Normalize all line endings to LF

And force shader code to always use LF endings.

Post merge, there were a number of files that crept in with CRLF endings.

Some Tint end-to-end tests take objection to CRLF endings.

CRLF endings can be detected with:

```
git grep -I --files-with-matches --perl-regexp '\r' HEAD
```

And fixed with:

```
find . -type f -exec dos2unix {} \;
```

Bug: dawn:1339
Change-Id: Iee054bafd15875de744b86e28393cd8229bd3cfa
Reviewed-on: https://dawn-review.googlesource.com/c/dawn/+/86140
Kokoro-Run: Ben Clayton <bclayton@google.com>
Reviewed-by: Antonio Maiorano <amaiorano@google.com>
Commit-Queue: Ben Clayton <bclayton@google.com>
fixes
Ben Clayton 2 years ago committed by Dawn LUCI CQ
parent 6249b24581
commit 4d36557bce
  1. 13
      .gitattributes
  2. 200
      CMakeSettings.json
  3. 378
      src/tint/tint.natvis
  4. 126
      test/tint/bug/dawn/947.wgsl
  5. 56
      test/tint/bug/fxc/gradient_in_varying_loop/1112.wgsl
  6. 46
      test/tint/bug/fxc/indexed_assign_to_array_in_struct/1206.wgsl
  7. 24
      test/tint/bug/fxc/matrix_assignment_dynamic_index/local_assign_scalar_x.wgsl
  8. 24
      test/tint/bug/fxc/matrix_assignment_dynamic_index/local_assign_scalar_xy.wgsl
  9. 26
      test/tint/bug/fxc/matrix_assignment_dynamic_index/local_assign_scalar_y.wgsl
  10. 24
      test/tint/bug/fxc/matrix_assignment_dynamic_index/local_assign_vector.wgsl
  11. 26
      test/tint/bug/fxc/matrix_assignment_dynamic_index/module_assign_scalar_x.wgsl
  12. 26
      test/tint/bug/fxc/matrix_assignment_dynamic_index/module_assign_scalar_xy.wgsl
  13. 26
      test/tint/bug/fxc/matrix_assignment_dynamic_index/module_assign_scalar_y.wgsl
  14. 26
      test/tint/bug/fxc/matrix_assignment_dynamic_index/module_assign_vector.wgsl
  15. 234
      test/tint/bug/tint/1118.wgsl
  16. 96
      test/tint/bug/tint/534.wgsl
  17. 48
      test/tint/let/global/global.wgsl
  18. 78
      test/tint/let/inferred/function.wgsl
  19. 44
      test/tint/statements/assign/indexed_assign_to_array_in_struct/in_for_loop_body.wgsl
  20. 44
      test/tint/statements/assign/indexed_assign_to_array_in_struct/in_for_loop_continuing.wgsl
  21. 44
      test/tint/statements/assign/indexed_assign_to_array_in_struct/in_for_loop_init.wgsl
  22. 62
      test/tint/statements/assign/indexed_assign_to_array_in_struct/indexing_with_side_effect_func.wgsl
  23. 42
      test/tint/statements/assign/indexed_assign_to_array_in_struct/struct_array.wgsl
  24. 42
      test/tint/statements/assign/indexed_assign_to_array_in_struct/struct_array_array.wgsl
  25. 48
      test/tint/statements/assign/indexed_assign_to_array_in_struct/struct_array_struct.wgsl
  26. 50
      test/tint/statements/assign/indexed_assign_to_array_in_struct/struct_array_struct_array.wgsl
  27. 40
      test/tint/statements/assign/indexed_assign_to_array_in_struct/struct_dynamic_array.wgsl
  28. 50
      test/tint/statements/assign/indexed_assign_to_array_in_struct/struct_dynamic_array_struct_array.wgsl
  29. 32
      test/tint/statements/assign/indexed_assign_to_array_in_struct/struct_matrix.wgsl
  30. 44
      test/tint/statements/assign/indexed_assign_to_array_in_struct/struct_multiple_arrays.wgsl
  31. 48
      test/tint/statements/assign/indexed_assign_to_array_in_struct/struct_struct_array.wgsl
  32. 30
      test/tint/statements/assign/indexed_assign_to_array_in_struct/struct_vector.wgsl
  33. 42
      test/tint/statements/assign/indexed_assign_to_array_in_struct/vector_assign.wgsl
  34. 42
      test/tint/statements/assign/indexed_assign_to_array_in_struct/via_pointer.wgsl
  35. 42
      test/tint/statements/assign/indexed_assign_to_array_in_struct/via_pointer_arg.wgsl
  36. 40
      test/tint/statements/switch/common.wgsl
  37. 22
      test/tint/statements/switch/only_default_case.wgsl
  38. 78
      test/tint/var/inferred/function.wgsl
  39. 10
      test/tint/vk-gl-cts/graphicsfuzz/cov-dead-code-unreachable-merge/0-opt.spvasm.expected.hlsl
  40. 10
      test/tint/vk-gl-cts/graphicsfuzz/cov-dead-code-unreachable-merge/0-opt.wgsl.expected.hlsl
  41. 10
      test/tint/vk-gl-cts/graphicsfuzz/cov-tail-duplicator-infinite-loops/0-opt.spvasm.expected.hlsl
  42. 10
      test/tint/vk-gl-cts/graphicsfuzz/cov-tail-duplicator-infinite-loops/0-opt.wgsl.expected.hlsl
  43. 10
      test/tint/vk-gl-cts/graphicsfuzz/function-with-uniform-return/0-opt.spvasm.expected.hlsl
  44. 10
      test/tint/vk-gl-cts/graphicsfuzz/function-with-uniform-return/0-opt.wgsl.expected.hlsl
  45. 2
      test/tint/vk-gl-cts/graphicsfuzz/returned-boolean-in-vector/0-opt.spvasm.expected.hlsl
  46. 2
      test/tint/vk-gl-cts/graphicsfuzz/returned-boolean-in-vector/0-opt.wgsl.expected.hlsl
  47. 10
      test/tint/vk-gl-cts/graphicsfuzz/undefined-assign-in-infinite-loop/0.spvasm.expected.hlsl
  48. 10
      test/tint/vk-gl-cts/graphicsfuzz/undefined-assign-in-infinite-loop/0.wgsl.expected.hlsl
  49. 10
      test/tint/vk-gl-cts/graphicsfuzz/unreachable-loops/0-opt.spvasm.expected.hlsl
  50. 10
      test/tint/vk-gl-cts/graphicsfuzz/unreachable-loops/0-opt.wgsl.expected.hlsl
  51. 2
      test/tint/vk-gl-cts/graphicsfuzz/unreachable-return-in-loop/0.spvasm.expected.hlsl
  52. 2
      test/tint/vk-gl-cts/graphicsfuzz/unreachable-return-in-loop/0.wgsl.expected.hlsl
  53. 10
      test/tint/vk-gl-cts/graphicsfuzz/write-before-break/0-opt.spvasm.expected.hlsl
  54. 10
      test/tint/vk-gl-cts/graphicsfuzz/write-before-break/0-opt.wgsl.expected.hlsl

