metaforce/Runtime/Collision/CAreaOctTree.cpp

600 lines
19 KiB
C++
Raw Normal View History

#include "Runtime/Collision/CAreaOctTree.hpp"
#include "Runtime/Collision/CMaterialFilter.hpp"
#include <array>
#include <cfloat>
#include <cmath>
#include <utility>
#include <hecl/hecl.hpp>
#include <zeus/CVector2i.hpp>
2016-08-05 20:26:23 +00:00
2018-12-08 05:30:43 +00:00
namespace urde {
static bool _close_enough(float f1, float f2, float epsilon) { return std::fabs(f1 - f2) <= epsilon; }
static bool BoxLineTest(const zeus::CAABox& aabb, const zeus::CLine& line, float& lT, float& hT) {
zeus::simd_floats aabbMinF(aabb.min.mSimd);
zeus::simd_floats aabbMaxF(aabb.max.mSimd);
zeus::simd_floats lineOrigin(line.origin.mSimd);
zeus::simd_floats lineDir(line.dir.mSimd);
const float* aabbMin = aabbMinF.data();
const float* aabbMax = aabbMaxF.data();
const float* lorigin = lineOrigin.data();
const float* ldir = lineDir.data();
lT = -FLT_MAX;
hT = FLT_MAX;
for (int i = 0; i < 3; ++i) {
if (_close_enough(*ldir, 0.f, 0.000099999997f))
if (*lorigin < *aabbMin || *lorigin > *aabbMax)
return false;
if (*ldir < 0.f) {
if (*aabbMax - *lorigin < lT * *ldir)
lT = (*aabbMax - *lorigin) * 1.f / *ldir;
if (*aabbMin - *lorigin > hT * *ldir)
hT = (*aabbMin - *lorigin) * 1.f / *ldir;
} else {
if (*aabbMin - *lorigin > lT * *ldir)
lT = (*aabbMin - *lorigin) * 1.f / *ldir;
if (*aabbMax - *lorigin < hT * *ldir)
hT = (*aabbMax - *lorigin) * 1.f / *ldir;
}
++aabbMin;
++aabbMax;
++lorigin;
++ldir;
}
2016-08-05 20:26:23 +00:00
2018-12-08 05:30:43 +00:00
return lT <= hT;
2017-03-29 02:51:12 +00:00
}
2018-12-08 05:30:43 +00:00
static const int SomeIndexA[] = {1, 2, 4};
static const int SomeIndexB[] = {1, 2, 0};
static const int SomeIndexC[8][8] = {{0, 1, 2, 4, 5, 6, 8, 0xA}, {0, 1, 2, 3, 5, 6, 8, 0xA}, {0, 1, 2, 4, 5, 6, 9, 0xB},
{0, 1, 2, 3, 5, 6, 9, 0xC}, {0, 1, 2, 4, 5, 7, 8, 0xD}, {0, 1, 2, 3, 5, 7, 8, 0xE},
{0, 1, 2, 4, 5, 7, 9, 0xF}, {0, 1, 2, 3, 5, 7, 9, 0xF}};
static const std::pair<int, std::array<int, 3>> SubdivIndex[16] = {
{0, {0, 0, 0}}, {1, {0, 0, 0}}, {1, {1, 0, 0}}, {2, {0, 1, 0}}, {2, {1, 0, 0}}, {1, {2, 0, 0}},
{2, {0, 2, 0}}, {2, {2, 0, 0}}, {2, {2, 1, 0}}, {2, {1, 2, 0}}, {3, {0, 2, 1}}, {3, {1, 0, 2}},
{3, {0, 1, 2}}, {3, {2, 1, 0}}, {3, {2, 0, 1}}, {3, {1, 2, 0}}};
bool CAreaOctTree::Node::LineTestInternal(const zeus::CLine& line, const CMaterialFilter& filter, float lT, float hT,
float maxT, const zeus::CVector3f& vec) const {
float lowT = (1.f - FLT_EPSILON * 100.f) * lT;
float highT = (1.f + FLT_EPSILON * 100.f) * hT;
if (maxT != 0.f) {
if (lowT < 0.f)
lowT = 0.f;
if (highT > maxT)
highT = maxT;
if (lowT > highT)
return true;
}
if (x20_nodeType == ETreeType::Leaf) {
TriListReference triList = GetTriangleArray();
for (u16 i = 0; i < triList.GetSize(); ++i) {
CCollisionSurface triangle = x1c_owner.GetMasterListTriangle(triList.GetAt(i));
// https://en.wikipedia.org/wiki/MöllerTrumbore_intersection_algorithm
// Find vectors for two edges sharing V0
