metaforce/DataSpec/DNACommon/ANIM.cpp

463 lines
15 KiB
C++
Raw Normal View History

#include "DataSpec/DNACommon/ANIM.hpp"
#include <cfloat>
#include <cmath>
#include <cstring>
#include <hecl/hecl.hpp>
#include <zeus/Global.hpp>
#include <zeus/Math.hpp>
2015-08-11 23:32:02 +00:00
#define DUMP_KEYS 0
#if DUMP_KEYS
#include <cstdio>
#include <fmt/format.h>
#endif
2018-12-08 05:30:43 +00:00
namespace DataSpec::DNAANIM {
size_t ComputeBitstreamSize(size_t keyFrameCount, const std::vector<Channel>& channels) {
size_t bitsPerKeyFrame = 0;
for (const Channel& chan : channels) {
switch (chan.type) {
case Channel::Type::Rotation:
bitsPerKeyFrame += 1;
2019-02-18 05:47:46 +00:00
[[fallthrough]];
2018-12-08 05:30:43 +00:00
case Channel::Type::Translation:
case Channel::Type::Scale:
bitsPerKeyFrame += chan.q[0];
bitsPerKeyFrame += chan.q[1];
bitsPerKeyFrame += chan.q[2];
break;
case Channel::Type::KfHead:
bitsPerKeyFrame += 1;
break;
case Channel::Type::RotationMP3:
bitsPerKeyFrame += chan.q[0];
bitsPerKeyFrame += chan.q[1];
bitsPerKeyFrame += chan.q[2];
bitsPerKeyFrame += chan.q[3];
break;
default:
break;
2015-08-11 23:32:02 +00:00
}
2018-12-08 05:30:43 +00:00
}
return (bitsPerKeyFrame * keyFrameCount + 31) / 32 * 4;
2015-08-11 23:32:02 +00:00
}
2019-07-20 04:27:21 +00:00
static QuantizedRot QuantizeRotation(const Value& quat, atUint32 div) {
float q = float(div) / (M_PIF / 2.0f);
2018-12-08 05:30:43 +00:00
zeus::simd_floats f(quat.simd);
2019-06-15 00:39:20 +00:00
assert(std::abs(f[1]) <= 1.f && "Out of range quat X component");
assert(std::abs(f[2]) <= 1.f && "Out of range quat Y component");
assert(std::abs(f[3]) <= 1.f && "Out of range quat Z component");
2018-12-08 05:30:43 +00:00
return {{
atInt32(std::asin(f[1]) * q),
atInt32(std::asin(f[2]) * q),
atInt32(std::asin(f[3]) * q),
2018-12-08 05:30:43 +00:00
},
(f[0] < 0.f)};
2015-08-11 23:32:02 +00:00
}
2015-09-26 03:12:08 +00:00
2019-07-20 04:27:21 +00:00
static Value DequantizeRotation(const QuantizedRot& v, atUint32 div) {
float q = (M_PIF / 2.0f) / float(div);
2018-12-08 05:30:43 +00:00
athena::simd_floats f = {
0.0f,
std::sin(v.v[0] * q),
std::sin(v.v[1] * q),
std::sin(v.v[2] * q),
};
f[0] = std::sqrt(std::max((1.0f - (f[1] * f[1] + f[2] * f[2] + f[3] * f[3])), 0.0f));
f[0] = v.w ? -f[0] : f[0];
Value retval;
retval.simd.copy_from(f);
return retval;
2015-08-11 23:32:02 +00:00
}
2019-07-20 04:27:21 +00:00
static Value DequantizeRotation_3(const QuantizedRot& v, atUint32 div) {
2018-12-08 05:30:43 +00:00
float q = 1.0f / float(div);
athena::simd_floats f = {
0.0f,
v.v[0] * q,
v.v[1] * q,
v.v[2] * q,
};
f[0] = std::sqrt(std::max((1.0f - (f[1] * f[1] + f[2] * f[2] + f[3] * f[3])), 0.0f));
f[0] = v.w ? -f[0] : f[0];
Value retval;
retval.simd.copy_from(f);
return retval;
2015-09-26 03:12:08 +00:00
}
2018-12-08 05:30:43 +00:00
bool BitstreamReader::dequantizeBit(const atUint8* data) {
atUint32 byteCur = (m_bitCur / 32) * 4;
atUint32 bitRem = m_bitCur % 32;
2015-08-13 21:29:07 +00:00
2018-12-08 05:30:43 +00:00
/* Fill 32 bit buffer with region containing bits */
/* Make them least significant */
