}
bool Resolver::ValidateStructure(const sem::Struct* str) {
if (str->Members().empty()) {
AddError("structures must have at least one member",
str->Declaration()->source);
return false;
}
std::unordered_set<uint32_t> locations;
for (auto* member : str->Members()) {
if (auto* r = member->Type()->As<sem::Array>()) {
if (r->IsRuntimeSized()) {
if (member != str->Members().back()) {
AddError(
"runtime arrays may only appear as the last member of a struct",
member->Declaration()->source);
return false;
}
if (!str->IsBlockDecorated()) {
AddError(
"a struct containing a runtime-sized array "
"requires the [[block]] attribute: '" +
builder_->Symbols().NameFor(str->Declaration()->name) + "'",
member->Declaration()->source);
return false;
}
}
}
auto has_position = false;
const ast::InvariantDecoration* invariant_attribute = nullptr;
for (auto* deco : member->Declaration()->decorations) {
if (!deco->IsAnyOf<ast::BuiltinDecoration, //
ast::InternalDecoration, //
ast::InterpolateDecoration, //
ast::InvariantDecoration, //
ast::LocationDecoration, //
ast::StructMemberOffsetDecoration, //
ast::StructMemberSizeDecoration, //
ast::StructMemberAlignDecoration>()) {
if (deco->Is<ast::StrideDecoration>() &&
IsValidationDisabled(
member->Declaration()->decorations,
ast::DisabledValidation::kIgnoreStrideDecoration)) {
continue;
}
AddError("decoration is not valid for structure members", deco->source);
return false;
}
if (auto* invariant = deco->As<ast::InvariantDecoration>()) {
invariant_attribute = invariant;
} else if (auto* location = deco->As<ast::LocationDecoration>()) {
if (!ValidateLocationDecoration(location, member->Type(), locations,
member->Declaration()->source)) {
return false;
}
} else if (auto* builtin = deco->As<ast::BuiltinDecoration>()) {
if (!ValidateBuiltinDecoration(builtin, member->Type(),
/* is_input */ false)) {
return false;
}
if (builtin->builtin == ast::Builtin::kPosition) {
has_position = true;
}
} else if (auto* interpolate = deco->As<ast::InterpolateDecoration>()) {
if (!ValidateInterpolateDecoration(interpolate, member->Type())) {
return false;
}
}
}
if (invariant_attribute && !has_position) {
AddError("invariant attribute must only be applied to a position builtin",
invariant_attribute->source);
return false;
}
if (auto* member_struct_type = member->Type()->As<sem::Struct>()) {
if (auto* member_struct_type_block_decoration =
ast::GetDecoration<ast::StructBlockDecoration>(
member_struct_type->Declaration()->decorations)) {
AddError("structs must not contain [[block]] decorated struct members",
member->Declaration()->source);
AddNote("see member's struct decoration here",
member_struct_type_block_decoration->source);
return false;
}
}
}
for (auto* deco : str->Declaration()->decorations) {
if (!(deco->Is<ast::StructBlockDecoration>())) {
AddError("decoration is not valid for struct declarations", deco->source);
return false;
}
}
return true;
}
bool Resolver::ValidateLocationDecoration(
const ast::LocationDecoration* location,
const sem::Type* type,
std::unordered_set<uint32_t>& locations,
const Source& source,
const bool is_input) {
std::string inputs_or_output = is_input ? "inputs" : "output";
if (current_function_ && current_function_->Declaration()->PipelineStage() ==
ast::PipelineStage::kCompute) {
AddError("decoration is not valid for compute shader " + inputs_or_output,
location->source);
return false;
}
if (!type->is_numeric_scalar_or_vector()) {
std::string invalid_type = TypeNameOf(type);
AddError("cannot apply 'location' attribute to declaration of type '" +
invalid_type + "'",
source);
AddNote(
"'location' attribute must only be applied to declarations of "
"numeric scalar or numeric vector type",
location->source);
return false;
}
if (locations.count(location->value)) {
AddError(deco_to_str(location) + " attribute appears multiple times",
location->source);
return false;
}
locations.emplace(location->value);
return true;
}
sem::Struct* Resolver::Structure(const ast::Struct* str) {
if (!ValidateNoDuplicateDecorations(str->decorations)) {
return nullptr;
}
for (auto* deco : str->decorations) {
Mark(deco);
}
sem::StructMemberList sem_members;
sem_members.reserve(str->members.size());
// Calculate the effective size and alignment of each field, and the overall
// size of the structure.
