Start of Vulkan backend (not yet working)

This commit is contained in:
Luke Street 2021-05-10 18:16:42 -04:00
parent 42dba1148d
commit e71baa686a
21 changed files with 1613 additions and 115 deletions

View File

@ -28,22 +28,31 @@ else()
endif()
if(APPLE)
target_sources(visigen PRIVATE MainMac.mm VISIRendererMetal.mm VISIRendererMetal.hh)
set_source_files_properties(MainMac.mm PROPERTIES COMPILE_FLAGS -fobjc-arc)
set_source_files_properties(VISIRendererMetal.mm PROPERTIES COMPILE_FLAGS -fobjc-arc)
target_sources(visigen PRIVATE main.cpp metal/VISIRendererMetal.mm metal/VISIRendererMetal.hh)
set_source_files_properties(metal/VISIRendererMetal.mm PROPERTIES COMPILE_FLAGS -fobjc-arc)
find_library(METAL_LIBRARY Metal REQUIRED)
target_link_libraries(visigen PRIVATE ${METAL_LIBRARY})
elseif(WIN32)
target_sources(visigen PRIVATE
MainWin.cpp
VISIRendererOpenGL.cpp
VISIRendererOpenGL.hpp)
else()
opengl/VISIRendererOpenGL.cpp
opengl/VISIRendererOpenGL.hpp
vulkan/VISIRendererVulkan.cpp
vulkan/VISIRendererVulkan.hpp
vulkan/utils.cpp)
else ()
bintoc(vk_fs.cpp vulkan/shader.frag.spv VK_FRAGMENT_SPV)
bintoc(vk_vs.cpp vulkan/shader.vert.spv VK_VERTEX_SPV)
target_sources(visigen PRIVATE
MainXlib.cpp
VISIRendererOpenGL.cpp
VISIRendererOpenGL.hpp)
endif()
main.cpp
opengl/VISIRendererOpenGL.cpp
opengl/VISIRendererOpenGL.hpp
vulkan/VISIRendererVulkan.cpp
vulkan/VISIRendererVulkan.hpp
vulkan/utils.cpp
vk_fs.cpp
vk_vs.cpp)
endif ()
target_link_libraries(visigen PRIVATE
athena-core

View File

@ -1,4 +1,4 @@
#include "VISIRendererOpenGL.hpp"
#include "opengl/VISIRendererOpenGL.hpp"
#include <Windows.h>
#include <WinUser.h>
#include <Shlwapi.h>

View File

@ -1,4 +1,4 @@
#include "VISIRendererOpenGL.hpp"
#include "opengl/VISIRendererOpenGL.hpp"
#include <X11/Xlib.h>
#include <X11/Xatom.h>
#include <GL/glx.h>

View File

@ -1,68 +0,0 @@
#include <metal_stdlib>
#include <simd/simd.h>
#include "ShaderTypes.h"
using namespace metal;
/*static const matrix_float4x4 LookMATs[] = {
{// Forward
{1.f, 0.f, 0.f, 0.f},
{0.f, 0.f, 1.f, 0.f},
{0.f, -1.f, 0.f, 0.f},
{0.f, 0.f, 0.f, 1.f}},
{// Backward
{-1.f, 0.f, 0.f, 0.f},
{0.f, 0.f, 1.f, 0.f},
{0.f, 1.f, 0.f, 0.f},
{0.f, 0.f, 0.f, 1.f}},
{// Up
{1.f, 0.f, 0.f, 0.f},
{0.f, -1.f, 0.f, 0.f},
{0.f, 0.f, -1.f, 0.f},
{0.f, 0.f, 0.f, 1.f}},
{// Down
{1.f, 0.f, 0.f, 0.f},
{0.f, 1.f, 0.f, 0.f},
{0.f, 0.f, 1.f, 0.f},
{0.f, 0.f, 0.f, 1.f}},
{// Left
{0.f, 1.f, 0.f, 0.f},
{0.f, 0.f, 1.f, 0.f},
{1.f, 0.f, 0.f, 0.f},
{0.f, 0.f, 0.f, 1.f}},
{// Right
{0.f, -1.f, 0.f, 0.f},
{0.f, 0.f, 1.f, 0.f},
{-1.f, 0.f, 0.f, 0.f},
{0.f, 0.f, 0.f, 1.f}},
};*/
typedef struct
{
float4 position [[position]];
float4 color;
} ColorInOut;
typedef struct
{
float3 position [[attribute(VertexAttributePosition)]];
float4 color [[attribute(VertexAttributeColor)]];
} Vertex;
vertex ColorInOut vertexShader(Vertex in [[stage_in]], constant Uniforms& uniforms [[buffer(BufferIndexUniforms)]])
{
ColorInOut out;
float4 position = float4(in.position, 1.0);
position.y *= -1.f;
out.position = uniforms.projectionMatrix * uniforms.modelViewMatrix * position;
out.color = in.color;
return out;
}
fragment float4 fragmentShader(ColorInOut in [[stage_in]])
{
return in.color;
}

View File

@ -31,15 +31,15 @@ const VISIBuilder::Leaf& VISIBuilder::PVSRenderCache::GetLeaf(const zeus::CVecto
bool needsTransparent = false;
m_renderer.RenderPVSOpaque(RGBABuf.get(), needsTransparent);
// size_t outsize;
// auto* buf = VISIRenderer::makePNGBuffer(reinterpret_cast<unsigned char*>(RGBABuf.get()), 768, 512, &outsize);
// auto filename = fmt::format(FMT_STRING("outx{}.png"), m_frame++);
// std::cout << "Rendering " << filename << std::endl;
// std::ofstream fout;
// fout.open(filename, std::ios::binary | std::ios::out);
// fout.write(static_cast<const char*>(buf), outsize);
// fout.close();
// free(buf);
size_t outsize;
auto* buf = VISIRenderer::makePNGBuffer(reinterpret_cast<unsigned char*>(RGBABuf.get()), 768, 512, &outsize);
auto filename = fmt::format(FMT_STRING("/tmp/visigen/outx{}.png"), m_frame++);
std::cout << "Rendering " << filename << std::endl;
std::ofstream fout;
fout.open(filename, std::ios::binary | std::ios::out);
fout.write(static_cast<const char*>(buf), outsize);
fout.close();
free(buf);
std::unique_ptr<Leaf> leafOut = std::make_unique<Leaf>();
for (unsigned i = 0; i < 768 * 512; ++i) {

View File

@ -70,7 +70,7 @@ public:
};
VISIRenderer(int argc, const hecl::SystemChar** argv) : m_argc(argc), m_argv(argv) {}
void Run(FPercent updatePercent);
virtual void Run(FPercent updatePercent);
void Terminate();
virtual void RenderPVSOpaque(RGBA8* bufOut, bool& needTransparent) = 0;
virtual void RenderPVSTransparent(const std::function<void(int)>& passFunc) = 0;

View File

@ -1,13 +1,10 @@
#include "../version.h"
#include "VISIRendererMetal.hh"
#include "athena/Global.hpp"
#include "logvisor/logvisor.hpp"
#include <AppKit/AppKit.h>
#include <MetalKit/MetalKit.h>
#include <thread>
#if !__has_feature(objc_arc)
#error ARC Required
#ifdef __APPLE__
#include "metal/VISIRendererMetal.hh"
#else
#include "vulkan/VISIRendererVulkan.hpp"
#endif
static logvisor::Module AthenaLog("Athena");
@ -25,9 +22,11 @@ int main(int argc, const char **argv) {
logvisor::RegisterStandardExceptions();
logvisor::RegisterConsoleLogger();
atSetExceptionHandler(AthenaExc);
#ifdef __APPLE__
VISIRendererMetal renderer(argc, argv);
@autoreleasepool {
#else
VISIRendererVulkan renderer(argc, argv);
#endif
renderer.Run(nullptr);
}
return renderer.ReturnVal();
}

View File

@ -0,0 +1,34 @@
#include <metal_stdlib>
#include <simd/simd.h>
#include "ShaderTypes.h"
using namespace metal;
typedef struct
{
float4 position [[position]];
float4 color;
} ColorInOut;
typedef struct
{
float3 position [[attribute(VertexAttributePosition)]];
float4 color [[attribute(VertexAttributeColor)]];
} Vertex;
vertex ColorInOut vertexShader(Vertex in [[stage_in]], constant Uniforms& uniforms [[buffer(BufferIndexUniforms)]])
{
ColorInOut out;
float4 position = float4(in.position, 1.0);
out.position = uniforms.projectionMatrix * uniforms.modelViewMatrix * position;
out.color = in.color;
return out;
}
fragment float4 fragmentShader(ColorInOut in [[stage_in]])
{
return in.color;
}

View File

@ -1,9 +1,11 @@
#pragma once
#include "VISIRenderer.hpp"
#import <AppKit/AppKit.h>
#include "../VISIRenderer.hpp"
#import <Metal/Metal.h>
#import <MetalKit/MetalKit.h>
#if !__has_feature(objc_arc)
#error ARC Required
#endif
@interface MetalRenderer : NSObject
@end
@ -19,6 +21,7 @@ public:
VISIRendererMetal(int argc, const hecl::SystemChar** argv) : VISIRenderer(argc, argv) {
view = [[MetalRenderer alloc] init];
}
void Run(FPercent updatePercent) override;
void RenderPVSOpaque(RGBA8* out, bool& needTransparent) override;
void RenderPVSTransparent(const std::function<void(int)>& passFunc) override;
void RenderPVSEntitiesAndLights(const std::function<void(int)>& passFunc,

View File

@ -5,7 +5,10 @@
static zeus::CMatrix4f g_Proj;
constexpr zeus::CMatrix4f VulkanCorrect(1.f, 0.f, 0.f, 0.f, 0.f, -1.f, 0.f, 0.f, 0.f, 0.f, 0.5f, 0.5f + FLT_EPSILON,
constexpr zeus::CMatrix4f DepthCorrect(
1.f, 0.f, 0.f, 0.f,
0.f, 1.f, 0.f, 0.f,
0.f, 0.f, 0.5f, 0.5f,
0.f, 0.f, 0.f, 1.f);
static void CalculateProjMatrix() {
@ -25,9 +28,11 @@ static void CalculateProjMatrix() {
float fmn = zfar - znear;
zeus::CMatrix4f mat2{
2.f * znear / rml, 0.f, rpl / rml, 0.f, 0.f, 2.f * znear / tmb, tpb / tmb, 0.f, 0.f, 0.f, -fpn / fmn,
-2.f * zfar * znear / fmn, 0.f, 0.f, -1.f, 0.f};
g_Proj = VulkanCorrect * mat2;
2.f * znear / rml, 0.f, rpl / rml, 0.f,
0.f, 2.f * znear / tmb, tpb / tmb, 0.f,
0.f, 0.f, -fpn / fmn, -2.f * zfar * znear / fmn,
0.f, 0.f, -1.f, 0.f};
g_Proj = DepthCorrect * mat2;
}
static constexpr std::array<uint16_t, 20> AABBIdxs{0, 1, 2, 3, 4, 5, 6, 7, 0, 1, 1, 7, 3, 5, 5, 0, 0, 2, 6, 4};
@ -238,8 +243,8 @@ using Vertex = VISIRenderer::Model::Vert;
[encoder setVertexBuffer:_uniformBuffer offset:0 atIndex:BufferIndexUniforms];
for (int j = 0; j < 6; ++j) {
GLint x = (j % 3) * 256;
GLint y = (j / 3) * 256;
NSUInteger x = (j % 3) * 256;
NSUInteger y = (j / 3) * 256;
[encoder setViewport:{x, y, 256, 256, 0, 1}];
if (j > 0) {
[encoder setVertexBufferOffset:j * sizeof(Uniforms) atIndex:BufferIndexUniforms];
@ -404,7 +409,7 @@ using Vertex = VISIRenderer::Model::Vert;
[encoder setVisibilityResultMode:MTLVisibilityResultModeBoolean offset:queryCount * sizeof(uint64_t)];
[encoder drawIndexedPrimitives:MTLPrimitiveTypeTriangleStrip
indexCount:20
indexType:MTLIndexTypeUInt32
indexType:MTLIndexTypeUInt16
indexBuffer:_aabbIndexBuffer
indexBufferOffset:0];
}
@ -454,6 +459,12 @@ using Vertex = VISIRenderer::Model::Vert;
}
@end
void VISIRendererMetal::Run(FPercent updatePercent) {
@autoreleasepool {
VISIRenderer::Run(updatePercent);
}
}
bool VISIRendererMetal::SetupShaders() { return [view setup]; }
bool VISIRendererMetal::SetupVertexBuffersAndFormats() {