atUint32 tempBuf = hecl::SBig(*reinterpret_cast<const atUint32*>(data + byteCur)) >> bitRem;
2015-08-13 21:29:07 +00:00
2018-12-08 05:30:43 +00:00
/* That's it */
m_bitCur += 1;
return tempBuf & 0x1;
2015-08-13 21:29:07 +00:00
}
2018-12-08 05:30:43 +00:00
atInt32 BitstreamReader::dequantize(const atUint8* data, atUint8 q) {
atUint32 byteCur = (m_bitCur / 32) * 4;
atUint32 bitRem = m_bitCur % 32;
/* Fill 32 bit buffer with region containing bits */
/* Make them least significant */
atUint32 tempBuf = hecl::SBig(*reinterpret_cast<const atUint32*>(data + byteCur)) >> bitRem;
/* If this shift underflows the value, buffer the next 32 bits */
/* And tack onto shifted buffer */
if ((bitRem + q) > 32) {
atUint32 tempBuf2 = hecl::SBig(*reinterpret_cast<const atUint32*>(data + byteCur + 4));
tempBuf |= (tempBuf2 << (32 - bitRem));
}
/* Mask it */
atUint32 mask = (1 << q) - 1;
tempBuf &= mask;
/* Sign extend */
atUint32 sign = (tempBuf >> (q - 1)) & 0x1;
if (sign)
tempBuf |= ~0u << q;
/* Return delta value */
m_bitCur += q;
return atInt32(tempBuf);
2015-08-11 23:32:02 +00:00
}
2018-12-08 05:30:43 +00:00
std::vector<std::vector<Value>> BitstreamReader::read(const atUint8* data, size_t keyFrameCount,
const std::vector<Channel>& channels, atUint32 rotDiv,
float transMult, float scaleMult) {
m_bitCur = 0;
std::vector<std::vector<Value>> chanKeys;
std::vector<QuantizedValue> chanAccum;
chanKeys.reserve(channels.size());
chanAccum.reserve(channels.size());
for (const Channel& chan : channels) {
chanAccum.push_back(chan.i);
chanKeys.emplace_back();
std::vector<Value>& keys = chanKeys.back();
keys.reserve(keyFrameCount);
switch (chan.type) {
case Channel::Type::Rotation: {
QuantizedRot qr = {{chan.i[0], chan.i[1], chan.i[2]}, false};
keys.emplace_back(DequantizeRotation(qr, rotDiv));
break;
}
case Channel::Type::Translation: {
keys.push_back({chan.i[0] * transMult, chan.i[1] * transMult, chan.i[2] * transMult});
break;
}
case Channel::Type::Scale: {
keys.push_back({chan.i[0] * scaleMult, chan.i[1] * scaleMult, chan.i[2] * scaleMult});
break;
}
case Channel::Type::KfHead: {
break;
}
case Channel::Type::RotationMP3: {
QuantizedRot qr = {{chan.i[1], chan.i[2], chan.i[3]}, bool(chan.i[0] & 0x1)};
keys.emplace_back(DequantizeRotation_3(qr, rotDiv));
break;
2015-08-11 23:32:02 +00:00
}
2018-12-08 05:30:43 +00:00
default:
break;
}
}
2018-12-08 05:30:43 +00:00
for (size_t f = 0; f < keyFrameCount; ++f) {
#if DUMP_KEYS
2020-04-11 22:51:39 +00:00
fmt::print(stderr, FMT_STRING("\nFRAME {} {} {}\n"), f, (m_bitCur / 32) * 4, m_bitCur % 32);
2018-12-08 05:30:43 +00:00
int lastId = -1;
#endif
2018-12-08 05:30:43 +00:00
auto kit = chanKeys.begin();
auto ait = chanAccum.begin();
for (const Channel& chan : channels) {
#if DUMP_KEYS
2018-12-08 05:30:43 +00:00
if (chan.id != lastId) {
lastId = chan.id;
std::fputc('\n', stderr);
2018-12-08 05:30:43 +00:00
}
#endif
2018-12-08 05:30:43 +00:00
QuantizedValue& p = *ait;
switch (chan.type) {
case Channel::Type::Rotation: {
bool wBit = dequantizeBit(data);
p[0] += dequantize(data, chan.q[0]);
p[1] += dequantize(data, chan.q[1]);
p[2] += dequantize(data, chan.q[2]);