// For size, use the size attribute if provided, otherwise use the default
// size for the type.
// For alignment, use the alignment attribute if provided, otherwise use the
// default alignment for the member type.
// Diagnostic errors are raised if a basic rule is violated.
// Validation of storage-class rules requires analysing the actual variable
// usage of the structure, and so is performed as part of the variable
// validation.
uint64_t struct_size = 0;
uint64_t struct_align = 1;
std::unordered_map<Symbol, const ast::StructMember*> member_map;
for (auto* member : str->members) {
Mark(member);
auto result = member_map.emplace(member->symbol, member);
if (!result.second) {
AddError("redefinition of '" +
builder_->Symbols().NameFor(member->symbol) + "'",
member->source);
AddNote("previous definition is here", result.first->second->source);
return nullptr;
}
// Resolve member type
auto* type = Type(member->type);
if (!type) {
return nullptr;
}
// Validate member type
if (!IsPlain(type)) {
AddError(TypeNameOf(type) +
" cannot be used as the type of a structure member",
member->source);
return nullptr;
}
uint64_t offset = struct_size;
uint64_t align = type->Align();
uint64_t size = type->Size();
if (!ValidateNoDuplicateDecorations(member->decorations)) {
return nullptr;
}
bool has_offset_deco = false;
bool has_align_deco = false;
bool has_size_deco = false;
for (auto* deco : member->decorations) {
Mark(deco);
if (auto* o = deco->As<ast::StructMemberOffsetDecoration>()) {
// Offset decorations are not part of the WGSL spec, but are emitted
// by the SPIR-V reader.
if (o->offset < struct_size) {
AddError("offsets must be in ascending order", o->source);
return nullptr;
}
offset = o->offset;
align = 1;
has_offset_deco = true;
} else if (auto* a = deco->As<ast::StructMemberAlignDecoration>()) {
if (a->align <= 0 || !utils::IsPowerOfTwo(a->align)) {
AddError("align value must be a positive, power-of-two integer",
a->source);
return nullptr;
}
align = a->align;
has_align_deco = true;
} else if (auto* s = deco->As<ast::StructMemberSizeDecoration>()) {
if (s->size < size) {
AddError("size must be at least as big as the type's size (" +
std::to_string(size) + ")",
s->source);
return nullptr;
}
size = s->size;
has_size_deco = true;
}
}
if (has_offset_deco && (has_align_deco || has_size_deco)) {
AddError(
"offset decorations cannot be used with align or size decorations",
member->source);
return nullptr;
}
offset = utils::RoundUp(align, offset);
if (offset > std::numeric_limits<uint32_t>::max()) {
std::stringstream msg;
msg << "struct member has byte offset 0x" << std::hex << offset
<< ", but must not exceed 0x" << std::hex
<< std::numeric_limits<uint32_t>::max();
AddError(msg.str(), member->source);
return nullptr;
}
auto* sem_member = builder_->create<sem::StructMember>(
member, member->symbol, type, static_cast<uint32_t>(sem_members.size()),
static_cast<uint32_t>(offset), static_cast<uint32_t>(align),
static_cast<uint32_t>(size));
builder_->Sem().Add(member, sem_member);
sem_members.emplace_back(sem_member);
struct_size = offset + size;
struct_align = std::max(struct_align, align);
}
uint64_t size_no_padding = struct_size;
struct_size = utils::RoundUp(struct_align, struct_size);
if (struct_size > std::numeric_limits<uint32_t>::max()) {
std::stringstream msg;
msg << "struct size in bytes must not exceed 0x" << std::hex
<< std::numeric_limits<uint32_t>::max() << ", but is 0x" << std::hex
<< struct_size;
AddError(msg.str(), str->source);
return nullptr;
}
if (struct_align > std::numeric_limits<uint32_t>::max()) {
TINT_ICE(Resolver, diagnostics_)
<< "calculated struct stride exceeds uint32";
return nullptr;
}
auto* out = builder_->create<sem::Struct>(
str, str->name, sem_members, static_cast<uint32_t>(struct_align),
static_cast<uint32_t>(struct_size),
static_cast<uint32_t>(size_no_padding));
for (size_t i = 0; i < sem_members.size(); i++) {
auto* mem_type = sem_members[i]->Type();
if (mem_type->Is<sem::Atomic>()) {
atomic_composite_info_.emplace(out,
sem_members[i]->Declaration()->source);
break;
} else {