View File

@ -1,6 +1,6 @@
#pragma once
#include "VISIRenderer.hpp"
#include "../VISIRenderer.hpp"
#include "boo/graphicsdev/glew.h"
#include <zeus/CFrustum.hpp>

View File

@ -0,0 +1,342 @@
#include "VISIRendererVulkan.hpp"
#include "utils.hpp"
extern "C" {
extern const uint8_t VK_FRAGMENT_SPV[];
extern const size_t VK_FRAGMENT_SPV_SZ;
extern const uint8_t VK_VERTEX_SPV[];
extern const size_t VK_VERTEX_SPV_SZ;
}
static char const* AppName = "VISIGen";
static zeus::CMatrix4f g_Proj;
constexpr zeus::CMatrix4f DepthCorrect(1.f, 0.f, 0.f, 0.f, 0.f, 1.f, 0.f, 0.f, 0.f, 0.f, 0.5f, 0.5f, 0.f, 0.f, 0.f,
1.f);
static void CalculateProjMatrix() {
float znear = 0.2f;
float zfar = 1000.f;
float tfov = std::tan(zeus::degToRad(90.f * 0.5f));
float top = znear * tfov;
float bottom = -top;
float right = znear * tfov;
float left = -right;
float rml = right - left;
float rpl = right + left;
float tmb = top - bottom;
float tpb = top + bottom;
float fpn = zfar + znear;
float fmn = zfar - znear;
zeus::CMatrix4f mat2{
2.f * znear / rml, 0.f, rpl / rml, 0.f, 0.f, 2.f * znear / tmb, tpb / tmb, 0.f, 0.f, 0.f, -fpn / fmn,
-2.f * zfar * znear / fmn, 0.f, 0.f, -1.f, 0.f};
g_Proj = DepthCorrect * mat2;
}
static constexpr std::array<uint16_t, 20> AABBIdxs{0, 1, 2, 3, 4, 5, 6, 7, 0, 1, 1, 7, 3, 5, 5, 0, 0, 2, 6, 4};
static const zeus::CMatrix4f LookMATs[] = {
{// Forward
1.f, 0.f, 0.f, 0.f, 0.f, 0.f, 1.f, 0.f, 0.f, -1.f, 0.f, 0.f, 0.f, 0.f, 0.f, 1.f},
{// Backward
-1.f, 0.f, 0.f, 0.f, 0.f, 0.f, 1.f, 0.f, 0.f, 1.f, 0.f, 0.f, 0.f, 0.f, 0.f, 1.f},
{// Up
1.f, 0.f, 0.f, 0.f, 0.f, -1.f, 0.f, 0.f, 0.f, 0.f, -1.f, 0.f, 0.f, 0.f, 0.f, 1.f},
{// Down
1.f, 0.f, 0.f, 0.f, 0.f, 1.f, 0.f, 0.f, 0.f, 0.f, 1.f, 0.f, 0.f, 0.f, 0.f, 1.f},
{// Left
0.f, 1.f, 0.f, 0.f, 0.f, 0.f, 1.f, 0.f, 1.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 1.f},
{// Right
0.f, -1.f, 0.f, 0.f, 0.f, 0.f, 1.f, 0.f, -1.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 1.f},
};
template <typename T>
static vk::UniqueShaderModule createShaderModule(const vk::UniqueDevice& device, const T* code, size_t size) {
return vk::su::assertSuccess(device->createShaderModuleUnique(
vk::ShaderModuleCreateInfo().setCodeSize(size).setPCode(reinterpret_cast<const uint32_t*>(code))));
}
static int rateDeviceSuitability(const vk::PhysicalDevice& device) {
int score = 0;
const auto deviceProperties = device.getProperties();
if (deviceProperties.deviceType == vk::PhysicalDeviceType::eDiscreteGpu) {
score += 1000;
} else if (deviceProperties.deviceType == vk::PhysicalDeviceType::eIntegratedGpu) {
score += 100;
}
// const auto deviceFeatures = device.getFeatures();
// if (!deviceFeatures.geometryShader) {
// return 0;
// }
return score;
}
static const vk::PhysicalDevice& pickPhysicalDevice(const std::vector<vk::PhysicalDevice>& devices) {
std::multimap<int, const vk::PhysicalDevice&> candidates;
for (const auto& device : devices) {
int score = rateDeviceSuitability(device);
candidates.insert(std::make_pair(score, device));
}
if (candidates.rbegin()->first > 0) {
return candidates.rbegin()->second;
}
assert(false && "failed to find a suitable GPU!");
return candidates.begin()->second;
}
bool VISIRendererVulkan::SetupShaders() {
instance = vk::su::createInstance(AppName, AppName, {}, vk::su::getInstanceExtensions());
physicalDevice = pickPhysicalDevice(vk::su::assertSuccess(instance->enumeratePhysicalDevices()));
auto queueFamilyIndex = vk::su::findGraphicsQueueFamilyIndex(physicalDevice.getQueueFamilyProperties());
device = vk::su::createDevice(physicalDevice, queueFamilyIndex, {});
commandPool = vk::su::createCommandPool(device.get(), queueFamilyIndex);
commandBuffer = vk::su::createCommandBuffer(device.get(), commandPool.get());
graphicsQueue = device->getQueue(queueFamilyIndex, 0);
vertexShader = createShaderModule(device, static_cast<const uint8_t*>(VK_VERTEX_SPV), VK_VERTEX_SPV_SZ);
fragmentShader = createShaderModule(device, static_cast<const uint8_t*>(VK_FRAGMENT_SPV), VK_FRAGMENT_SPV_SZ);
vk::Format colorFormat = vk::Format::eR8G8B8A8Unorm;
vk::Format depthFormat = vk::Format::eD16Unorm;
colorRenderPass = vk::su::createRenderPass(device.get(), colorFormat, depthFormat, vk::AttachmentLoadOp::eClear,
vk::AttachmentStoreOp::eStore, vk::AttachmentLoadOp::eClear,
vk::AttachmentStoreOp::eStore, vk::ImageLayout::eTransferSrcOptimal);
depthRenderPass = vk::su::createRenderPass(device.get(), colorFormat, depthFormat, vk::AttachmentLoadOp::eDontCare,
vk::AttachmentStoreOp::eDontCare, vk::AttachmentLoadOp::eLoad,
vk::AttachmentStoreOp::eStore, vk::ImageLayout::eGeneral);
pipelineCache = vk::su::assertSuccess(device->createPipelineCacheUnique(vk::PipelineCacheCreateInfo()));
descriptorSetLayout = vk::su::createDescriptorSetLayout(
device.get(), {{vk::DescriptorType::eUniformBufferDynamic, 1, vk::ShaderStageFlagBits::eVertex}});
descriptorPool = vk::su::createDescriptorPool(device.get(),
{vk::DescriptorPoolSize(vk::DescriptorType::eUniformBufferDynamic, 1)});
pipelineLayout = vk::su::assertSuccess(
device->createPipelineLayoutUnique(vk::PipelineLayoutCreateInfo({}, descriptorSetLayout.get())));
std::pair<vk::ShaderModule, vk::SpecializationInfo const*> vertexShaderData{vertexShader.get(), nullptr};
std::pair<vk::ShaderModule, vk::SpecializationInfo const*> fragmentShaderData{fragmentShader.get(), nullptr};
std::vector<std::pair<vk::Format, uint32_t>> vertexInputAttributeFormats{
{vk::Format::eR32G32B32Sfloat, offsetof(Vertex, pos)},
{vk::Format::eR32G32B32A32Sfloat, offsetof(Vertex, color)},
};
colorPipeline = vk::su::createGraphicsPipeline(
device.get(), pipelineCache.get(), vertexShaderData, fragmentShaderData, sizeof(Vertex),
vertexInputAttributeFormats, vk::FrontFace::eClockwise, true, pipelineLayout.get(), colorRenderPass.get());
depthPipeline = vk::su::createGraphicsPipeline(
device.get(), pipelineCache.get(), vertexShaderData, fragmentShaderData, sizeof(Vertex),
vertexInputAttributeFormats, vk::FrontFace::eClockwise, true, pipelineLayout.get(), depthRenderPass.get());
m_extent = vk::Extent2D(768, 512);
colorAttachment = std::make_unique<vk::su::ImageData>(
physicalDevice, device.get(), colorFormat, m_extent, vk::ImageTiling::eOptimal,
vk::ImageUsageFlags{vk::ImageUsageFlagBits::eColorAttachment | vk::ImageUsageFlagBits::eTransferSrc},
vk::ImageLayout::eUndefined, vk::MemoryPropertyFlags{vk::MemoryPropertyFlagBits::eDeviceLocal},
vk::ImageAspectFlags{vk::ImageAspectFlagBits::eColor});
colorAttachmentRead = std::make_unique<vk::su::ImageData>(
physicalDevice, device.get(), colorFormat, m_extent, vk::ImageTiling::eLinear,
vk::ImageUsageFlags{vk::ImageUsageFlagBits::eTransferDst}, vk::ImageLayout::eUndefined,
vk::MemoryPropertyFlags{vk::MemoryPropertyFlagBits::eHostVisible},
vk::ImageAspectFlags{vk::ImageAspectFlagBits::eColor});
// depthAttachment = std::make_unique<vk::su::ImageData>(
// physicalDevice, device.get(), vk::Format::eD16Unorm, m_extent, vk::ImageTiling::eOptimal,
// vk::ImageUsageFlags{vk::ImageUsageFlagBits::eDepthStencilAttachment}, vk::ImageLayout::eUndefined,
// vk::MemoryPropertyFlags{vk::MemoryPropertyFlagBits::eDeviceLocal},
// vk::ImageAspectFlags{vk::ImageAspectFlagBits::eDepth});
depthAttachment = std::make_unique<vk::su::DepthBufferData>(physicalDevice, device.get(), depthFormat, m_extent);
colorFramebuffer = vk::su::createFramebuffer(device.get(), colorRenderPass.get(), colorAttachment->imageView.get(),
depthAttachment->imageView.get(), m_extent);
depthFramebuffer = vk::su::createFramebuffer(device.get(), depthRenderPass.get(), colorAttachment->imageView.get(),
depthAttachment->imageView.get(), m_extent);
return true;
}
bool VISIRendererVulkan::SetupVertexBuffersAndFormats() {