QuantizedRot qr = {{p[0], p[1], p[2]}, wBit};
kit->emplace_back(DequantizeRotation(qr, rotDiv));
#if DUMP_KEYS
2020-04-11 22:51:39 +00:00
fmt::print(stderr, FMT_STRING("{} R: {} {} {} {}\t"), chan.id, wBit, p[0], p[1], p[2]);
#endif
2018-12-08 05:30:43 +00:00
break;
}
case Channel::Type::Translation: {
atInt32 val1 = dequantize(data, chan.q[0]);
p[0] += val1;
atInt32 val2 = dequantize(data, chan.q[1]);
p[1] += val2;
atInt32 val3 = dequantize(data, chan.q[2]);
p[2] += val3;
kit->push_back({p[0] * transMult, p[1] * transMult, p[2] * transMult});
#if DUMP_KEYS
2020-04-11 22:51:39 +00:00
fmt::print(stderr, FMT_STRING("{} T: {} {} {}\t"), chan.id, p[0], p[1], p[2]);
#endif
2018-12-08 05:30:43 +00:00
break;
}
case Channel::Type::Scale: {
p[0] += dequantize(data, chan.q[0]);
p[1] += dequantize(data, chan.q[1]);
p[2] += dequantize(data, chan.q[2]);
kit->push_back({p[0] * scaleMult, p[1] * scaleMult, p[2] * scaleMult});
#if DUMP_KEYS
2020-04-11 22:51:39 +00:00
fmt::print(stderr, FMT_STRING("{} S: {} {} {}\t"), chan.id, p[0], p[1], p[2]);
#endif
2018-12-08 05:30:43 +00:00
break;
}
case Channel::Type::KfHead: {
dequantizeBit(data);
break;
}
case Channel::Type::RotationMP3: {
atInt32 val1 = dequantize(data, chan.q[0]);
p[0] += val1;
atInt32 val2 = dequantize(data, chan.q[1]);
p[1] += val2;
atInt32 val3 = dequantize(data, chan.q[2]);
p[2] += val3;
atInt32 val4 = dequantize(data, chan.q[3]);
p[3] += val4;
QuantizedRot qr = {{p[1], p[2], p[3]}, bool(p[0] & 0x1)};
kit->emplace_back(DequantizeRotation_3(qr, rotDiv));
break;
}
default:
break;
}
++kit;
++ait;
}
#if DUMP_KEYS
std::fputc('\n', stderr);
#endif
2018-12-08 05:30:43 +00:00
}
2018-12-08 05:30:43 +00:00
return chanKeys;
2015-08-11 23:32:02 +00:00
}
2018-12-08 05:30:43 +00:00
void BitstreamWriter::quantizeBit(atUint8* data, bool val) {
atUint32 byteCur = (m_bitCur / 32) * 4;
atUint32 bitRem = m_bitCur % 32;
2015-08-13 21:29:07 +00:00
2018-12-08 05:30:43 +00:00
/* Fill 32 bit buffer with region containing bits */
/* Make them least significant */
*(atUint32*)(data + byteCur) = hecl::SBig(hecl::SBig(*(atUint32*)(data + byteCur)) | (val << bitRem));
2015-08-13 21:29:07 +00:00
2018-12-08 05:30:43 +00:00
m_bitCur += 1;
2015-08-13 21:29:07 +00:00
}
2018-12-08 05:30:43 +00:00
void BitstreamWriter::quantize(atUint8* data, atUint8 q, atInt32 val) {
atUint32 byteCur = (m_bitCur / 32) * 4;
atUint32 bitRem = m_bitCur % 32;
2015-08-11 23:32:02 +00:00
2018-12-08 05:30:43 +00:00
atUint32 masked = val & ((1 << q) - 1);
assert(((((val >> 31) & 0x1) == 0x1) || (((masked >> (q - 1)) & 0x1) == 0)) && "Twos compliment fail");
2015-08-11 23:32:02 +00:00
2018-12-08 05:30:43 +00:00
/* Fill 32 bit buffer with region containing bits */
/* Make them least significant */
*(atUint32*)(data + byteCur) = hecl::SBig(hecl::SBig(*(atUint32*)(data + byteCur)) | (masked << bitRem));
2015-08-11 23:32:02 +00:00
2018-12-08 05:30:43 +00:00
/* If this shift underflows the value, buffer the next 32 bits */
/* And tack onto shifted buffer */
if ((bitRem + q) > 32) {
*(atUint32*)(data + byteCur + 4) =
2016-03-04 23:04:53 +00:00
hecl::SBig(hecl::SBig(*(atUint32*)(data + byteCur + 4)) | (masked >> (32 - bitRem)));