auto found = atomic_composite_info_.find(mem_type);
if (found != atomic_composite_info_.end()) {
atomic_composite_info_.emplace(out, found->second);
break;
}
}
}
if (!ValidateStructure(out)) {
return nullptr;
}
return out;
}
bool Resolver::ValidateReturn(const ast::ReturnStatement* ret) {
auto* func_type = current_function_->ReturnType();
auto* ret_type = ret->value ? TypeOf(ret->value)->UnwrapRef()
: builder_->create<sem::Void>();
if (func_type->UnwrapRef() != ret_type) {
AddError(
"return statement type must match its function "
"return type, returned '" +
TypeNameOf(ret_type) + "', expected '" + TypeNameOf(func_type) +
"'",
ret->source);
return false;
}
auto* sem = Sem(ret);
if (auto* continuing =
sem->FindFirstParent<sem::LoopContinuingBlockStatement>()) {
AddError("continuing blocks must not contain a return statement",
ret->source);
if (continuing != sem->Parent()) {
AddNote("see continuing block here", continuing->Declaration()->source);
}
return false;
}
return true;
}
bool Resolver::Return(const ast::ReturnStatement* ret) {
if (auto* value = ret->value) {
if (!Expression(value)) {
return false;
}
}
// Validate after processing the return value expression so that its type is
// available for validation.
return ValidateReturn(ret);
}
bool Resolver::ValidateSwitch(const ast::SwitchStatement* s) {
auto* cond_type = TypeOf(s->condition)->UnwrapRef();
if (!cond_type->is_integer_scalar()) {
AddError(
"switch statement selector expression must be of a "
"scalar integer type",
s->condition->source);
return false;
}
bool has_default = false;
std::unordered_map<uint32_t, Source> selectors;
for (auto* case_stmt : s->body) {
if (case_stmt->IsDefault()) {
if (has_default) {
// More than one default clause
AddError("switch statement must have exactly one default clause",
case_stmt->source);
return false;
}
has_default = true;
}
for (auto* selector : case_stmt->selectors) {
if (cond_type != TypeOf(selector)) {
AddError(
"the case selector values must have the same "
"type as the selector expression.",
case_stmt->source);
return false;
}
auto v = selector->ValueAsU32();
auto it = selectors.find(v);
if (it != selectors.end()) {
auto val = selector->Is<ast::IntLiteralExpression>()
? std::to_string(selector->ValueAsI32())
: std::to_string(selector->ValueAsU32());
AddError("duplicate switch case '" + val + "'", selector->source);
AddNote("previous case declared here", it->second);
return false;
}
selectors.emplace(v, selector->source);
}
}
if (!has_default) {
// No default clause
AddError("switch statement must have a default clause", s->source);
return false;
}
if (!s->body.empty()) {
auto* last_clause = s->body.back()->As<ast::CaseStatement>();
auto* last_stmt = last_clause->body->Last();
if (last_stmt && last_stmt->Is<ast::FallthroughStatement>()) {
AddError(
"a fallthrough statement must not appear as "
"the last statement in last clause of a switch",
last_stmt->source);
return false;
}
}
return true;
}
bool Resolver::SwitchStatement(const ast::SwitchStatement* stmt) {
auto* sem = builder_->create<sem::SwitchStatement>(
stmt, current_compound_statement_, current_function_);
builder_->Sem().Add(stmt, sem);
return Scope(sem, [&] {
if (!Expression(stmt->condition)) {
return false;
}
for (auto* case_stmt : stmt->body) {
Mark(case_stmt);
if (!CaseStatement(case_stmt)) {
return false;
}
}
if (!ValidateSwitch(stmt)) {
return false;
}
return true;
});
}
bool Resolver::Assignment(const ast::AssignmentStatement* a) {
if (!Expression(a->lhs) || !Expression(a->rhs)) {
return false;
}
return ValidateAssignment(a);
}
bool Resolver::ValidateAssignment(const ast::AssignmentStatement* a) {
auto const* rhs_ty = TypeOf(a->rhs);
if (a->lhs->Is<ast::PhonyExpression>()) {
// https://www.w3.org/TR/WGSL/#phony-assignment-section
auto* ty = rhs_ty->UnwrapRef();
if (!ty->IsConstructible() &&
!ty->IsAnyOf<sem::Pointer, sem::Texture, sem::Sampler>()) {
AddError(
"cannot assign '" + TypeNameOf(rhs_ty) +
"' to '_'. '_' can only be assigned a constructible, pointer, "
"texture or sampler type",
a->rhs->source);
return false;
}
return true; // RHS can be anything.