size_t vertCount = 0;
size_t indexCount = 0;
for (const auto& model : m_models) {
vertCount += model.verts.size();
indexCount += model.idxs.size();
}
m_entityVertStart = vertCount;
vertCount += 8 * m_entities.size();
vertCount += m_lights.size();
vertexBuffer = createBuffer(vertCount * sizeof(Vertex), {vk::BufferUsageFlagBits::eVertexBuffer});
indexBuffer = createBuffer(indexCount * sizeof(uint32_t), {vk::BufferUsageFlagBits::eIndexBuffer});
auto* vertMap = static_cast<Vertex*>(vertexBuffer->map(device.get()));
auto* indexMap = static_cast<uint32_t*>(indexBuffer->map(device.get()));
for (const auto& model : m_models) {
memcpy(vertMap, model.verts.data(), model.verts.size() * sizeof(Vertex));
memcpy(indexMap, model.idxs.data(), model.idxs.size() * sizeof(uint32_t));
vertMap += model.verts.size();
indexMap += model.idxs.size();
}
auto idx = static_cast<uint32_t>(m_models.size());
for (const auto& ent : m_entities) {
auto verts = VISIRenderer::AABBToVerts(ent.aabb, VISIRenderer::ColorForIndex(idx++));
memcpy(vertMap, verts.data(), verts.size() * sizeof(Vertex));
vertMap += verts.size();
}
for (const auto& light : m_lights) {
auto* vert = vertMap++;
vert->pos = light.point;
vert->color = VISIRenderer::ColorForIndex(idx++);
}
vertexBuffer->unmap(device.get());
indexBuffer->unmap(device.get());
uniformBuffer = createBuffer(sizeof(Uniforms) * 6, {vk::BufferUsageFlagBits::eUniformBuffer});
aabbIndexBuffer = createBuffer(AABBIdxs.size() * sizeof(uint16_t), {vk::BufferUsageFlagBits::eIndexBuffer});
aabbIndexBuffer->upload(device.get(), AABBIdxs);
{
const std::array<const vk::DescriptorSetLayout, 1> layouts{descriptorSetLayout.get()};
uniformBufferDescriptorSet =
std::move(vk::su::assertSuccess(device->allocateDescriptorSetsUnique(
vk::DescriptorSetAllocateInfo{descriptorPool.get(), layouts}))
.front());
}
vk::su::updateDescriptorSets(
device.get(), uniformBufferDescriptorSet.get(),
{{vk::DescriptorType::eUniformBufferDynamic, uniformBuffer->buffer.get(), sizeof(Uniforms)}}, {});
return true;
}
void VISIRendererVulkan::SetupRenderPass(const zeus::CVector3f& pos) {
auto posMat = zeus::CTransform::Translate(-pos).toMatrix4f();
auto* buffer = static_cast<Uniforms*>(uniformBuffer->map(device.get()));
for (uint16_t j = 0; j < 6; ++j) {
zeus::CMatrix4f modelView = LookMATs[j] * posMat;
m_frustums[j].updatePlanes(modelView, g_Proj);
buffer->projectionMatrix = g_Proj;
buffer->modelViewMatrix = modelView;
buffer++;
}
uniformBuffer->unmap(device.get());
}
void VISIRendererVulkan::RenderPVSOpaque(VISIRenderer::RGBA8* out, bool& needTransparent) {
commandBuffer->begin(vk::CommandBufferBeginInfo{});
{
std::array<vk::ClearValue, 2> clearValues{
vk::ClearColorValue(std::array<float, 4>{0.f, 0.f, 0.f, 1.f}),
vk::ClearDepthStencilValue(1.f, 0),
};
vk::RenderPassBeginInfo renderPassBeginInfo(colorRenderPass.get(), colorFramebuffer.get(),
vk::Rect2D{{0, 0}, m_extent}, clearValues.size(), clearValues.data());
commandBuffer->beginRenderPass(renderPassBeginInfo, vk::SubpassContents::eInline);
}
commandBuffer->bindPipeline(vk::PipelineBindPoint::eGraphics, colorPipeline.get());
commandBuffer->setScissor(0, std::array{vk::Rect2D{{}, m_extent}});
// commandBuffer->bindVertexBuffers(0, std::array{vertexBuffer->buffer.get()}, std::array<vk::DeviceSize, 1>{0});
commandBuffer->bindIndexBuffer(indexBuffer->buffer.get(), 0, vk::IndexType::eUint32);
for (uint32_t j = 0; j < 6; ++j) {
auto x = static_cast<float>((j % 3) * 256);
auto y = static_cast<float>((j / 3) * 256); // NOLINT(bugprone-integer-division)
commandBuffer->setViewport(0, std::array{vk::Viewport{x, y, 256.f, 256.f, 0.f, 1.f}});
commandBuffer->bindDescriptorSets(vk::PipelineBindPoint::eGraphics, pipelineLayout.get(), 0,
std::array{uniformBufferDescriptorSet.get()},
std::array<uint32_t, 1>{j * sizeof(Uniforms)});
size_t vertexBufferOffset = 0;
size_t indexBufferOffset = 0;
for (const auto& model : m_models) {
if (m_frustums[j].aabbFrustumTest(model.aabb)) {
commandBuffer->bindVertexBuffers(0, std::array{vertexBuffer->buffer.get()},
std::array<vk::DeviceSize, 1>{vertexBufferOffset});
for (const auto& surf : model.surfaces) {
// Non-transparents first
if (surf.transparent) {
needTransparent = true;
} else {
assert(model.topology == hecl::HMDLTopology::TriStrips);
commandBuffer->drawIndexed(surf.count, 1, indexBufferOffset + surf.first, 0, 0);
}
}
}
vertexBufferOffset += model.verts.size() * sizeof(Vertex);
indexBufferOffset += model.idxs.size();
}
}
commandBuffer->endRenderPass();
{
// const vk::ImageMemoryBarrier transferSrcBarrier{
// vk::AccessFlagBits::eMemoryRead,
// vk::AccessFlagBits::eTransferRead,
// vk::ImageLayout::eGeneral,
// vk::ImageLayout::eTransferSrcOptimal,
// 0,
// 0,
// colorAttachment->image.get(),
// vk::ImageSubresourceRange{vk::ImageAspectFlagBits::eColor, 0, 1, 0, 1},
// };
const vk::ImageMemoryBarrier transferDstBarrier{
vk::AccessFlags{},
vk::AccessFlagBits::eTransferWrite,
vk::ImageLayout::eUndefined,
vk::ImageLayout::eTransferDstOptimal,
0,
0,
colorAttachmentRead->image.get(),
vk::ImageSubresourceRange{vk::ImageAspectFlagBits::eColor, 0, 1, 0, 1},
};
commandBuffer->pipelineBarrier(vk::PipelineStageFlagBits::eColorAttachmentOutput, vk::PipelineStageFlagBits::eTransfer,
vk::DependencyFlags{}, std::array<vk::MemoryBarrier, 0>{},
std::array<vk::BufferMemoryBarrier, 0>{},
// std::array<vk::ImageMemoryBarrier, 2>{transferSrcBarrier, transferDstBarrier}
std::array<vk::ImageMemoryBarrier, 1>{transferDstBarrier}
);
}
{
const vk::ImageCopy imageCopy{vk::ImageSubresourceLayers{vk::ImageAspectFlagBits::eColor, 0, 0, 1}, vk::Offset3D{},
vk::ImageSubresourceLayers{vk::ImageAspectFlagBits::eColor, 0, 0, 1}, vk::Offset3D{},
vk::Extent3D{m_extent, 1}};
commandBuffer->copyImage(colorAttachment->image.get(), vk::ImageLayout::eTransferSrcOptimal,
colorAttachmentRead->image.get(), vk::ImageLayout::eTransferDstOptimal,
std::array{imageCopy});
}
// {
//// const vk::ImageMemoryBarrier transferSrcBarrier{
//// vk::AccessFlagBits::eTransferRead,
//// vk::AccessFlags{},
//// vk::ImageLayout::eTransferSrcOptimal,
//// vk::ImageLayout::eColorAttachmentOptimal,
//// 0,
//// 0,
//// colorAttachment->image.get(),
//// vk::ImageSubresourceRange{vk::ImageAspectFlagBits::eColor, 0, 1, 0, 1},
//// };
// const vk::ImageMemoryBarrier transferDstBarrier{
// vk::AccessFlagBits::eTransferWrite,
// vk::AccessFlagBits::eHostRead,
// vk::ImageLayout::eTransferDstOptimal,
// vk::ImageLayout::eGeneral,
// 0,
// 0,
// colorAttachmentRead->image.get(),
// vk::ImageSubresourceRange{vk::ImageAspectFlagBits::eColor, 0, 1, 0, 1},
// };
// commandBuffer->pipelineBarrier(vk::PipelineStageFlagBits::eTransfer,
// vk::PipelineStageFlagBits::eHost, vk::DependencyFlags{},
// std::array<vk::MemoryBarrier, 0>{}, std::array<vk::BufferMemoryBarrier, 0>{},
//// std::array<vk::ImageMemoryBarrier, 2>{transferSrcBarrier, transferDstBarrier}
// std::array<vk::ImageMemoryBarrier, 1>{transferDstBarrier}
// );
// }
commandBuffer->end();
vk::su::submitAndWait(device.get(), graphicsQueue, commandBuffer.get());
size_t size = sizeof(VISIRenderer::RGBA8) * m_extent.height * m_extent.width;
assert(size == colorAttachmentRead->deviceSize);
void* imageMemory = vk::su::assertSuccess(device->mapMemory(colorAttachmentRead->deviceMemory.get(), 0, size));
memcpy(out, imageMemory, size);
device->unmapMemory(colorAttachmentRead->deviceMemory.get());
}
void VISIRendererVulkan::RenderPVSTransparent(const std::function<void(int)>& passFunc) {}
void VISIRendererVulkan::RenderPVSEntitiesAndLights(const std::function<void(int)>& passFunc,
const std::function<void(int, EPVSVisSetState)>& lightPassFunc) {}