2018-12-08 05:30:43 +00:00
}
2015-08-11 23:32:02 +00:00
2018-12-08 05:30:43 +00:00
m_bitCur += q;
2015-08-11 23:32:02 +00:00
}
2018-12-08 05:30:43 +00:00
std::unique_ptr<atUint8[]> BitstreamWriter::write(const std::vector<std::vector<Value>>& chanKeys, size_t keyFrameCount,
std::vector<Channel>& channels, atUint32 quantRange,
atUint32& rotDivOut, float& transMultOut, float& scaleMultOut,
size_t& sizeOut) {
m_bitCur = 0;
rotDivOut = quantRange; /* Normalized range of values */
float quantRangeF = float(quantRange);
/* Pre-pass to calculate translation multiplier */
2019-06-16 02:22:23 +00:00
float maxTransDelta = 0.0f;
float maxScaleDelta = 0.0f;
2018-12-08 05:30:43 +00:00
auto kit = chanKeys.begin();
for (Channel& chan : channels) {
switch (chan.type) {
case Channel::Type::Translation: {
2019-06-16 02:22:23 +00:00
zeus::simd<float> lastVal = {};
2018-12-08 05:30:43 +00:00
for (auto it = kit->begin(); it != kit->end(); ++it) {
const Value* key = &*it;
2019-06-16 02:22:23 +00:00
zeus::simd_floats f(key->simd - lastVal);
lastVal = key->simd;
maxTransDelta = std::max(maxTransDelta, std::fabs(f[0]));
maxTransDelta = std::max(maxTransDelta, std::fabs(f[1]));
maxTransDelta = std::max(maxTransDelta, std::fabs(f[2]));
2018-12-08 05:30:43 +00:00
}
break;
2015-08-11 23:32:02 +00:00
}
2018-12-08 05:30:43 +00:00
case Channel::Type::Scale: {
2019-06-16 02:22:23 +00:00
zeus::simd<float> lastVal = {};
2018-12-08 05:30:43 +00:00
for (auto it = kit->begin(); it != kit->end(); ++it) {
const Value* key = &*it;
2019-06-16 02:22:23 +00:00
zeus::simd_floats f(key->simd - lastVal);
lastVal = key->simd;
maxScaleDelta = std::max(maxScaleDelta, std::fabs(f[0]));
maxScaleDelta = std::max(maxScaleDelta, std::fabs(f[1]));
maxScaleDelta = std::max(maxScaleDelta, std::fabs(f[2]));
2018-12-08 05:30:43 +00:00
}
break;
2015-08-11 23:32:02 +00:00
}
2018-12-08 05:30:43 +00:00
default:
break;
}
++kit;
}
transMultOut = maxTransDelta / quantRangeF + FLT_EPSILON;
scaleMultOut = maxScaleDelta / quantRangeF + FLT_EPSILON;
2018-12-08 05:30:43 +00:00
/* Output channel inits */
std::vector<QuantizedValue> initVals;
initVals.reserve(channels.size());
kit = chanKeys.begin();
for (Channel& chan : channels) {
chan.q[0] = 1;
chan.q[1] = 1;
chan.q[2] = 1;
switch (chan.type) {
case Channel::Type::Rotation: {
QuantizedRot qr = QuantizeRotation((*kit)[0], rotDivOut);
chan.i = qr.v;
initVals.push_back(chan.i);
break;
}
case Channel::Type::Translation: {
zeus::simd_floats f((*kit)[0].simd);
chan.i = {atInt32(f[0] / transMultOut), atInt32(f[1] / transMultOut), atInt32(f[2] / transMultOut)};
initVals.push_back(chan.i);
break;
}
case Channel::Type::Scale: {
zeus::simd_floats f((*kit)[0].simd);
chan.i = {atInt32(f[0] / scaleMultOut), atInt32(f[1] / scaleMultOut), atInt32(f[2] / scaleMultOut)};
initVals.push_back(chan.i);
break;
}
default:
break;
2015-08-11 23:32:02 +00:00
}
2018-12-08 05:30:43 +00:00
++kit;
}
/* Pre-pass to analyze quantization factors for channels */
std::vector<QuantizedValue> lastVals = initVals;
kit = chanKeys.begin();
auto vit = lastVals.begin();
for (Channel& chan : channels) {