zeus::CVector3f e0 = triangle.GetVert(1) - triangle.GetVert(0);
zeus::CVector3f e1 = triangle.GetVert(2) - triangle.GetVert(0);
// Begin calculating determinant - also used to calculate u parameter
zeus::CVector3f P = line.dir.cross(e1);
float det = P.dot(e0);
// If determinant is near zero, ray lies in plane of triangle
// or ray is parallel to plane of triangle
if (std::fabs(det) < (FLT_EPSILON * 10.f))
continue;
float invDet = 1.f / det;
// Calculate distance from V1 to ray origin
zeus::CVector3f T = line.origin - triangle.GetVert(0);
// Calculate u parameter and test bound
float u = invDet * T.dot(P);
// The intersection lies outside of the triangle
if (u < 0.f || u > 1.f)
continue;
// Prepare to test v parameter
zeus::CVector3f Q = T.cross(e0);
// Calculate T parameter and test bound
float t = invDet * Q.dot(e1);
if (t >= highT || t < lowT)
continue;
// Calculate V parameter and test bound
float v = invDet * Q.dot(line.dir);
if (v < 0.f || u + v > 1.f)
continue;
// Do material filter
CMaterialList matList(triangle.GetSurfaceFlags());
if (filter.Passes(matList))
return false;
}
} else if (x20_nodeType == ETreeType::Branch) {
if (GetChildFlags() == 0xA) // 2 leaves
{
2018-12-08 05:30:43 +00:00
for (int i = 0; i < 2; ++i) {
Node child = GetChild(i);
float tf1 = lT;
float tf2 = hT;
if (BoxLineTest(child.GetBoundingBox(), line, tf1, tf2))
if (!child.LineTestInternal(line, filter, tf1, tf2, maxT, vec))
return false;
}
return true;
}
2018-12-08 05:30:43 +00:00
zeus::CVector3f center = x0_aabb.center();
zeus::CVector3f r6 = line.origin + lT * line.dir;
zeus::CVector3f r7 = line.origin + hT * line.dir;
zeus::CVector3f r9 = vec * (center - line.origin);
int r28 = 0;
int r25 = 0;
int r26 = 0;
for (int i = 0; i < 3; ++i) {
if (r6[i] >= center[i])
r28 |= SomeIndexA[i];
if (r7[i] >= center[i])
r25 |= SomeIndexA[i];
if (r9[i] < r9[SomeIndexB[i]])
r26 |= SomeIndexA[i];
}
2018-12-08 05:30:43 +00:00
float f21 = lT;
int r26b = r28;
const std::pair<int, std::array<int, 3>>& idx = SubdivIndex[SomeIndexC[r26][r28 ^ r25]];
for (int i = 0; i <= idx.first; ++i) {
float f22 = (i < idx.first) ? r9[idx.second[i]] : hT;
if (f22 > lowT && f21 <= f22) {
Node child = GetChild(r26b);
if (child.x20_nodeType != ETreeType::Invalid)
if (!child.LineTestInternal(line, filter, f21, f22, maxT, vec))
return false;
}
if (i < idx.first)
r26b ^= 1 << idx.second[i];
f21 = f22;
}
}
return true;
2017-03-29 02:51:12 +00:00
}
2018-12-08 05:30:43 +00:00
void CAreaOctTree::Node::LineTestExInternal(const zeus::CLine& line, const CMaterialFilter& filter, SRayResult& res,
float lT, float hT, float maxT, const zeus::CVector3f& dirRecip) const {
float lowT = (1.f - FLT_EPSILON * 100.f) * lT;
float highT = (1.f + FLT_EPSILON * 100.f) * hT;
if (maxT != 0.f) {
if (lowT < 0.f)
lowT = 0.f;
if (highT > maxT)
highT = maxT;
if (lowT > highT)
return;
}
if (x20_nodeType == ETreeType::Leaf) {
TriListReference triList = GetTriangleArray();
float bestT = highT;
bool foundTriangle = false;
SRayResult tmpRes;