}
// https://gpuweb.github.io/gpuweb/wgsl/#assignment-statement
auto const* lhs_ty = TypeOf(a->lhs);
if (auto* ident = a->lhs->As<ast::IdentifierExpression>()) {
if (auto* var = variable_stack_.Get(ident->symbol)) {
if (var->Is<sem::Parameter>()) {
AddError("cannot assign to function parameter", a->lhs->source);
AddNote("'" + builder_->Symbols().NameFor(ident->symbol) +
"' is declared here:",
var->Declaration()->source);
return false;
}
if (var->Declaration()->is_const) {
AddError("cannot assign to const", a->lhs->source);
AddNote("'" + builder_->Symbols().NameFor(ident->symbol) +
"' is declared here:",
var->Declaration()->source);
return false;
}
}
}
auto* lhs_ref = lhs_ty->As<sem::Reference>();
if (!lhs_ref) {
// LHS is not a reference, so it has no storage.
AddError("cannot assign to value of type '" + TypeNameOf(lhs_ty) + "'",
a->lhs->source);
return false;
}
auto* storage_ty = lhs_ref->StoreType();
auto* value_type = rhs_ty->UnwrapRef(); // Implicit load of RHS
// Value type has to match storage type
if (storage_ty != value_type) {
AddError("cannot assign '" + TypeNameOf(rhs_ty) + "' to '" +
TypeNameOf(lhs_ty) + "'",
a->source);
return false;
}
if (!storage_ty->IsConstructible()) {
AddError("storage type of assignment must be constructible", a->source);
return false;
}
if (lhs_ref->Access() == ast::Access::kRead) {
AddError(
"cannot store into a read-only type '" + RawTypeNameOf(lhs_ty) + "'",
a->source);
return false;
}
return true;
}
bool Resolver::ValidateNoDuplicateDefinition(Symbol sym,
const Source& source,
bool check_global_scope_only) {
if (check_global_scope_only) {
if (auto* var = variable_stack_.Get(sym)) {
if (var->Is<sem::GlobalVariable>()) {
AddError("redefinition of '" + builder_->Symbols().NameFor(sym) + "'",
source);
AddNote("previous definition is here", var->Declaration()->source);
return false;
}
}
auto it = symbol_to_function_.find(sym);
if (it != symbol_to_function_.end()) {
AddError("redefinition of '" + builder_->Symbols().NameFor(sym) + "'",
source);
AddNote("previous definition is here", it->second->Declaration()->source);
return false;
}
} else {
if (auto* var = variable_stack_.Get(sym)) {
AddError("redefinition of '" + builder_->Symbols().NameFor(sym) + "'",
source);
AddNote("previous definition is here", var->Declaration()->source);
return false;
}
}
return true;
}
bool Resolver::ValidateNoDuplicateDecorations(
const ast::DecorationList& decorations) {
std::unordered_map<const TypeInfo*, Source> seen;
for (auto* d : decorations) {
auto res = seen.emplace(&d->TypeInfo(), d->source);
if (!res.second && !d->Is<ast::InternalDecoration>()) {
AddError("duplicate " + d->Name() + " decoration", d->source);
AddNote("first decoration declared here", res.first->second);
return false;
}
}
return true;
}
bool Resolver::ApplyStorageClassUsageToType(ast::StorageClass sc,
sem::Type* ty,
const Source& usage) {
ty = const_cast<sem::Type*>(ty->UnwrapRef());
if (auto* str = ty->As<sem::Struct>()) {
if (str->StorageClassUsage().count(sc)) {
return true; // Already applied
}
str->AddUsage(sc);
for (auto* member : str->Members()) {
if (!ApplyStorageClassUsageToType(sc, member->Type(), usage)) {
std::stringstream err;
err << "while analysing structure member " << TypeNameOf(str) << "."