QuantizedValue& last = *vit++;
switch (chan.type) {
case Channel::Type::Rotation: {
for (auto it = kit->begin() + 1; it != kit->end(); ++it) {
QuantizedRot qrCur = QuantizeRotation(*it, rotDivOut);
chan.q[0] = std::max(chan.q[0], atUint8(qrCur.v.qFrom(last, 0)));
chan.q[1] = std::max(chan.q[1], atUint8(qrCur.v.qFrom(last, 1)));
chan.q[2] = std::max(chan.q[2], atUint8(qrCur.v.qFrom(last, 2)));
last = qrCur.v;
}
break;
}
case Channel::Type::Translation: {
for (auto it = kit->begin() + 1; it != kit->end(); ++it) {
zeus::simd_floats f(it->simd);
QuantizedValue cur = {atInt32(f[0] / transMultOut), atInt32(f[1] / transMultOut), atInt32(f[2] / transMultOut)};
chan.q[0] = std::max(chan.q[0], atUint8(cur.qFrom(last, 0)));
chan.q[1] = std::max(chan.q[1], atUint8(cur.qFrom(last, 1)));
chan.q[2] = std::max(chan.q[2], atUint8(cur.qFrom(last, 2)));
last = cur;
}
break;
}
case Channel::Type::Scale: {
for (auto it = kit->begin() + 1; it != kit->end(); ++it) {
zeus::simd_floats f(it->simd);
QuantizedValue cur = {atInt32(f[0] / scaleMultOut), atInt32(f[1] / scaleMultOut), atInt32(f[2] / scaleMultOut)};
chan.q[0] = std::max(chan.q[0], atUint8(cur.qFrom(last, 0)));
chan.q[1] = std::max(chan.q[1], atUint8(cur.qFrom(last, 1)));
chan.q[2] = std::max(chan.q[2], atUint8(cur.qFrom(last, 2)));
last = cur;
}
break;
}
default:
break;
}
++kit;
}
2015-08-11 23:32:02 +00:00
2018-12-08 05:30:43 +00:00
/* Generate Bitstream */
sizeOut = ComputeBitstreamSize(keyFrameCount, channels);
std::unique_ptr<atUint8[]> newData(new atUint8[sizeOut]);
memset(newData.get(), 0, sizeOut);
lastVals = initVals;
for (size_t frame = 0; frame < keyFrameCount; ++frame) {
2018-12-08 05:30:43 +00:00
kit = chanKeys.begin();
vit = lastVals.begin();
for (const Channel& chan : channels) {
const Value& val = (*kit++)[frame + 1];
2018-12-08 05:30:43 +00:00
QuantizedValue& last = *vit++;
switch (chan.type) {
case Channel::Type::Rotation: {
QuantizedRot qrCur = QuantizeRotation(val, rotDivOut);
quantizeBit(newData.get(), qrCur.w);
quantize(newData.get(), chan.q[0], qrCur.v[0] - last.v[0]);
quantize(newData.get(), chan.q[1], qrCur.v[1] - last.v[1]);
quantize(newData.get(), chan.q[2], qrCur.v[2] - last.v[2]);
last = qrCur.v;
break;
}
case Channel::Type::Translation: {
zeus::simd_floats f(val.simd);
QuantizedValue cur = {atInt32(f[0] / transMultOut), atInt32(f[1] / transMultOut), atInt32(f[2] / transMultOut)};
quantize(newData.get(), chan.q[0], cur[0] - last[0]);
quantize(newData.get(), chan.q[1], cur[1] - last[1]);
quantize(newData.get(), chan.q[2], cur[2] - last[2]);
last = cur;
break;
}
case Channel::Type::Scale: {
zeus::simd_floats f(val.simd);
QuantizedValue cur = {atInt32(f[0] / scaleMultOut), atInt32(f[1] / scaleMultOut), atInt32(f[2] / scaleMultOut)};
quantize(newData.get(), chan.q[0], cur[0] - last[0]);
quantize(newData.get(), chan.q[1], cur[1] - last[1]);
quantize(newData.get(), chan.q[2], cur[2] - last[2]);
last = cur;
break;
}
default:
break;
}
2015-08-11 23:32:02 +00:00
}
2018-12-08 05:30:43 +00:00
}
return newData;
2015-08-11 23:32:02 +00:00
}
2018-12-08 05:30:43 +00:00
} // namespace DataSpec::DNAANIM