for (u16 i = 0; i < triList.GetSize(); ++i) {
CCollisionSurface triangle = x1c_owner.GetMasterListTriangle(triList.GetAt(i));
// https://en.wikipedia.org/wiki/MöllerTrumbore_intersection_algorithm
// Find vectors for two edges sharing V0
zeus::CVector3f e0 = triangle.GetVert(1) - triangle.GetVert(0);
zeus::CVector3f e1 = triangle.GetVert(2) - triangle.GetVert(0);
// Begin calculating determinant - also used to calculate u parameter
zeus::CVector3f P = line.dir.cross(e1);
float det = P.dot(e0);
// If determinant is near zero, ray lies in plane of triangle
// or ray is parallel to plane of triangle
if (std::fabs(det) < (FLT_EPSILON * 10.f))
continue;
float invDet = 1.f / det;
// Calculate distance from V1 to ray origin
zeus::CVector3f T = line.origin - triangle.GetVert(0);
// Calculate u parameter and test bound
float u = invDet * T.dot(P);
// The intersection lies outside of the triangle
if (u < 0.f || u > 1.f)
continue;
// Prepare to test v parameter
zeus::CVector3f Q = T.cross(e0);
// Calculate T parameter and test bound
float t = invDet * Q.dot(e1);
if (t >= bestT || t < lowT)
continue;
// Calculate V parameter and test bound
float v = invDet * Q.dot(line.dir);
if (v < 0.f || u + v > 1.f)
continue;
// Do material filter
CMaterialList matList(triangle.GetSurfaceFlags());
if (filter.Passes(matList) && t <= bestT) {
bestT = t;
foundTriangle = true;
tmpRes.x10_surface.emplace(triangle);
tmpRes.x3c_t = t;
}
}
2018-12-08 05:30:43 +00:00
if (foundTriangle) {
res = tmpRes;
res.x0_plane = res.x10_surface->GetPlane();
}
2018-12-08 05:30:43 +00:00
} else if (x20_nodeType == ETreeType::Branch) {
if (GetChildFlags() == 0xA) // 2 leaves
{
2018-12-08 05:30:43 +00:00
SRayResult tmpRes[2];
for (int i = 0; i < 2; ++i) {
Node child = GetChild(i);
float tf1 = lT;
float tf2 = hT;
if (BoxLineTest(child.GetBoundingBox(), line, tf1, tf2))
child.LineTestExInternal(line, filter, tmpRes[i], tf1, tf2, maxT, dirRecip);
}
if (!tmpRes[0].x10_surface && !tmpRes[1].x10_surface) {
res = SRayResult();
} else if (tmpRes[0].x10_surface && tmpRes[1].x10_surface) {
if (tmpRes[0].x3c_t < tmpRes[1].x3c_t)
res = tmpRes[0];
else
res = tmpRes[1];
} else if (tmpRes[0].x10_surface) {
res = tmpRes[0];
} else {
res = tmpRes[1];
}
2018-12-08 05:30:43 +00:00
if (res.x3c_t > highT)
res = SRayResult();
2018-12-08 05:30:43 +00:00
return;
}
2018-12-08 05:30:43 +00:00
zeus::CVector3f center = x0_aabb.center(); // r26
zeus::CVector3f lowPoint = line.origin + lT * line.dir;
zeus::CVector3f highPoint = line.origin + hT * line.dir;
int comps[] = {-1, -1, -1, 0};
float compT[3];
int numComps = 0;
for (int i = 0; i < 3; ++i) {
if (lowPoint[i] >= center[i] || highPoint[i] <= center[i])
if (highPoint[i] >= center[i] || lowPoint[i] <= center[i])
continue;
if (_close_enough(line.dir[i], 0.f, 0.000099999997f))
continue;
comps[numComps++] = i;
compT[i] = dirRecip[i] * (center[i] - line.origin[i]);
}
2018-12-08 05:30:43 +00:00
// Sort componentT least to greatest
switch (numComps) {
default:
return;
case 0:
case 1:
break;