View File

@ -0,0 +1,61 @@
#pragma once
#include "../VISIRenderer.hpp"
#include "utils.hpp"
#include <zeus/CFrustum.hpp>
class VISIRendererVulkan : public VISIRenderer {
vk::PhysicalDevice physicalDevice;
vk::UniqueInstance instance;
vk::UniqueDevice device;
vk::UniqueCommandPool commandPool;
vk::UniqueCommandBuffer commandBuffer;
vk::Queue graphicsQueue;
vk::UniqueShaderModule vertexShader;
vk::UniqueShaderModule fragmentShader;
vk::UniqueRenderPass colorRenderPass;
vk::UniqueRenderPass depthRenderPass;
vk::UniquePipelineCache pipelineCache;
vk::UniquePipeline colorPipeline;
vk::UniquePipeline depthPipeline;
vk::UniqueDescriptorSetLayout descriptorSetLayout;
vk::UniqueDescriptorPool descriptorPool;
vk::UniqueDescriptorSet uniformBufferDescriptorSet;
vk::UniquePipelineLayout pipelineLayout;
std::unique_ptr<vk::su::ImageData> colorAttachment;
std::unique_ptr<vk::su::ImageData> colorAttachmentRead;
std::unique_ptr<vk::su::ImageData> depthAttachment;
std::unique_ptr<vk::su::BufferData> uniformBuffer;
std::unique_ptr<vk::su::BufferData> vertexBuffer;
std::unique_ptr<vk::su::BufferData> indexBuffer;
std::unique_ptr<vk::su::BufferData> aabbIndexBuffer;
vk::UniqueFramebuffer colorFramebuffer;
vk::UniqueFramebuffer depthFramebuffer;
bool SetupShaders() override;
bool SetupVertexBuffersAndFormats() override;
void SetupRenderPass(const zeus::CVector3f& pos) override;
private:
using Vertex = VISIRenderer::Model::Vert;
using Uniforms = struct {
zeus::CMatrix4f projectionMatrix;
zeus::CMatrix4f modelViewMatrix;
};
size_t m_entityVertStart;
std::array<zeus::CFrustum, 6> m_frustums;
vk::Extent2D m_extent;
inline std::unique_ptr<vk::su::BufferData> createBuffer(size_t size, vk::BufferUsageFlags usageFlags) {
return std::make_unique<vk::su::BufferData>(physicalDevice, device.get(), size, usageFlags);
}
public:
VISIRendererVulkan(int argc, const hecl::SystemChar** argv) : VISIRenderer(argc, argv) {}
void RenderPVSOpaque(RGBA8* out, bool& needTransparent) override;
void RenderPVSTransparent(const std::function<void(int)>& passFunc) override;
void RenderPVSEntitiesAndLights(const std::function<void(int)>& passFunc,
const std::function<void(int, EPVSVisSetState)>& lightPassFunc) override;
};

View File

@ -0,0 +1,14 @@
#version 450
#extension GL_ARB_separate_shader_objects : enable
struct VertToFrag
{
vec4 color;
};
layout(location=0) in VertToFrag vtf;
layout(location=0) out vec4 colorOut;
void main()
{
colorOut = vtf.color;
}

Binary file not shown.