13
.gitattributes vendored

@ -1,4 +1,9 @@
* text=auto
*.sh eol=lf
*.gn eol=lf
*.gni eol=lf
* text=auto
*.glsl eol=lf
*.gn eol=lf
*.gni eol=lf
*.hlsl eol=lf
*.msl eol=lf
*.sh eol=lf
*.spvasm eol=lf
*.wgsl eol=lf

@ -1,100 +1,100 @@
{
"configurations": [
{
"name": "x64-Debug",
"generator": "Ninja",
"configurationType": "Debug",
"inheritEnvironments": [ "msvc_x64_x64" ],
"buildRoot": "${projectDir}\\out\\build\\${name}",
"installRoot": "${projectDir}\\out\\install\\${name}",
"cmakeCommandArgs": "",
"buildCommandArgs": "",
"ctestCommandArgs": "",
"variables": []
},
{
"name": "x64-Release",
"generator": "Ninja",
"configurationType": "RelWithDebInfo",
"buildRoot": "${projectDir}\\out\\build\\${name}",
"installRoot": "${projectDir}\\out\\install\\${name}",
"cmakeCommandArgs": "",
"buildCommandArgs": "",
"ctestCommandArgs": "",
"inheritEnvironments": [ "msvc_x64_x64" ],
"variables": []
},
{
"name": "x86-Debug",
"generator": "Ninja",
"configurationType": "Debug",
"buildRoot": "${projectDir}\\out\\build\\${name}",
"installRoot": "${projectDir}\\out\\install\\${name}",
"cmakeCommandArgs": "",
"buildCommandArgs": "",
"ctestCommandArgs": "",
"inheritEnvironments": [ "msvc_x86" ],
"variables": []
},
{
"name": "x86-Release",
"generator": "Ninja",
"configurationType": "RelWithDebInfo",
"buildRoot": "${projectDir}\\out\\build\\${name}",
"installRoot": "${projectDir}\\out\\install\\${name}",
"cmakeCommandArgs": "",
"buildCommandArgs": "",
"ctestCommandArgs": "",
"inheritEnvironments": [ "msvc_x86" ],
"variables": []
},
{
"name": "x64-Clang-Debug",
"generator": "Ninja",
"configurationType": "Debug",
"buildRoot": "${projectDir}\\out\\build\\${name}",
"installRoot": "${projectDir}\\out\\install\\${name}",
"cmakeCommandArgs": "",
"buildCommandArgs": "",
"ctestCommandArgs": "",
"inheritEnvironments": [ "clang_cl_x64_x64" ],
"variables": []
},
{
"name": "x64-Clang-Release",
"generator": "Ninja",
"configurationType": "RelWithDebInfo",
"buildRoot": "${projectDir}\\out\\build\\${name}",
"installRoot": "${projectDir}\\out\\install\\${name}",
"cmakeCommandArgs": "",
"buildCommandArgs": "",
"ctestCommandArgs": "",
"inheritEnvironments": [ "clang_cl_x64_x64" ],
"variables": []
},
{
"name": "x86-Clang-Debug",
"generator": "Ninja",
"configurationType": "Debug",
"buildRoot": "${projectDir}\\out\\build\\${name}",
"installRoot": "${projectDir}\\out\\install\\${name}",
"cmakeCommandArgs": "",
"buildCommandArgs": "",
"ctestCommandArgs": "",
"inheritEnvironments": [ "clang_cl_x86" ],
"variables": []
},
{
"name": "x86-Clang-Release",
"generator": "Ninja",
"configurationType": "RelWithDebInfo",
"buildRoot": "${projectDir}\\out\\build\\${name}",
"installRoot": "${projectDir}\\out\\install\\${name}",
"cmakeCommandArgs": "",