case 2:
if (compT[comps[1]] < compT[comps[0]])
std::swap(comps[1], comps[0]);
break;
case 3:
if (compT[0] < compT[1]) {
if (compT[0] >= compT[2]) {
comps[0] = 2;
comps[1] = 0;
comps[2] = 1;
} else if (compT[1] < compT[2]) {
comps[0] = 0;
comps[1] = 1;
comps[2] = 2;
} else {
comps[0] = 0;
comps[1] = 2;
comps[2] = 1;
}
2018-12-08 05:30:43 +00:00
} else {
if (compT[1] >= compT[2]) {
comps[0] = 2;
comps[1] = 1;
comps[2] = 0;
} else if (compT[0] < compT[2]) {
comps[0] = 1;
comps[1] = 0;
comps[2] = 2;
} else {
comps[0] = 1;
comps[1] = 2;
comps[2] = 0;
}
2018-12-08 05:30:43 +00:00
}
break;
}
2018-12-08 05:30:43 +00:00
zeus::CVector3f lineStart = line.origin + (lT * line.dir);
int selector = 0;
if (lineStart.x() >= center.x())
selector = 1;
if (lineStart.y() >= center.y())
selector |= 1 << 1;
if (lineStart.z() >= center.z())
selector |= 1 << 2;
float tmpLoT = lT;
for (int i = -1; i < numComps; ++i) {
if (i >= 0)
selector ^= 1 << comps[i];
float tmpHiT = (i < numComps - 1) ? compT[comps[i + 1]] : hT;
if (tmpHiT > lowT && tmpLoT <= tmpHiT) {
Node child = GetChild(selector);
if (child.x20_nodeType != ETreeType::Invalid)
child.LineTestExInternal(line, filter, res, tmpLoT, tmpHiT, maxT, dirRecip);
if (res.x10_surface) {
if (res.x3c_t > highT)
res = SRayResult();
break;
}
2018-12-08 05:30:43 +00:00
}
tmpLoT = tmpHiT;
}
2018-12-08 05:30:43 +00:00
}
}
2018-12-08 05:30:43 +00:00
bool CAreaOctTree::Node::LineTest(const zeus::CLine& line, const CMaterialFilter& filter, float length) const {
if (x20_nodeType == ETreeType::Invalid)
return true;
2018-12-08 05:30:43 +00:00
float f1 = 0.f;
float f2 = 0.f;
if (!BoxLineTest(x0_aabb, line, f1, f2))
return true;
2018-12-08 05:30:43 +00:00
zeus::CVector3f recip = 1.f / line.dir;
return LineTestInternal(line, filter, f1 - 0.000099999997f, f2 + 0.000099999997f, length, recip);
}
2018-12-08 05:30:43 +00:00
void CAreaOctTree::Node::LineTestEx(const zeus::CLine& line, const CMaterialFilter& filter, SRayResult& res,
float length) const {
if (x20_nodeType == ETreeType::Invalid)
return;
2018-12-08 05:30:43 +00:00
float lT = 0.f;
float hT = 0.f;
if (!BoxLineTest(x0_aabb, line, lT, hT))
return;
2018-12-08 05:30:43 +00:00
zeus::CVector3f recip = 1.f / line.dir;
LineTestExInternal(line, filter, res, lT - 0.000099999997f, hT + 0.000099999997f, length, recip);
2017-03-29 02:51:12 +00:00
}
2018-12-08 05:30:43 +00:00
CAreaOctTree::Node CAreaOctTree::Node::GetChild(int idx) const {
u16 flags = *reinterpret_cast<const u16*>(x18_ptr);
const u32* offsets = reinterpret_cast<const u32*>(x18_ptr + 4);
ETreeType type = ETreeType((flags >> (2 * idx)) & 0x3);
if (type == ETreeType::Branch) {
zeus::CAABox pos, neg, res;
x0_aabb.splitZ(neg, pos);
if (idx & 4) {
zeus::CAABox(pos).splitY(neg, pos);
if (idx & 2) {
zeus::CAABox(pos).splitX(neg, pos);
if (idx & 1)
res = pos;
2016-08-05 21:44:19 +00:00
else
2018-12-08 05:30:43 +00:00
res = neg;
} else {
zeus::CAABox(neg).splitX(neg, pos);
if (idx & 1)
res = pos;
else
res = neg;
}
} else {