View File

@ -0,0 +1,23 @@
#version 450
#extension GL_ARB_separate_shader_objects : enable
layout(location=0) in vec4 posIn;
layout(location=1) in vec4 colorIn;
layout(binding=0) uniform UniformBlock
{
mat4 projectionMatrix;
mat4 modelViewMatrix;
};
struct VertToFrag
{
vec4 color;
};
layout(location=0) out VertToFrag vtf;
void main()
{
vtf.color = colorIn;
gl_Position = projectionMatrix * modelViewMatrix * vec4(posIn.xyz, 1.0);
}

Binary file not shown.

767
visigen/vulkan/utils.cpp Normal file
View File

@ -0,0 +1,767 @@
// Copyright(c) 2019, NVIDIA CORPORATION. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
#if defined(_MSC_VER)
// no need to ignore any warnings with MSVC
#elif defined(__clang__)
#pragma clang diagnostic ignored "-Wmissing-braces"
#elif defined(__GNUC__)
// no need to ignore any warnings with GCC
#else
// unknow compiler... just ignore the warnings for yourselves ;)
#endif
#include "utils.hpp"
#include <vulkan/vulkan.hpp>
#include <iomanip>
#include <memory>
#include <numeric>
#include <utility>
#if (VULKAN_HPP_DISPATCH_LOADER_DYNAMIC == 1)
VULKAN_HPP_DEFAULT_DISPATCH_LOADER_DYNAMIC_STORAGE
#endif
namespace vk::su {
vk::UniqueDeviceMemory allocateDeviceMemory(vk::Device const& device,
vk::PhysicalDeviceMemoryProperties const& memoryProperties,
vk::MemoryRequirements const& memoryRequirements,
vk::MemoryPropertyFlags memoryPropertyFlags) {
uint32_t memoryTypeIndex = findMemoryType(memoryProperties, memoryRequirements.memoryTypeBits, memoryPropertyFlags);
return assertSuccess(device.allocateMemoryUnique(vk::MemoryAllocateInfo(memoryRequirements.size, memoryTypeIndex)));
}
bool contains(std::vector<vk::ExtensionProperties> const& extensionProperties, std::string const& extensionName) {
auto propertyIterator =
std::find_if(extensionProperties.begin(), extensionProperties.end(),
[&extensionName](vk::ExtensionProperties const& ep) { return extensionName == ep.extensionName; });
return (propertyIterator != extensionProperties.end());
}
vk::UniqueCommandPool createCommandPool(vk::Device const& device, uint32_t queueFamilyIndex) {
vk::CommandPoolCreateInfo commandPoolCreateInfo(vk::CommandPoolCreateFlagBits::eResetCommandBuffer, queueFamilyIndex);
return assertSuccess(device.createCommandPoolUnique(commandPoolCreateInfo));
}
vk::UniqueCommandBuffer createCommandBuffer(vk::Device const& device, vk::CommandPool const& commandPool) {
const vk::CommandBufferAllocateInfo info(commandPool, vk::CommandBufferLevel::ePrimary, 1);
auto commandBuffers = vk::su::assertSuccess(device.allocateCommandBuffersUnique(info));
return std::move(commandBuffers.front());
}
vk::DebugUtilsMessengerEXT createDebugUtilsMessengerEXT(vk::Instance const& instance) {
return instance.createDebugUtilsMessengerEXT(vk::su::makeDebugUtilsMessengerCreateInfoEXT()).value;
}
vk::UniqueDescriptorPool createDescriptorPool(vk::Device const& device,
std::vector<vk::DescriptorPoolSize> const& poolSizes) {
assert(!poolSizes.empty());
uint32_t maxSets =
std::accumulate(poolSizes.begin(), poolSizes.end(), 0,
[](uint32_t sum, vk::DescriptorPoolSize const& dps) { return sum + dps.descriptorCount; });
assert(0 < maxSets);
vk::DescriptorPoolCreateInfo descriptorPoolCreateInfo(vk::DescriptorPoolCreateFlagBits::eFreeDescriptorSet, maxSets,
poolSizes);
return assertSuccess(device.createDescriptorPoolUnique(descriptorPoolCreateInfo));
}
vk::UniqueDescriptorSetLayout createDescriptorSetLayout(
vk::Device const& device,
std::vector<std::tuple<vk::DescriptorType, uint32_t, vk::ShaderStageFlags>> const& bindingData,
vk::DescriptorSetLayoutCreateFlags flags) {
std::vector<vk::DescriptorSetLayoutBinding> bindings(bindingData.size());
for (size_t i = 0; i < bindingData.size(); i++) {
bindings[i] = vk::DescriptorSetLayoutBinding(checked_cast<uint32_t>(i), std::get<0>(bindingData[i]),
std::get<1>(bindingData[i]), std::get<2>(bindingData[i]));
}
return assertSuccess(device.createDescriptorSetLayoutUnique(vk::DescriptorSetLayoutCreateInfo(flags, bindings)));
}
vk::UniqueDevice createDevice(vk::PhysicalDevice const& physicalDevice, uint32_t queueFamilyIndex,
std::vector<std::string> const& extensions,
vk::PhysicalDeviceFeatures const* physicalDeviceFeatures, void const* pNext) {
std::vector<char const*> enabledExtensions;
enabledExtensions.reserve(extensions.size());
for (auto const& ext : extensions) {
enabledExtensions.push_back(ext.data());
}
float queuePriority = 0.0f;
vk::DeviceQueueCreateInfo deviceQueueCreateInfo({}, queueFamilyIndex, 1, &queuePriority);
vk::DeviceCreateInfo deviceCreateInfo({}, deviceQueueCreateInfo, {}, enabledExtensions, physicalDeviceFeatures);
deviceCreateInfo.pNext = pNext;
vk::UniqueDevice device = assertSuccess(physicalDevice.createDeviceUnique(deviceCreateInfo));
#if (VULKAN_HPP_DISPATCH_LOADER_DYNAMIC == 1)
// initialize function pointers for instance
VULKAN_HPP_DEFAULT_DISPATCHER.init(device.get());
#endif
return device;
}
vk::UniqueFramebuffer createFramebuffer(vk::Device const& device, vk::RenderPass& renderPass,
vk::ImageView const& colorImageView, vk::ImageView const& depthImageView,
vk::Extent2D const& extent) {
std::array<vk::ImageView, 2> attachments{colorImageView, depthImageView};
vk::FramebufferCreateInfo framebufferCreateInfo(vk::FramebufferCreateFlags(), renderPass, depthImageView ? 2 : 1,
attachments.data(), extent.width, extent.height, 1);
return assertSuccess(device.createFramebufferUnique(framebufferCreateInfo));
}
vk::UniquePipeline createGraphicsPipeline(
vk::Device const& device, vk::PipelineCache const& pipelineCache,
std::pair<vk::ShaderModule, vk::SpecializationInfo const*> const& vertexShaderData,
std::pair<vk::ShaderModule, vk::SpecializationInfo const*> const& fragmentShaderData, uint32_t vertexStride,
std::vector<std::pair<vk::Format, uint32_t>> const& vertexInputAttributeFormatOffset, vk::FrontFace frontFace,
bool depthBuffered, vk::PipelineLayout const& pipelineLayout, vk::RenderPass const& renderPass) {
std::array<vk::PipelineShaderStageCreateInfo, 2> pipelineShaderStageCreateInfos = {
vk::PipelineShaderStageCreateInfo(vk::PipelineShaderStageCreateFlags(), vk::ShaderStageFlagBits::eVertex,
vertexShaderData.first, "main", vertexShaderData.second),
vk::PipelineShaderStageCreateInfo(vk::PipelineShaderStageCreateFlags(), vk::ShaderStageFlagBits::eFragment,
fragmentShaderData.first, "main", fragmentShaderData.second)};
std::vector<vk::VertexInputAttributeDescription> vertexInputAttributeDescriptions;
vk::PipelineVertexInputStateCreateInfo pipelineVertexInputStateCreateInfo;
vk::VertexInputBindingDescription vertexInputBindingDescription(0, vertexStride);
if (0 < vertexStride) {
vertexInputAttributeDescriptions.reserve(vertexInputAttributeFormatOffset.size());
for (uint32_t i = 0; i < vertexInputAttributeFormatOffset.size(); i++) {
vertexInputAttributeDescriptions.emplace_back(i, 0, vertexInputAttributeFormatOffset[i].first,
vertexInputAttributeFormatOffset[i].second);
}
pipelineVertexInputStateCreateInfo.setVertexBindingDescriptions(vertexInputBindingDescription);
pipelineVertexInputStateCreateInfo.setVertexAttributeDescriptions(vertexInputAttributeDescriptions);
}
vk::PipelineInputAssemblyStateCreateInfo pipelineInputAssemblyStateCreateInfo(
vk::PipelineInputAssemblyStateCreateFlags(), vk::PrimitiveTopology::eTriangleStrip);
vk::PipelineViewportStateCreateInfo pipelineViewportStateCreateInfo(vk::PipelineViewportStateCreateFlags(), 1,
nullptr, 1, nullptr);
vk::PipelineRasterizationStateCreateInfo pipelineRasterizationStateCreateInfo(
vk::PipelineRasterizationStateCreateFlags(), VK_FALSE, VK_FALSE, vk::PolygonMode::eFill,
vk::CullModeFlagBits::eBack, frontFace, VK_FALSE, 0.0f, 0.0f, 0.0f, 1.0f);
vk::PipelineMultisampleStateCreateInfo pipelineMultisampleStateCreateInfo({}, vk::SampleCountFlagBits::e1);
vk::StencilOpState stencilOpState(vk::StencilOp::eKeep, vk::StencilOp::eKeep, vk::StencilOp::eKeep,
vk::CompareOp::eAlways);
vk::PipelineDepthStencilStateCreateInfo pipelineDepthStencilStateCreateInfo(
vk::PipelineDepthStencilStateCreateFlags(), static_cast<vk::Bool32>(depthBuffered),
static_cast<vk::Bool32>(depthBuffered), vk::CompareOp::eLessOrEqual, VK_FALSE, VK_FALSE, stencilOpState,
stencilOpState);
vk::ColorComponentFlags colorComponentFlags(vk::ColorComponentFlagBits::eR | vk::ColorComponentFlagBits::eG |
vk::ColorComponentFlagBits::eB | vk::ColorComponentFlagBits::eA);
vk::PipelineColorBlendAttachmentState pipelineColorBlendAttachmentState(
VK_FALSE, vk::BlendFactor::eZero, vk::BlendFactor::eZero, vk::BlendOp::eAdd, vk::BlendFactor::eZero,
vk::BlendFactor::eZero, vk::BlendOp::eAdd, colorComponentFlags);
vk::PipelineColorBlendStateCreateInfo pipelineColorBlendStateCreateInfo(
vk::PipelineColorBlendStateCreateFlags(), VK_FALSE, vk::LogicOp::eNoOp, pipelineColorBlendAttachmentState,
{{1.0f, 1.0f, 1.0f, 1.0f}});
std::array<vk::DynamicState, 2> dynamicStates = {vk::DynamicState::eViewport, vk::DynamicState::eScissor};
vk::PipelineDynamicStateCreateInfo pipelineDynamicStateCreateInfo(vk::PipelineDynamicStateCreateFlags(),
dynamicStates);
vk::GraphicsPipelineCreateInfo graphicsPipelineCreateInfo(
vk::PipelineCreateFlags(), pipelineShaderStageCreateInfos, &pipelineVertexInputStateCreateInfo,
&pipelineInputAssemblyStateCreateInfo, nullptr, &pipelineViewportStateCreateInfo,
&pipelineRasterizationStateCreateInfo, &pipelineMultisampleStateCreateInfo, &pipelineDepthStencilStateCreateInfo,
&pipelineColorBlendStateCreateInfo, &pipelineDynamicStateCreateInfo, pipelineLayout, renderPass);
return assertSuccess(device.createGraphicsPipelineUnique(pipelineCache, graphicsPipelineCreateInfo));
}
std::vector<char const*> gatherExtensions(std::vector<std::string> const& extensions
#if !defined(NDEBUG)
,
std::vector<vk::ExtensionProperties> const& extensionProperties
#endif
) {
std::vector<char const*> enabledExtensions;
enabledExtensions.reserve(extensions.size());
for (auto const& ext : extensions) {
assert(std::find_if(extensionProperties.begin(), extensionProperties.end(),
[ext](vk::ExtensionProperties const& ep) { return ext == ep.extensionName; }) !=
extensionProperties.end());
enabledExtensions.push_back(ext.data());
}
#if !defined(NDEBUG)
if (std::find(extensions.begin(), extensions.end(), VK_EXT_DEBUG_UTILS_EXTENSION_NAME) == extensions.end() &&
std::find_if(extensionProperties.begin(), extensionProperties.end(), [](vk::ExtensionProperties const& ep) {
return (strcmp(VK_EXT_DEBUG_UTILS_EXTENSION_NAME, ep.extensionName) == 0);
}) != extensionProperties.end()) {
enabledExtensions.push_back(VK_EXT_DEBUG_UTILS_EXTENSION_NAME);
}
#endif
return enabledExtensions;
}
std::vector<char const*> gatherLayers(std::vector<std::string> const& layers
#if !defined(NDEBUG)
,
std::vector<vk::LayerProperties> const& layerProperties
#endif
) {
std::vector<char const*> enabledLayers;
enabledLayers.reserve(layers.size());
for (auto const& layer : layers) {
assert(std::find_if(layerProperties.begin(), layerProperties.end(), [layer](vk::LayerProperties const& lp) {
return layer == lp.layerName;
}) != layerProperties.end());
enabledLayers.push_back(layer.data());
}
#if !defined(NDEBUG)
// Enable standard validation layer to find as much errors as possible!