"buildCommandArgs": "",
"ctestCommandArgs": "",
"inheritEnvironments": [ "clang_cl_x86" ],
"variables": []
}
]
}
{
"configurations": [
{
"name": "x64-Debug",
"generator": "Ninja",
"configurationType": "Debug",
"inheritEnvironments": ["msvc_x64_x64"],
"buildRoot": "${projectDir}\\out\\build\\${name}",
"installRoot": "${projectDir}\\out\\install\\${name}",
"cmakeCommandArgs": "",
"buildCommandArgs": "",
"ctestCommandArgs": "",
"variables": []
},
{
"name": "x64-Release",
"generator": "Ninja",
"configurationType": "RelWithDebInfo",
"buildRoot": "${projectDir}\\out\\build\\${name}",
"installRoot": "${projectDir}\\out\\install\\${name}",
"cmakeCommandArgs": "",
"buildCommandArgs": "",
"ctestCommandArgs": "",
"inheritEnvironments": ["msvc_x64_x64"],
"variables": []
},
{
"name": "x86-Debug",
"generator": "Ninja",
"configurationType": "Debug",
"buildRoot": "${projectDir}\\out\\build\\${name}",
"installRoot": "${projectDir}\\out\\install\\${name}",
"cmakeCommandArgs": "",
"buildCommandArgs": "",
"ctestCommandArgs": "",
"inheritEnvironments": ["msvc_x86"],
"variables": []
},
{
"name": "x86-Release",
"generator": "Ninja",
"configurationType": "RelWithDebInfo",
"buildRoot": "${projectDir}\\out\\build\\${name}",
"installRoot": "${projectDir}\\out\\install\\${name}",
"cmakeCommandArgs": "",
"buildCommandArgs": "",
"ctestCommandArgs": "",
"inheritEnvironments": ["msvc_x86"],
"variables": []
},
{
"name": "x64-Clang-Debug",
"generator": "Ninja",
"configurationType": "Debug",
"buildRoot": "${projectDir}\\out\\build\\${name}",
"installRoot": "${projectDir}\\out\\install\\${name}",
"cmakeCommandArgs": "",
"buildCommandArgs": "",
"ctestCommandArgs": "",
"inheritEnvironments": ["clang_cl_x64_x64"],
"variables": []
},
{
"name": "x64-Clang-Release",
"generator": "Ninja",
"configurationType": "RelWithDebInfo",
"buildRoot": "${projectDir}\\out\\build\\${name}",
"installRoot": "${projectDir}\\out\\install\\${name}",
"cmakeCommandArgs": "",
"buildCommandArgs": "",
"ctestCommandArgs": "",
"inheritEnvironments": ["clang_cl_x64_x64"],
"variables": []
},
{
"name": "x86-Clang-Debug",
"generator": "Ninja",
"configurationType": "Debug",
"buildRoot": "${projectDir}\\out\\build\\${name}",
"installRoot": "${projectDir}\\out\\install\\${name}",
"cmakeCommandArgs": "",
"buildCommandArgs": "",
"ctestCommandArgs": "",
"inheritEnvironments": ["clang_cl_x86"],
"variables": []
},
{
"name": "x86-Clang-Release",
"generator": "Ninja",
"configurationType": "RelWithDebInfo",
"buildRoot": "${projectDir}\\out\\build\\${name}",
"installRoot": "${projectDir}\\out\\install\\${name}",
"cmakeCommandArgs": "",
"buildCommandArgs": "",
"ctestCommandArgs": "",
"inheritEnvironments": ["clang_cl_x86"],
"variables": []
}
]
}