zeus::CAABox(neg).splitY(neg, pos);
if (idx & 2) {
zeus::CAABox(pos).splitX(neg, pos);
if (idx & 1)
res = pos;
else
res = neg;
} else {
zeus::CAABox(neg).splitX(neg, pos);
if (idx & 1)
res = pos;
else
res = neg;
}
2016-08-05 21:44:19 +00:00
}
2018-12-08 05:30:43 +00:00
return Node(x18_ptr + offsets[idx] + 36, res, x1c_owner, ETreeType::Branch);
} else if (type == ETreeType::Leaf) {
const float* aabb = reinterpret_cast<const float*>(x18_ptr + offsets[idx] + 36);
zeus::CAABox aabbObj(aabb[0], aabb[1], aabb[2], aabb[3], aabb[4], aabb[5]);
return Node(aabb, aabbObj, x1c_owner, ETreeType::Leaf);
} else {
return Node(nullptr, zeus::skNullBox, x1c_owner, ETreeType::Invalid);
2018-12-08 05:30:43 +00:00
}
2016-08-05 21:44:19 +00:00
}
2018-12-08 05:30:43 +00:00
void CAreaOctTree::SwapTreeNode(u8* ptr, Node::ETreeType type) {
if (type == Node::ETreeType::Branch) {
u16* typeBits = reinterpret_cast<u16*>(ptr);
*typeBits = hecl::SBig(*typeBits);
u32* offsets = reinterpret_cast<u32*>(ptr + 4);
for (int i = 0; i < 8; ++i) {
Node::ETreeType ctype = Node::ETreeType((*typeBits >> (2 * i)) & 0x3);
offsets[i] = hecl::SBig(offsets[i]);
SwapTreeNode(ptr + offsets[i] + 36, ctype);
2016-08-05 21:44:19 +00:00
}
2018-12-08 05:30:43 +00:00
} else if (type == Node::ETreeType::Leaf) {
float* aabb = reinterpret_cast<float*>(ptr);
aabb[0] = hecl::SBig(aabb[0]);
aabb[1] = hecl::SBig(aabb[1]);
aabb[2] = hecl::SBig(aabb[2]);
aabb[3] = hecl::SBig(aabb[3]);
aabb[4] = hecl::SBig(aabb[4]);
aabb[5] = hecl::SBig(aabb[5]);
u16* countIdxs = reinterpret_cast<u16*>(ptr + 24);
*countIdxs = hecl::SBig(*countIdxs);
for (u16 i = 0; i < *countIdxs; ++i)
countIdxs[i + 1] = hecl::SBig(countIdxs[i + 1]);
}
2016-08-05 21:44:19 +00:00
}
2017-02-28 07:31:14 +00:00
CAreaOctTree::CAreaOctTree(const zeus::CAABox& aabb, Node::ETreeType treeType, const u8* buf, const u8* treeBuf,
2018-12-08 05:30:43 +00:00
u32 matCount, const u32* materials, const u8* vertMats, const u8* edgeMats,
const u8* polyMats, u32 edgeCount, const CCollisionEdge* edges, u32 polyCount,
const u16* polyEdges, u32 vertCount, const float* verts)
: x0_aabb(aabb)
, x18_treeType(treeType)
, x1c_buf(buf)
, x20_treeBuf(treeBuf)
, x24_matCount(matCount)
, x28_materials(materials)
, x2c_vertMats(vertMats)
, x30_edgeMats(edgeMats)
, x34_polyMats(polyMats)
, x38_edgeCount(edgeCount)
, x3c_edges(edges)
, x40_polyCount(polyCount)
, x44_polyEdges(polyEdges)
, x48_vertCount(vertCount)
, x4c_verts(verts) {
SwapTreeNode(const_cast<u8*>(x20_treeBuf), treeType);
for (u32 i = 0; i < matCount; ++i)
const_cast<u32*>(x28_materials)[i] = hecl::SBig(x28_materials[i]);
for (u32 i = 0; i < edgeCount; ++i)
const_cast<CCollisionEdge*>(x3c_edges)[i].swapBig();
for (u32 i = 0; i < polyCount; ++i)
const_cast<u16*>(x44_polyEdges)[i] = hecl::SBig(x44_polyEdges[i]);
for (u32 i = 0; i < vertCount * 3; ++i)
const_cast<float*>(x4c_verts)[i] = hecl::SBig(x4c_verts[i]);
2016-08-05 20:26:23 +00:00
}
2018-12-08 05:30:43 +00:00
std::unique_ptr<CAreaOctTree> CAreaOctTree::MakeFromMemory(const u8* buf, unsigned int size) {