<< builder_->Symbols().NameFor(member->Declaration()->symbol);
AddNote(err.str(), member->Declaration()->source);
return false;
}
}
return true;
}
if (auto* arr = ty->As<sem::Array>()) {
return ApplyStorageClassUsageToType(
sc, const_cast<sem::Type*>(arr->ElemType()), usage);
}
if (ast::IsHostShareable(sc) && !IsHostShareable(ty)) {
std::stringstream err;
err << "Type '" << TypeNameOf(ty) << "' cannot be used in storage class '"
<< sc << "' as it is non-host-shareable";
AddError(err.str(), usage);
return false;
}
return true;
}
template <typename F>
bool Resolver::Scope(sem::CompoundStatement* stmt, F&& callback) {
auto* prev_current_statement = current_statement_;
auto* prev_current_compound_statement = current_compound_statement_;
auto* prev_current_block = current_block_;
current_statement_ = stmt;
current_compound_statement_ = stmt;
current_block_ = stmt->As<sem::BlockStatement>();
variable_stack_.Push();
TINT_DEFER({
current_block_ = prev_current_block;
current_compound_statement_ = prev_current_compound_statement;
current_statement_ = prev_current_statement;
variable_stack_.Pop();
});
return callback();
}
std::string Resolver::VectorPretty(uint32_t size,
const sem::Type* element_type) {
sem::Vector vec_type(element_type, size);
return vec_type.FriendlyName(builder_->Symbols());
}
void Resolver::Mark(const ast::Node* node) {
if (node == nullptr) {
TINT_ICE(Resolver, diagnostics_) << "Resolver::Mark() called with nullptr";
}
if (marked_.emplace(node).second) {
return;
}
TINT_ICE(Resolver, diagnostics_)
<< "AST node '" << node->TypeInfo().name
<< "' was encountered twice in the same AST of a Program\n"
<< "At: " << node->source << "\n"
<< "Pointer: " << node;
}
void Resolver::AddError(const std::string& msg, const Source& source) const {
diagnostics_.add_error(diag::System::Resolver, msg, source);
}
void Resolver::AddWarning(const std::string& msg, const Source& source) const {
diagnostics_.add_warning(diag::System::Resolver, msg, source);
}
void Resolver::AddNote(const std::string& msg, const Source& source) const {
diagnostics_.add_note(diag::System::Resolver, msg, source);
}
template <typename SEM, typename AST_OR_TYPE>
const sem::Info::GetResultType<SEM, AST_OR_TYPE>* Resolver::Sem(
const AST_OR_TYPE* ast) {
auto* sem = builder_->Sem().Get<SEM>(ast);
if (!sem) {
TINT_ICE(Resolver, diagnostics_)
<< "AST node '" << ast->TypeInfo().name << "' had no semantic info\n"
<< "At: " << ast->source << "\n"
<< "Pointer: " << ast;
}
return sem;
}
////////////////////////////////////////////////////////////////////////////////
// Resolver::TypeConversionSig
////////////////////////////////////////////////////////////////////////////////
bool Resolver::TypeConversionSig::operator==(
const TypeConversionSig& rhs) const {
return target == rhs.target && source == rhs.source;
}
std::size_t Resolver::TypeConversionSig::Hasher::operator()(
const TypeConversionSig& sig) const {
return utils::Hash(sig.target, sig.source);
}
////////////////////////////////////////////////////////////////////////////////
// Resolver::TypeConstructorSig
////////////////////////////////////////////////////////////////////////////////
Resolver::TypeConstructorSig::TypeConstructorSig(
const sem::Type* ty,
const std::vector<const sem::Type*> params)
: type(ty), parameters(params) {}
Resolver::TypeConstructorSig::TypeConstructorSig(const TypeConstructorSig&) =
default;
Resolver::TypeConstructorSig::~TypeConstructorSig() = default;
bool Resolver::TypeConstructorSig::operator==(
const TypeConstructorSig& rhs) const {
return type == rhs.type && parameters == rhs.parameters;
}
std::size_t Resolver::TypeConstructorSig::Hasher::operator()(
const TypeConstructorSig& sig) const {
return utils::Hash(sig.type, sig.parameters);
}
} // namespace resolver
2020-03-02 20:47:43 +00:00
} // namespace tint