@ -1,189 +1,189 @@
<?xml version="1.0" encoding="utf-8"?>
<!--
/// Copyright 2021 The Tint Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
-->
<AutoVisualizer xmlns="http://schemas.microsoft.com/vstudio/debugger/natvis/2010">
<Type Name="tint::Symbol">
<!-- Requires TINT_SYMBOL_STORE_DEBUG_NAME defined to 1 -->
<DisplayString Optional="true">{debug_name_,sb}</DisplayString>
</Type>
<Type Name="tint::ast::AssignmentStatement">
<DisplayString>{*lhs} = {*rhs};</DisplayString>
<Expand>
<Item Name="lhs">*lhs</Item>
<Item Name="rhs">*rhs</Item>
</Expand>
</Type>
<Type Name="tint::ast::IfStatement">
<DisplayString Condition="else_statements.size() == 0">if ({*condition}) {*body}</DisplayString>
<DisplayString Condition="else_statements.size() == 1">if ({*condition}) {*body} {*else_statements[0]} </DisplayString>
<DisplayString Condition="else_statements.size() == 2">if ({*condition}) {*body} {*else_statements[0]} {*else_statements[1]} </DisplayString>
<DisplayString Condition="else_statements.size() == 3">if ({*condition}) {*body} {*else_statements[0]} {*else_statements[1]} {*else_statements[2]}</DisplayString>
<DisplayString Condition="else_statements.size() > 3">if ({*condition}) {*body} {*else_statements[0]} {*else_statements[1]} {*else_statements[2]} else {else_statements.size()-3} more...</DisplayString>
</Type>
<Type Name="tint::ast::ElseStatement">
<DisplayString Condition="!condition">else {*body}</DisplayString>
<DisplayString Condition="!!condition">else if ({*condition}) {*body}</DisplayString>
</Type>
<Type Name="tint::ast::BlockStatement">
<DisplayString Condition="statements.size() == 1">{{ {*statements[0]} }} </DisplayString>
<DisplayString Condition="statements.size() == 2">{{ {*statements[0]} {*statements[1]} }} </DisplayString>
<DisplayString Condition="statements.size() == 3">{{ {*statements[0]} {*statements[1]} {*statements[2]} }} </DisplayString>
<DisplayString Condition="statements.size() > 3">{{ {*statements[0]} {*statements[1]} {*statements[2]} {statements.size()-3} more... }} </DisplayString>
</Type>
<Type Name="tint::ast::ReturnStatement">
<DisplayString Condition="!value">return;</DisplayString>
<DisplayString Condition="!!value">return {*value};</DisplayString>
</Type>
<Type Name="tint::ast::Function">
<DisplayString Condition="params.size() == 0">fn {symbol}() -> {*return_type} {*body}</DisplayString>
<DisplayString Condition="params.size() == 1">fn {symbol}({*params[0]}) -> {*return_type} {*body}</DisplayString>
<DisplayString Condition="params.size() == 2">fn {symbol}({*params[0]} {*params[1]}) -> {*return_type} {*body}</DisplayString>
<DisplayString Condition="params.size() == 3">fn {symbol}({*params[0]} {*params[1]} {*params[2]}) -> {*return_type} {*body}</DisplayString>
<DisplayString Condition="params.size() > 3">fn {symbol}({*params[0]} {*params[1]} {*params[2]} {params.size()-3} more...) -> {*return_type} {*body}</DisplayString>
</Type>
<Type Name="tint::ast::IdentifierExpression">
<!--the ",sb" specifier removes the double quotes on the displayed string -->
<DisplayString>{symbol}</DisplayString>
<Expand>
<Item Name="symbol">symbol</Item>
</Expand>
</Type>
<Type Name="tint::ast::IndexAccessorExpression">
<DisplayString>{*object}[{*index}]</DisplayString>
<Expand>
<Item Name="object">*object</Item>
<Item Name="index">*index</Item>
</Expand>
</Type>
<Type Name="tint::ast::MemberAccessorExpression">