athena::io::MemoryReader r(buf + 8, size - 8);
r.readUint32Big();
r.readUint32Big();
zeus::CAABox aabb;
aabb.readBoundingBoxBig(r);
Node::ETreeType nodeType = Node::ETreeType(r.readUint32Big());
u32 treeSize = r.readUint32Big();
const u8* cur = reinterpret_cast<const u8*>(buf) + 8 + r.position();
const u8* treeBuf = cur;
cur += treeSize;
u32 matCount = hecl::SBig(*reinterpret_cast<const u32*>(cur));
cur += 4;
const u32* matBuf = reinterpret_cast<const u32*>(cur);
cur += 4 * matCount;
u32 vertMatsCount = hecl::SBig(*reinterpret_cast<const u32*>(cur));
cur += 4;
const u8* vertMatsBuf = cur;
cur += vertMatsCount;
u32 edgeMatsCount = hecl::SBig(*reinterpret_cast<const u32*>(cur));
cur += 4;
const u8* edgeMatsBuf = cur;
cur += edgeMatsCount;
u32 polyMatsCount = hecl::SBig(*reinterpret_cast<const u32*>(cur));
cur += 4;
const u8* polyMatsBuf = cur;
cur += polyMatsCount;
u32 edgeCount = hecl::SBig(*reinterpret_cast<const u32*>(cur));
cur += 4;
const CCollisionEdge* edgeBuf = reinterpret_cast<const CCollisionEdge*>(cur);
cur += edgeCount * sizeof(edgeCount);
u32 polyCount = hecl::SBig(*reinterpret_cast<const u32*>(cur));
cur += 4;
const u16* polyBuf = reinterpret_cast<const u16*>(cur);
cur += polyCount * 2;
u32 vertCount = hecl::SBig(*reinterpret_cast<const u32*>(cur));
cur += 4;
const float* vertBuf = reinterpret_cast<const float*>(cur);
return std::make_unique<CAreaOctTree>(aabb, nodeType, reinterpret_cast<const u8*>(buf + 8), treeBuf, matCount, matBuf,
vertMatsBuf, edgeMatsBuf, polyMatsBuf, edgeCount, edgeBuf, polyCount, polyBuf,
vertCount, vertBuf);
2016-08-05 20:26:23 +00:00
}
2018-12-08 05:30:43 +00:00
CCollisionSurface CAreaOctTree::GetMasterListTriangle(u16 idx) const {
const CCollisionEdge& e0 = x3c_edges[x44_polyEdges[idx * 3]];
const CCollisionEdge& e1 = x3c_edges[x44_polyEdges[idx * 3 + 1]];
u16 vert2 = e1.GetVertIndex2();
if (e1.GetVertIndex1() != e0.GetVertIndex1())
if (e1.GetVertIndex1() != e0.GetVertIndex2())
vert2 = e1.GetVertIndex1();
u32 material = x28_materials[x34_polyMats[idx]];
if (material & 0x2000000)
return CCollisionSurface(GetVert(e0.GetVertIndex2()), GetVert(e0.GetVertIndex1()), GetVert(vert2), material);
else
return CCollisionSurface(GetVert(e0.GetVertIndex1()), GetVert(e0.GetVertIndex2()), GetVert(vert2), material);
}
2018-12-08 05:30:43 +00:00
void CAreaOctTree::GetTriangleVertexIndices(u16 idx, u16 indicesOut[3]) const {
const CCollisionEdge& e0 = x3c_edges[x44_polyEdges[idx * 3]];
const CCollisionEdge& e1 = x3c_edges[x44_polyEdges[idx * 3 + 1]];
indicesOut[2] = (e1.GetVertIndex1() != e0.GetVertIndex1() && e1.GetVertIndex1() != e0.GetVertIndex2())
? e1.GetVertIndex1()
: e1.GetVertIndex2();
u32 material = x28_materials[x34_polyMats[idx]];
if (material & 0x2000000) {
indicesOut[0] = e0.GetVertIndex2();
indicesOut[1] = e0.GetVertIndex1();
} else {
indicesOut[0] = e0.GetVertIndex1();
indicesOut[1] = e0.GetVertIndex2();
}
2017-06-26 01:36:31 +00:00
}
2018-12-08 05:30:43 +00:00
} // namespace urde