if (std::find(layers.begin(), layers.end(), "VK_LAYER_KHRONOS_validation") == layers.end() &&
std::find_if(layerProperties.begin(), layerProperties.end(), [](vk::LayerProperties const& lp) {
return (strcmp("VK_LAYER_KHRONOS_validation", lp.layerName) == 0);
}) != layerProperties.end()) {
enabledLayers.push_back("VK_LAYER_KHRONOS_validation");
}
#endif
return enabledLayers;
}
vk::UniqueInstance createInstance(std::string const& appName, std::string const& engineName,
std::vector<std::string> const& layers, std::vector<std::string> const& extensions,
uint32_t apiVersion) {
#if (VULKAN_HPP_DISPATCH_LOADER_DYNAMIC == 1)
static vk::DynamicLoader dl;
auto vkGetInstanceProcAddr = dl.getProcAddress<PFN_vkGetInstanceProcAddr>("vkGetInstanceProcAddr");
VULKAN_HPP_DEFAULT_DISPATCHER.init(vkGetInstanceProcAddr);
#endif
vk::ApplicationInfo applicationInfo(appName.c_str(), 1, engineName.c_str(), 1, apiVersion);
std::vector<char const*> enabledLayers = vk::su::gatherLayers(layers
#if !defined(NDEBUG)
, vk::enumerateInstanceLayerProperties().value
#endif
);
std::vector<char const*> enabledExtensions =
vk::su::gatherExtensions(extensions
#if !defined(NDEBUG)
, vk::enumerateInstanceExtensionProperties().value
#endif
);
vk::UniqueInstance instance = assertSuccess(vk::createInstanceUnique(
makeInstanceCreateInfoChain(applicationInfo, enabledLayers, enabledExtensions).get<vk::InstanceCreateInfo>()));
#if (VULKAN_HPP_DISPATCH_LOADER_DYNAMIC == 1)
// initialize function pointers for instance
VULKAN_HPP_DEFAULT_DISPATCHER.init(instance.get());
#endif
return instance;
}
vk::UniqueRenderPass createRenderPass(vk::Device const& device, vk::Format colorFormat, vk::Format depthFormat,
vk::AttachmentLoadOp colorLoadOp, vk::AttachmentStoreOp colorStoreOp,
vk::AttachmentLoadOp depthLoadOp, vk::AttachmentStoreOp depthStoreOp,
vk::ImageLayout colorFinalLayout) {
std::vector<vk::AttachmentDescription> attachmentDescriptions;
assert(colorFormat != vk::Format::eUndefined);
attachmentDescriptions.emplace_back(vk::AttachmentDescriptionFlags(), colorFormat, vk::SampleCountFlagBits::e1,
colorLoadOp, colorStoreOp, vk::AttachmentLoadOp::eDontCare,
vk::AttachmentStoreOp::eDontCare, vk::ImageLayout::eUndefined, colorFinalLayout);
if (depthFormat != vk::Format::eUndefined) {
attachmentDescriptions.emplace_back(
vk::AttachmentDescriptionFlags(), depthFormat, vk::SampleCountFlagBits::e1, depthLoadOp, depthStoreOp,
vk::AttachmentLoadOp::eDontCare, vk::AttachmentStoreOp::eDontCare,
vk::ImageLayout::eUndefined, vk::ImageLayout::eDepthStencilAttachmentOptimal);
}
vk::AttachmentReference colorAttachment(0, vk::ImageLayout::eColorAttachmentOptimal);
vk::AttachmentReference depthAttachment(1, vk::ImageLayout::eDepthStencilAttachmentOptimal);
vk::SubpassDescription subpassDescription(vk::SubpassDescriptionFlags(), vk::PipelineBindPoint::eGraphics, {},
colorAttachment, {},
(depthFormat != vk::Format::eUndefined) ? &depthAttachment : nullptr);
return assertSuccess(device.createRenderPassUnique(
vk::RenderPassCreateInfo(vk::RenderPassCreateFlags(), attachmentDescriptions, subpassDescription)));
}
VKAPI_ATTR VkBool32 VKAPI_CALL debugUtilsMessengerCallback(VkDebugUtilsMessageSeverityFlagBitsEXT messageSeverity,
VkDebugUtilsMessageTypeFlagsEXT messageTypes,
VkDebugUtilsMessengerCallbackDataEXT const* pCallbackData,
void* /*pUserData*/) {
#if !defined(NDEBUG)
if (pCallbackData->messageIdNumber == 648835635) {
// UNASSIGNED-khronos-Validation-debug-build-warning-message
return VK_FALSE;
}
if (pCallbackData->messageIdNumber == 767975156) {
// UNASSIGNED-BestPractices-vkCreateInstance-specialuse-extension
return VK_FALSE;
}
#endif
std::cerr << vk::to_string(static_cast<vk::DebugUtilsMessageSeverityFlagBitsEXT>(messageSeverity)) << ": "
<< vk::to_string(static_cast<vk::DebugUtilsMessageTypeFlagsEXT>(messageTypes)) << ":\n";
std::cerr << "\t"
<< "messageIDName = <" << pCallbackData->pMessageIdName << ">\n";
std::cerr << "\t"
<< "messageIdNumber = " << pCallbackData->messageIdNumber << "\n";
std::cerr << "\t"
<< "message = <" << pCallbackData->pMessage << ">\n";
if (0 < pCallbackData->queueLabelCount) {
std::cerr << "\t"
<< "Queue Labels:\n";
for (uint8_t i = 0; i < pCallbackData->queueLabelCount; i++) {
std::cerr << "\t\t"
<< "labelName = <" << pCallbackData->pQueueLabels[i].pLabelName << ">\n";
}
}
if (0 < pCallbackData->cmdBufLabelCount) {
std::cerr << "\t"
<< "CommandBuffer Labels:\n";
for (uint8_t i = 0; i < pCallbackData->cmdBufLabelCount; i++) {
std::cerr << "\t\t"
<< "labelName = <" << pCallbackData->pCmdBufLabels[i].pLabelName << ">\n";
}
}
if (0 < pCallbackData->objectCount) {
std::cerr << "\t"
<< "Objects:\n";
for (uint8_t i = 0; i < pCallbackData->objectCount; i++) {
std::cerr << "\t\t"
<< "Object " << i << "\n";
std::cerr << "\t\t\t"
<< "objectType = "
<< vk::to_string(static_cast<vk::ObjectType>(pCallbackData->pObjects[i].objectType)) << "\n";
std::cerr << "\t\t\t"
<< "objectHandle = " << pCallbackData->pObjects[i].objectHandle << "\n";
if (pCallbackData->pObjects[i].pObjectName != nullptr) {
std::cerr << "\t\t\t"
<< "objectName = <" << pCallbackData->pObjects[i].pObjectName << ">\n";
}
}
}
return VK_TRUE;
}
uint32_t findGraphicsQueueFamilyIndex(std::vector<vk::QueueFamilyProperties> const& queueFamilyProperties) {
// get the first index into queueFamiliyProperties which supports graphics
const auto graphicsQueueFamilyProperty =
std::find_if(queueFamilyProperties.begin(), queueFamilyProperties.end(),
[](vk::QueueFamilyProperties const& qfp) { return qfp.queueFlags & vk::QueueFlagBits::eGraphics; });
assert(graphicsQueueFamilyProperty != queueFamilyProperties.end());
return static_cast<uint32_t>(std::distance(queueFamilyProperties.begin(), graphicsQueueFamilyProperty));
}
std::pair<uint32_t, uint32_t> findGraphicsAndPresentQueueFamilyIndex(vk::PhysicalDevice physicalDevice,
vk::SurfaceKHR const& surface) {
std::vector<vk::QueueFamilyProperties> queueFamilyProperties = physicalDevice.getQueueFamilyProperties();
assert(queueFamilyProperties.size() < std::numeric_limits<uint32_t>::max());
uint32_t graphicsQueueFamilyIndex = findGraphicsQueueFamilyIndex(queueFamilyProperties);
if (physicalDevice.getSurfaceSupportKHR(graphicsQueueFamilyIndex, surface).value == VK_TRUE) {
return std::make_pair(graphicsQueueFamilyIndex,
graphicsQueueFamilyIndex); // the first graphicsQueueFamilyIndex does also support presents
}
// the graphicsQueueFamilyIndex doesn't support present -> look for an other family index that supports both
// graphics and present
for (size_t i = 0; i < queueFamilyProperties.size(); i++) {
if ((queueFamilyProperties[i].queueFlags & vk::QueueFlagBits::eGraphics) &&
physicalDevice.getSurfaceSupportKHR(static_cast<uint32_t>(i), surface).value == VK_TRUE) {
return std::make_pair(static_cast<uint32_t>(i), static_cast<uint32_t>(i));
}
}
// there's nothing like a single family index that supports both graphics and present -> look for an other family
// index that supports present
for (size_t i = 0; i < queueFamilyProperties.size(); i++) {
if (physicalDevice.getSurfaceSupportKHR(static_cast<uint32_t>(i), surface).value == VK_TRUE) {
return std::make_pair(graphicsQueueFamilyIndex, static_cast<uint32_t>(i));
}
}
assert(false && "Could not find queues for both graphics or present -> terminating");
return {};
}
uint32_t findMemoryType(vk::PhysicalDeviceMemoryProperties const& memoryProperties, uint32_t typeBits,
vk::MemoryPropertyFlags requirementsMask) {
auto typeIndex = uint32_t(~0);
for (uint32_t i = 0; i < memoryProperties.memoryTypeCount; i++) {
if (((typeBits & 1) != 0u) &&
((memoryProperties.memoryTypes[i].propertyFlags & requirementsMask) == requirementsMask)) {
typeIndex = i;
break;
}
typeBits >>= 1;
}
assert(typeIndex != uint32_t(~0));
return typeIndex;
}
std::vector<std::string> getDeviceExtensions() { return {VK_KHR_SWAPCHAIN_EXTENSION_NAME}; }
std::vector<std::string> getInstanceExtensions() {
std::vector<std::string> extensions;
extensions.emplace_back(VK_KHR_SURFACE_EXTENSION_NAME);
#if defined(VK_USE_PLATFORM_ANDROID_KHR)
extensions.emplace_back(VK_KHR_ANDROID_SURFACE_EXTENSION_NAME);
#elif defined(VK_USE_PLATFORM_IOS_MVK)
extensions.emplace_back(VK_MVK_IOS_SURFACE_EXTENSION_NAME);
#elif defined(VK_USE_PLATFORM_MACOS_MVK)
extensions.emplace_back(VK_MVK_MACOS_SURFACE_EXTENSION_NAME);
#elif defined(VK_USE_PLATFORM_MIR_KHR)
extensions.emplace_back(VK_KHR_MIR_SURFACE_EXTENSION_NAME);
#elif defined(VK_USE_PLATFORM_VI_NN)
extensions.emplace_back(VK_NN_VI_SURFACE_EXTENSION_NAME);
#elif defined(VK_USE_PLATFORM_WAYLAND_KHR)
extensions.emplace_back(VK_KHR_WAYLAND_SURFACE_EXTENSION_NAME);
#elif defined(VK_USE_PLATFORM_WIN32_KHR)
extensions.emplace_back(VK_KHR_WIN32_SURFACE_EXTENSION_NAME);
#elif defined(VK_USE_PLATFORM_XCB_KHR)
extensions.emplace_back(VK_KHR_XCB_SURFACE_EXTENSION_NAME);
#elif defined(VK_USE_PLATFORM_XLIB_KHR)
extensions.emplace_back(VK_KHR_XLIB_SURFACE_EXTENSION_NAME);
#elif defined(VK_USE_PLATFORM_XLIB_XRANDR_EXT)
extensions.emplace_back(VK_EXT_ACQUIRE_XLIB_DISPLAY_EXTENSION_NAME);
#endif
return extensions;
}
vk::Format pickDepthFormat(vk::PhysicalDevice const& physicalDevice) {
std::vector<vk::Format> candidates = {vk::Format::eD32Sfloat, vk::Format::eD32SfloatS8Uint,
vk::Format::eD24UnormS8Uint};
for (vk::Format format : candidates) {
vk::FormatProperties props = physicalDevice.getFormatProperties(format);
if (props.optimalTilingFeatures & vk::FormatFeatureFlagBits::eDepthStencilAttachment) {
return format;
}
}
return vk::Format::eUndefined;
}
vk::PresentModeKHR pickPresentMode(std::vector<vk::PresentModeKHR> const& presentModes) {
vk::PresentModeKHR pickedMode = vk::PresentModeKHR::eFifo;
for (const auto& presentMode : presentModes) {
if (presentMode == vk::PresentModeKHR::eMailbox) {
pickedMode = presentMode;
break;
}
if (presentMode == vk::PresentModeKHR::eImmediate) {
pickedMode = presentMode;
}
}
return pickedMode;
}
vk::SurfaceFormatKHR pickSurfaceFormat(std::vector<vk::SurfaceFormatKHR> const& formats) {
assert(!formats.empty());
vk::SurfaceFormatKHR pickedFormat = formats[0];
if (formats.size() == 1) {
if (formats[0].format == vk::Format::eUndefined) {
pickedFormat.format = vk::Format::eB8G8R8A8Unorm;
pickedFormat.colorSpace = vk::ColorSpaceKHR::eSrgbNonlinear;
}
} else {
// request several formats, the first found will be used
vk::Format requestedFormats[] = {vk::Format::eB8G8R8A8Unorm, vk::Format::eR8G8B8A8Unorm, vk::Format::eB8G8R8Unorm,
vk::Format::eR8G8B8Unorm};
vk::ColorSpaceKHR requestedColorSpace = vk::ColorSpaceKHR::eSrgbNonlinear;
for (size_t i = 0; i < sizeof(requestedFormats) / sizeof(requestedFormats[0]); i++) {
vk::Format requestedFormat = requestedFormats[i];
auto it = std::find_if(formats.begin(), formats.end(),
[requestedFormat, requestedColorSpace](vk::SurfaceFormatKHR const& f) {
return (f.format == requestedFormat) && (f.colorSpace == requestedColorSpace);
});
if (it != formats.end()) {
pickedFormat = *it;
break;
}
}
}
assert(pickedFormat.colorSpace == vk::ColorSpaceKHR::eSrgbNonlinear);
return pickedFormat;
}
void setImageLayout(vk::CommandBuffer const& commandBuffer, vk::Image image, vk::Format format,
vk::ImageLayout oldImageLayout, vk::ImageLayout newImageLayout) {
vk::AccessFlags sourceAccessMask;
switch (oldImageLayout) {
case vk::ImageLayout::eTransferDstOptimal:
sourceAccessMask = vk::AccessFlagBits::eTransferWrite;
break;
case vk::ImageLayout::ePreinitialized:
sourceAccessMask = vk::AccessFlagBits::eHostWrite;
break;
case vk::ImageLayout::eGeneral: // sourceAccessMask is empty
case vk::ImageLayout::eUndefined:
break;
default:
assert(false);
break;
}
vk::PipelineStageFlags sourceStage;
switch (oldImageLayout) {
case vk::ImageLayout::eGeneral:
case vk::ImageLayout::ePreinitialized:
sourceStage = vk::PipelineStageFlagBits::eHost;
break;
case vk::ImageLayout::eTransferDstOptimal:
sourceStage = vk::PipelineStageFlagBits::eTransfer;
break;
case vk::ImageLayout::eUndefined:
sourceStage = vk::PipelineStageFlagBits::eTopOfPipe;
break;
default:
assert(false);
break;
}
vk::AccessFlags destinationAccessMask;
switch (newImageLayout) {
case vk::ImageLayout::eColorAttachmentOptimal:
destinationAccessMask = vk::AccessFlagBits::eColorAttachmentWrite;
break;
case vk::ImageLayout::eDepthStencilAttachmentOptimal:
destinationAccessMask =
vk::AccessFlagBits::eDepthStencilAttachmentRead | vk::AccessFlagBits::eDepthStencilAttachmentWrite;
break;
case vk::ImageLayout::eGeneral: // empty destinationAccessMask
case vk::ImageLayout::ePresentSrcKHR:
break;
case vk::ImageLayout::eShaderReadOnlyOptimal:
destinationAccessMask = vk::AccessFlagBits::eShaderRead;
break;
case vk::ImageLayout::eTransferSrcOptimal:
destinationAccessMask = vk::AccessFlagBits::eTransferRead;
break;
case vk::ImageLayout::eTransferDstOptimal:
destinationAccessMask = vk::AccessFlagBits::eTransferWrite;
break;
default:
assert(false);
break;
}
vk::PipelineStageFlags destinationStage;
switch (newImageLayout) {
case vk::ImageLayout::eColorAttachmentOptimal:
destinationStage = vk::PipelineStageFlagBits::eColorAttachmentOutput;
break;
case vk::ImageLayout::eDepthStencilAttachmentOptimal:
destinationStage = vk::PipelineStageFlagBits::eEarlyFragmentTests;
break;
case vk::ImageLayout::eGeneral:
destinationStage = vk::PipelineStageFlagBits::eHost;
break;
case vk::ImageLayout::ePresentSrcKHR:
destinationStage = vk::PipelineStageFlagBits::eBottomOfPipe;
break;
case vk::ImageLayout::eShaderReadOnlyOptimal:
destinationStage = vk::PipelineStageFlagBits::eFragmentShader;
break;
case vk::ImageLayout::eTransferDstOptimal:
case vk::ImageLayout::eTransferSrcOptimal:
destinationStage = vk::PipelineStageFlagBits::eTransfer;
break;
default:
assert(false);
break;
}
vk::ImageAspectFlags aspectMask;
if (newImageLayout == vk::ImageLayout::eDepthStencilAttachmentOptimal) {
aspectMask = vk::ImageAspectFlagBits::eDepth;
if (format == vk::Format::eD32SfloatS8Uint || format == vk::Format::eD24UnormS8Uint) {
aspectMask |= vk::ImageAspectFlagBits::eStencil;
}
} else {
aspectMask = vk::ImageAspectFlagBits::eColor;
}
vk::ImageSubresourceRange imageSubresourceRange(aspectMask, 0, 1, 0, 1);
vk::ImageMemoryBarrier imageMemoryBarrier(sourceAccessMask, destinationAccessMask, oldImageLayout, newImageLayout,
VK_QUEUE_FAMILY_IGNORED, VK_QUEUE_FAMILY_IGNORED, image,
imageSubresourceRange);
return commandBuffer.pipelineBarrier(sourceStage, destinationStage, {}, nullptr, nullptr, imageMemoryBarrier);
}
void submitAndWait(vk::Device const& device, vk::Queue const& queue, vk::CommandBuffer const& commandBuffer) {
vk::Fence fence = device.createFence(vk::FenceCreateInfo()).value;
queue.submit(vk::SubmitInfo(0, nullptr, nullptr, 1, &commandBuffer), fence);
while (vk::Result::eTimeout == device.waitForFences(fence, VK_TRUE, vk::su::FenceTimeout)) {}
device.destroyFence(fence);
}
void updateDescriptorSets(
vk::Device const& device, vk::DescriptorSet const& descriptorSet,
std::vector<std::tuple<vk::DescriptorType, vk::Buffer const&, vk::DeviceSize>> const& bufferData,
uint32_t bindingOffset) {
std::vector<vk::DescriptorBufferInfo> bufferInfos;
bufferInfos.reserve(bufferData.size());
std::vector<vk::WriteDescriptorSet> writeDescriptorSets;
writeDescriptorSets.reserve(bufferData.size() + 1);
uint32_t dstBinding = bindingOffset;
for (auto const& bd : bufferData) {
bufferInfos.emplace_back(std::get<1>(bd), 0, std::get<2>(bd));
writeDescriptorSets.emplace_back(descriptorSet, dstBinding++, 0, 1, std::get<0>(bd), nullptr, &bufferInfos.back());
}
device.updateDescriptorSets(writeDescriptorSets, nullptr);
}
BufferData::BufferData(vk::PhysicalDevice const& physicalDevice, vk::Device const& device, vk::DeviceSize size,
vk::BufferUsageFlags usage, vk::MemoryPropertyFlags propertyFlags)
: size(size)
#if !defined(NDEBUG)
, m_usage(usage)
, m_propertyFlags(propertyFlags)
#endif
{
buffer = assertSuccess(device.createBufferUnique(vk::BufferCreateInfo(vk::BufferCreateFlags(), size, usage)));
deviceMemory = vk::su::allocateDeviceMemory(device, physicalDevice.getMemoryProperties(),
device.getBufferMemoryRequirements(buffer.get()), propertyFlags);
device.bindBufferMemory(buffer.get(), deviceMemory.get(), 0);
}
DepthBufferData::DepthBufferData(vk::PhysicalDevice const& physicalDevice, vk::Device const& device, vk::Format format,
vk::Extent2D const& extent)
: ImageData(physicalDevice, device, format, extent, vk::ImageTiling::eOptimal,
vk::ImageUsageFlagBits::eDepthStencilAttachment, vk::ImageLayout::eUndefined,
vk::MemoryPropertyFlagBits::eDeviceLocal, vk::ImageAspectFlagBits::eDepth) {}
ImageData::ImageData(vk::PhysicalDevice const& physicalDevice, vk::Device const& device, vk::Format format_,
vk::Extent2D const& extent, vk::ImageTiling tiling, vk::ImageUsageFlags usage,
vk::ImageLayout initialLayout, vk::MemoryPropertyFlags memoryProperties,
vk::ImageAspectFlags aspectMask)
: format(format_) {
vk::ImageCreateInfo imageCreateInfo(vk::ImageCreateFlags(), vk::ImageType::e2D, format, vk::Extent3D(extent, 1), 1, 1,
vk::SampleCountFlagBits::e1, tiling, usage | vk::ImageUsageFlagBits::eSampled,
vk::SharingMode::eExclusive, {}, initialLayout);
image = assertSuccess(device.createImageUnique(imageCreateInfo));
auto memoryRequirements = device.getImageMemoryRequirements(image.get());
deviceSize = memoryRequirements.size;
deviceMemory = vk::su::allocateDeviceMemory(device, physicalDevice.getMemoryProperties(), memoryRequirements, memoryProperties);
device.bindImageMemory(image.get(), deviceMemory.get(), 0);
vk::ComponentMapping componentMapping(ComponentSwizzle::eR, ComponentSwizzle::eG, ComponentSwizzle::eB,
ComponentSwizzle::eA);
vk::ImageSubresourceRange imageSubresourceRange(aspectMask, 0, 1, 0, 1);
vk::ImageViewCreateInfo imageViewCreateInfo({}, image.get(), vk::ImageViewType::e2D, format, componentMapping,
imageSubresourceRange);
imageView = assertSuccess(device.createImageViewUnique(imageViewCreateInfo));
}
TextureData::TextureData(vk::PhysicalDevice const& physicalDevice, vk::Device const& device,
vk::Extent2D const& extent_, vk::ImageUsageFlags usageFlags,
vk::FormatFeatureFlags formatFeatureFlags, bool anisotropyEnable, bool forceStaging)
: format(vk::Format::eR8G8B8A8Unorm), extent(extent_) {
vk::FormatProperties formatProperties = physicalDevice.getFormatProperties(format);
formatFeatureFlags |= vk::FormatFeatureFlagBits::eSampledImage;
needsStaging = forceStaging || ((formatProperties.linearTilingFeatures & formatFeatureFlags) != formatFeatureFlags);
vk::ImageTiling imageTiling;
vk::ImageLayout initialLayout;
vk::MemoryPropertyFlags requirements;
if (needsStaging) {
assert((formatProperties.optimalTilingFeatures & formatFeatureFlags) == formatFeatureFlags);
stagingBufferData = std::make_unique<BufferData>(physicalDevice, device, extent.width * extent.height * 4,
vk::BufferUsageFlagBits::eTransferSrc);
imageTiling = vk::ImageTiling::eOptimal;
usageFlags |= vk::ImageUsageFlagBits::eTransferDst;
initialLayout = vk::ImageLayout::eUndefined;
} else {
imageTiling = vk::ImageTiling::eLinear;
initialLayout = vk::ImageLayout::ePreinitialized;
requirements = vk::MemoryPropertyFlagBits::eHostCoherent | vk::MemoryPropertyFlagBits::eHostVisible;
}
imageData = std::make_unique<ImageData>(physicalDevice, device, format, extent, imageTiling,
usageFlags | vk::ImageUsageFlagBits::eSampled, initialLayout, requirements,
vk::ImageAspectFlagBits::eColor);
sampler = assertSuccess(device.createSamplerUnique(vk::SamplerCreateInfo(
vk::SamplerCreateFlags(), vk::Filter::eLinear, vk::Filter::eLinear, vk::SamplerMipmapMode::eLinear,
vk::SamplerAddressMode::eRepeat, vk::SamplerAddressMode::eRepeat, vk::SamplerAddressMode::eRepeat, 0.0f,
static_cast<vk::Bool32>(anisotropyEnable), 16.0f, VK_FALSE, vk::CompareOp::eNever, 0.0f, 0.0f,
vk::BorderColor::eFloatOpaqueBlack)));
}
UUID::UUID(uint8_t const data[VK_UUID_SIZE]) { memcpy(m_data, data, VK_UUID_SIZE * sizeof(uint8_t)); }
vk::DebugUtilsMessengerCreateInfoEXT makeDebugUtilsMessengerCreateInfoEXT() {
return {{},
vk::DebugUtilsMessageSeverityFlagBitsEXT::eWarning | vk::DebugUtilsMessageSeverityFlagBitsEXT::eError,
vk::DebugUtilsMessageTypeFlagBitsEXT::eGeneral | vk::DebugUtilsMessageTypeFlagBitsEXT::ePerformance |
vk::DebugUtilsMessageTypeFlagBitsEXT::eValidation,
&vk::su::debugUtilsMessengerCallback};
}
#if defined(NDEBUG)
vk::StructureChain<vk::InstanceCreateInfo>
#elif defined(VULKAN_HPP_UTILS_USE_BEST_PRACTICES)
vk::StructureChain<vk::InstanceCreateInfo, vk::DebugUtilsMessengerCreateInfoEXT, vk::ValidationFeaturesEXT>
#else
vk::StructureChain<vk::InstanceCreateInfo, vk::DebugUtilsMessengerCreateInfoEXT>
#endif
makeInstanceCreateInfoChain(vk::ApplicationInfo const& applicationInfo, std::vector<char const*> const& enabledLayers,
std::vector<char const*> const& enabledExtensions) {
#if defined(NDEBUG)
// in non-debug mode just use the InstanceCreateInfo for instance creation
vk::StructureChain<vk::InstanceCreateInfo> instanceCreateInfo(
{{}, &applicationInfo, enabledLayers, enabledExtensions});
#else
// in debug mode, addionally use the debugUtilsMessengerCallback in instance creation!
vk::DebugUtilsMessageSeverityFlagsEXT severityFlags(vk::DebugUtilsMessageSeverityFlagBitsEXT::eWarning |
vk::DebugUtilsMessageSeverityFlagBitsEXT::eError);
vk::DebugUtilsMessageTypeFlagsEXT messageTypeFlags(vk::DebugUtilsMessageTypeFlagBitsEXT::eGeneral |
vk::DebugUtilsMessageTypeFlagBitsEXT::ePerformance |
vk::DebugUtilsMessageTypeFlagBitsEXT::eValidation);
#if defined(VULKAN_HPP_UTILS_USE_BEST_PRACTICES)
vk::ValidationFeatureEnableEXT validationFeatureEnable = vk::ValidationFeatureEnableEXT::eBestPractices;
vk::StructureChain<vk::InstanceCreateInfo, vk::DebugUtilsMessengerCreateInfoEXT, vk::ValidationFeaturesEXT>
instanceCreateInfo({{}, &applicationInfo, enabledLayers, enabledExtensions},
{{}, severityFlags, messageTypeFlags, &vk::su::debugUtilsMessengerCallback},
{validationFeatureEnable});
#else
vk::StructureChain<vk::InstanceCreateInfo, vk::DebugUtilsMessengerCreateInfoEXT> instanceCreateInfo(
{{}, &applicationInfo, enabledLayers, enabledExtensions},
{{}, severityFlags, messageTypeFlags, &vk::su::debugUtilsMessengerCallback});
#endif
#endif
return instanceCreateInfo;
}
} // namespace vk::su
std::ostream& operator<<(std::ostream& os, vk::su::UUID const& uuid) {
os << std::setfill('0') << std::hex;
for (uint32_t j = 0; j < VK_UUID_SIZE; ++j) {
os << std::setw(2) << static_cast<uint32_t>(uuid.m_data[j]);
if (j == 3 || j == 5 || j == 7 || j == 9) {
std::cout << '-';
}
}
os << std::setfill(' ') << std::dec;
return os;
}

303
visigen/vulkan/utils.hpp Normal file
View File

@ -0,0 +1,303 @@
#pragma once
// Copyright(c) 2019, NVIDIA CORPORATION. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
#define VULKAN_HPP_NO_EXCEPTIONS 1
#define VULKAN_HPP_ASSERT_ON_RESULT
//#define VULKAN_HPP_UTILS_USE_BEST_PRACTICES 1
#define VULKAN_HPP_DISPATCH_LOADER_DYNAMIC 1
#include <vulkan/vulkan.hpp>
#include <iostream>
#include <map>
namespace vk::su {
template <typename T>
inline static T assertSuccess(vk::ResultValue<T> result) {
assert(result.result == vk::Result::eSuccess);
return std::move(result.value);
}
const uint64_t FenceTimeout = 100000000;
template <typename Func>
void oneTimeSubmit(vk::CommandBuffer const& commandBuffer, vk::Queue const& queue, Func const& func) {
commandBuffer.begin(vk::CommandBufferBeginInfo(vk::CommandBufferUsageFlagBits::eOneTimeSubmit));
func(commandBuffer);
commandBuffer.end();
queue.submit(vk::SubmitInfo(0, nullptr, nullptr, 1, &commandBuffer), nullptr);
queue.waitIdle();
}
template <typename Func>
void oneTimeSubmit(vk::Device const& device, vk::CommandPool const& commandPool, vk::Queue const& queue,
Func const& func) {
vk::CommandBuffer commandBuffer =
device.allocateCommandBuffers(vk::CommandBufferAllocateInfo(commandPool, vk::CommandBufferLevel::ePrimary, 1))
.value.front();
oneTimeSubmit(commandBuffer, queue, func);
}
template <class T>
void copyToDevice(vk::Device const& device, vk::DeviceMemory const& deviceMemory, T const* pData, size_t count,
vk::DeviceSize stride = sizeof(T)) {
assert(sizeof(T) <= stride);
uint8_t* deviceData = static_cast<uint8_t*>(device.mapMemory(deviceMemory, 0, count * stride).value);
if (stride == sizeof(T)) {
memcpy(deviceData, pData, count * sizeof(T));
} else {
for (size_t i = 0; i < count; i++) {
memcpy(deviceData, &pData[i], sizeof(T));
deviceData += stride;
}
}
device.unmapMemory(deviceMemory);
}
template <class T>
void copyToDevice(vk::Device const& device, vk::DeviceMemory const& deviceMemory, T const& data) {
copyToDevice<T>(device, deviceMemory, &data, 1);
}
template <class T>
VULKAN_HPP_INLINE constexpr const T& clamp(const T& v, const T& lo, const T& hi) {
return v < lo ? lo : hi < v ? hi : v;
}
void setImageLayout(vk::CommandBuffer const& commandBuffer, vk::Image image, vk::Format format,
vk::ImageLayout oldImageLayout, vk::ImageLayout newImageLayout);
struct BufferData {
BufferData(vk::PhysicalDevice const& physicalDevice, vk::Device const& device, vk::DeviceSize size,
vk::BufferUsageFlags usage,
vk::MemoryPropertyFlags propertyFlags = vk::MemoryPropertyFlagBits::eHostVisible |
vk::MemoryPropertyFlagBits::eHostCoherent);
template <typename DataType>
void upload(vk::Device const& device, DataType const& data) const {
assert((m_propertyFlags & vk::MemoryPropertyFlagBits::eHostCoherent) &&
(m_propertyFlags & vk::MemoryPropertyFlagBits::eHostVisible));
assert(sizeof(DataType) <= size);
void* dataPtr = assertSuccess(device.mapMemory(deviceMemory.get(), 0, sizeof(DataType)));
memcpy(dataPtr, &data, sizeof(DataType));
device.unmapMemory(deviceMemory.get());
}
template <typename DataType>
void upload(vk::Device const& device, std::vector<DataType> const& data, size_t stride = 0) const {
assert(m_propertyFlags & vk::MemoryPropertyFlagBits::eHostVisible);
size_t elementSize = stride ? stride : sizeof(DataType);
assert(sizeof(DataType) <= elementSize);
copyToDevice(device, deviceMemory, data.data(), data.size(), elementSize);
}
template <typename DataType>
void upload(vk::PhysicalDevice const& physicalDevice, vk::Device const& device, vk::CommandPool const& commandPool,
vk::Queue queue, std::vector<DataType> const& data, size_t stride) const {
assert(m_usage & vk::BufferUsageFlagBits::eTransferDst);
assert(m_propertyFlags & vk::MemoryPropertyFlagBits::eDeviceLocal);
size_t elementSize = stride ? stride : sizeof(DataType);
assert(sizeof(DataType) <= elementSize);
size_t dataSize = data.size() * elementSize;
assert(dataSize <= size);
vk::su::BufferData stagingBuffer(physicalDevice, device, dataSize, vk::BufferUsageFlagBits::eTransferSrc);
copyToDevice(device, stagingBuffer.deviceMemory, data.data(), data.size(), elementSize);
vk::su::oneTimeSubmit(device, commandPool, queue, [&](vk::CommandBuffer const& commandBuffer) {
commandBuffer.copyBuffer(stagingBuffer.buffer.get(), buffer.get(), vk::BufferCopy(0, 0, dataSize));
});
}
void* map(vk::Device const& device) { return assertSuccess(device.mapMemory(deviceMemory.get(), 0, size)); }
void unmap(vk::Device const& device) { device.unmapMemory(deviceMemory.get()); }
vk::UniqueBuffer buffer;
vk::UniqueDeviceMemory deviceMemory;
vk::DeviceSize size;
#if !defined(NDEBUG)
private:
vk::BufferUsageFlags m_usage;
vk::MemoryPropertyFlags m_propertyFlags;
#endif
};
struct ImageData {
ImageData(vk::PhysicalDevice const& physicalDevice, vk::Device const& device, vk::Format format,
vk::Extent2D const& extent, vk::ImageTiling tiling, vk::ImageUsageFlags usage,
vk::ImageLayout initialLayout, vk::MemoryPropertyFlags memoryProperties, vk::ImageAspectFlags aspectMask);
vk::Format format;
vk::UniqueImage image;
vk::UniqueDeviceMemory deviceMemory;
vk::DeviceSize deviceSize;
vk::UniqueImageView imageView;
};
struct DepthBufferData : public ImageData {
DepthBufferData(vk::PhysicalDevice const& physicalDevice, vk::Device const& device, vk::Format format,
vk::Extent2D const& extent);
};
struct TextureData {
TextureData(vk::PhysicalDevice const& physicalDevice, vk::Device const& device,
vk::Extent2D const& extent_ = {256, 256}, vk::ImageUsageFlags usageFlags = {},
vk::FormatFeatureFlags formatFeatureFlags = {}, bool anisotropyEnable = false, bool forceStaging = false);
template <typename ImageGenerator>
void setImage(vk::Device const& device, vk::CommandBuffer const& commandBuffer,
ImageGenerator const& imageGenerator) {
void* data =
needsStaging
? assertSuccess(device.mapMemory(stagingBufferData->deviceMemory.get(), 0, stagingBufferData->size))
: assertSuccess(device.mapMemory(imageData->deviceMemory.get(), 0, imageData->deviceSize));
imageGenerator(data, extent);
device.unmapMemory(needsStaging ? stagingBufferData->deviceMemory.get() : imageData->deviceMemory.get());
if (needsStaging) {
// Since we're going to blit to the texture image, set its layout to eTransferDstOptimal
vk::su::setImageLayout(commandBuffer, imageData->image.get(), imageData->format, vk::ImageLayout::eUndefined,
vk::ImageLayout::eTransferDstOptimal);
vk::BufferImageCopy copyRegion(0, extent.width, extent.height,
vk::ImageSubresourceLayers(vk::ImageAspectFlagBits::eColor, 0, 0, 1),
vk::Offset3D(0, 0, 0), vk::Extent3D(extent, 1));
commandBuffer.copyBufferToImage(stagingBufferData->buffer.get(), imageData->image.get(),
vk::ImageLayout::eTransferDstOptimal, copyRegion);
// Set the layout for the texture image from eTransferDstOptimal to SHADER_READ_ONLY
vk::su::setImageLayout(commandBuffer, imageData->image.get(), imageData->format,
vk::ImageLayout::eTransferDstOptimal, vk::ImageLayout::eShaderReadOnlyOptimal);
} else {
// If we can use the linear tiled image as a texture, just do it
vk::su::setImageLayout(commandBuffer, imageData->image.get(), imageData->format, vk::ImageLayout::ePreinitialized,
vk::ImageLayout::eShaderReadOnlyOptimal);
}
}
vk::Format format;
vk::Extent2D extent;
bool needsStaging;
std::unique_ptr<BufferData> stagingBufferData;
std::unique_ptr<ImageData> imageData;
vk::UniqueSampler sampler;
};
struct UUID {
public:
UUID(uint8_t const data[VK_UUID_SIZE]);
uint8_t m_data[VK_UUID_SIZE];
};
template <typename TargetType, typename SourceType>
VULKAN_HPP_INLINE TargetType checked_cast(SourceType value) {
static_assert(sizeof(TargetType) <= sizeof(SourceType), "No need to cast from smaller to larger type!");
static_assert(std::numeric_limits<SourceType>::is_integer, "Only integer types supported!");
static_assert(!std::numeric_limits<SourceType>::is_signed, "Only unsigned types supported!");
static_assert(std::numeric_limits<TargetType>::is_integer, "Only integer types supported!");
static_assert(!std::numeric_limits<TargetType>::is_signed, "Only unsigned types supported!");
assert(value <= std::numeric_limits<TargetType>::max());
return static_cast<TargetType>(value);
}
vk::UniqueDeviceMemory allocateDeviceMemory(vk::Device const& device,
vk::PhysicalDeviceMemoryProperties const& memoryProperties,
vk::MemoryRequirements const& memoryRequirements,
vk::MemoryPropertyFlags memoryPropertyFlags);
bool contains(std::vector<vk::ExtensionProperties> const& extensionProperties, std::string const& extensionName);
vk::UniqueCommandPool createCommandPool(vk::Device const& device, uint32_t queueFamilyIndex);
vk::UniqueCommandBuffer createCommandBuffer(vk::Device const& device, vk::CommandPool const& commandPool);
vk::DebugUtilsMessengerEXT createDebugUtilsMessengerEXT(vk::Instance const& instance);
vk::UniqueDescriptorPool createDescriptorPool(vk::Device const& device,
std::vector<vk::DescriptorPoolSize> const& poolSizes);
vk::UniqueDescriptorSetLayout createDescriptorSetLayout(
vk::Device const& device,
std::vector<std::tuple<vk::DescriptorType, uint32_t, vk::ShaderStageFlags>> const& bindingData,
vk::DescriptorSetLayoutCreateFlags flags = {});
vk::UniqueDevice createDevice(vk::PhysicalDevice const& physicalDevice, uint32_t queueFamilyIndex,
std::vector<std::string> const& extensions = {},
vk::PhysicalDeviceFeatures const* physicalDeviceFeatures = nullptr,
void const* pNext = nullptr);
vk::UniqueFramebuffer createFramebuffer(vk::Device const& device, vk::RenderPass& renderPass,
vk::ImageView const& colorImageView, vk::ImageView const& depthImageView,
vk::Extent2D const& extent);
vk::UniquePipeline createGraphicsPipeline(
vk::Device const& device, vk::PipelineCache const& pipelineCache,
std::pair<vk::ShaderModule, vk::SpecializationInfo const*> const& vertexShaderData,
std::pair<vk::ShaderModule, vk::SpecializationInfo const*> const& fragmentShaderData, uint32_t vertexStride,
std::vector<std::pair<vk::Format, uint32_t>> const& vertexInputAttributeFormatOffset, vk::FrontFace frontFace,
bool depthBuffered, vk::PipelineLayout const& pipelineLayout, vk::RenderPass const& renderPass);
vk::UniqueInstance createInstance(std::string const& appName, std::string const& engineName,
std::vector<std::string> const& layers = {},
std::vector<std::string> const& extensions = {},
uint32_t apiVersion = VK_API_VERSION_1_0);
vk::UniqueRenderPass createRenderPass(vk::Device const& device, vk::Format colorFormat, vk::Format depthFormat,
vk::AttachmentLoadOp colorloadOp = vk::AttachmentLoadOp::eDontCare,
vk::AttachmentStoreOp colorStoreOp = vk::AttachmentStoreOp::eStore,
vk::AttachmentLoadOp depthLoadOp = vk::AttachmentLoadOp::eClear,
vk::AttachmentStoreOp depthStoreOp = vk::AttachmentStoreOp::eDontCare,
vk::ImageLayout colorFinalLayout = vk::ImageLayout::ePresentSrcKHR);
VKAPI_ATTR VkBool32 VKAPI_CALL debugUtilsMessengerCallback(VkDebugUtilsMessageSeverityFlagBitsEXT messageSeverity,
VkDebugUtilsMessageTypeFlagsEXT messageTypes,
VkDebugUtilsMessengerCallbackDataEXT const* pCallbackData,
void* /*pUserData*/);
uint32_t findGraphicsQueueFamilyIndex(std::vector<vk::QueueFamilyProperties> const& queueFamilyProperties);
std::pair<uint32_t, uint32_t> findGraphicsAndPresentQueueFamilyIndex(vk::PhysicalDevice physicalDevice,
vk::SurfaceKHR const& surface);
uint32_t findMemoryType(vk::PhysicalDeviceMemoryProperties const& memoryProperties, uint32_t typeBits,
vk::MemoryPropertyFlags requirementsMask);
std::vector<char const*> gatherExtensions(std::vector<std::string> const& extensions
#if !defined(NDEBUG)
,
std::vector<vk::ExtensionProperties> const& extensionProperties
#endif
);
std::vector<char const*> gatherLayers(std::vector<std::string> const& layers
#if !defined(NDEBUG)
,
std::vector<vk::LayerProperties> const& layerProperties
#endif
);
std::vector<std::string> getDeviceExtensions();
std::vector<std::string> getInstanceExtensions();
vk::DebugUtilsMessengerCreateInfoEXT makeDebugUtilsMessengerCreateInfoEXT();
#if defined(NDEBUG)
vk::StructureChain<vk::InstanceCreateInfo>
#elif defined(VULKAN_HPP_UTILS_USE_BEST_PRACTICES)
vk::StructureChain<vk::InstanceCreateInfo, vk::DebugUtilsMessengerCreateInfoEXT, vk::ValidationFeaturesEXT>
#else
vk::StructureChain<vk::InstanceCreateInfo, vk::DebugUtilsMessengerCreateInfoEXT>
#endif
makeInstanceCreateInfoChain(vk::ApplicationInfo const& applicationInfo, std::vector<char const*> const& enabledLayers,
std::vector<char const*> const& enabledExtensions);
vk::Format pickDepthFormat(vk::PhysicalDevice const& physicalDevice);
vk::PresentModeKHR pickPresentMode(std::vector<vk::PresentModeKHR> const& presentModes);
vk::SurfaceFormatKHR pickSurfaceFormat(std::vector<vk::SurfaceFormatKHR> const& formats);
void submitAndWait(vk::Device const& device, vk::Queue const& queue, vk::CommandBuffer const& commandBuffer);
void updateDescriptorSets(
vk::Device const& device, vk::DescriptorSet const& descriptorSet,
std::vector<std::tuple<vk::DescriptorType, vk::Buffer const&, vk::DeviceSize>> const& bufferData,
uint32_t bindingOffset = 0);
} // namespace vk::su
std::ostream& operator<<(std::ostream& os, vk::su::UUID const& uuid);