<DisplayString>{*structure}.{*member}</DisplayString>
<Expand>
<Item Name="structure">*structure</Item>
<Item Name="member">*member</Item>
</Expand>
</Type>
<Type Name="tint::ast::Variable">
<!-- Hack: we can deduce that this variable is a parameter if it's const with a type but no constructor, which is illegal for a let -->
<DisplayString Condition=" is_const &amp; !!type &amp; !constructor">{symbol} : {*type}</DisplayString>
<DisplayString Condition=" is_const &amp; !!type &amp; !!constructor">let {symbol} : {*type} = {*constructor}</DisplayString>
<DisplayString Condition=" is_const &amp; !type &amp; !constructor">let {symbol} = {*constructor}</DisplayString>
<DisplayString Condition="!is_const &amp; !!type &amp; !!constructor">var {symbol} : {*type} = {*constructor}</DisplayString>
<DisplayString Condition="!is_const &amp; !type &amp; !!constructor">var {symbol} = {*constructor}</DisplayString>
<DisplayString Condition="!is_const &amp; !!type &amp; !constructor">var {symbol}</DisplayString>
</Type>
<Type Name="tint::ast::VariableDeclStatement">
<DisplayString>{*variable};</DisplayString>
</Type>
<Type Name="tint::ast::UintLiteralExpression">
<DisplayString>{value}</DisplayString>
</Type>
<Type Name="tint::ast::SintLiteralExpression">
<DisplayString>{value}</DisplayString>
</Type>
<Type Name="tint::ast::BoolLiteralExpression">
<DisplayString>{value}</DisplayString>
</Type>
<Type Name="tint::ast::Void">
<DisplayString>void</DisplayString>
</Type>
<Type Name="tint::ast::UnaryOpExpression">
<DisplayString Condition="op==tint::ast::UnaryOp::kAddressOf">&amp;({expr})</DisplayString>
<DisplayString Condition="op==tint::ast::UnaryOp::kComplement">~({expr})</DisplayString>
<DisplayString Condition="op==tint::ast::UnaryOp::kIndirection">*({expr})</DisplayString>
<DisplayString Condition="op==tint::ast::UnaryOp::kNegation">-({expr})</DisplayString>
<DisplayString Condition="op==tint::ast::UnaryOp::kNot">!({expr})</DisplayString>
</Type>
<Type Name="tint::ast::BinaryExpression">
<DisplayString Condition="op==tint::ast::BinaryOp::kNone">({*lhs} NONE {*rhs})</DisplayString>
<DisplayString Condition="op==tint::ast::BinaryOp::kAnd">({*lhs} &amp; {*rhs})</DisplayString>
<DisplayString Condition="op==tint::ast::BinaryOp::kOr">({*lhs} | {*rhs})</DisplayString>
<DisplayString Condition="op==tint::ast::BinaryOp::kXor">({*lhs} ^ {*rhs})</DisplayString>
<DisplayString Condition="op==tint::ast::BinaryOp::kLogicalAnd">({*lhs} &amp;&amp; {*rhs})</DisplayString>
<DisplayString Condition="op==tint::ast::BinaryOp::kLogicalOr">({*lhs} || {*rhs})</DisplayString>
<DisplayString Condition="op==tint::ast::BinaryOp::kEqual">({*lhs} == {*rhs})</DisplayString>
<DisplayString Condition="op==tint::ast::BinaryOp::kNotEqual">({*lhs} != {*rhs})</DisplayString>
<DisplayString Condition="op==tint::ast::BinaryOp::kLessThan">({*lhs} &lt; {*rhs})</DisplayString>
<DisplayString Condition="op==tint::ast::BinaryOp::kGreaterThan">({*lhs} &gt; {*rhs})</DisplayString>
<DisplayString Condition="op==tint::ast::BinaryOp::kLessThanEqual">({*lhs} &lt;= {*rhs})</DisplayString>
<DisplayString Condition="op==tint::ast::BinaryOp::kGreaterThanEqual">({*lhs} &gt;= {*rhs})</DisplayString>
<DisplayString Condition="op==tint::ast::BinaryOp::kShiftLeft">({*lhs} &lt;&lt; {*rhs})</DisplayString>
<DisplayString Condition="op==tint::ast::BinaryOp::kShiftRight">({*lhs} >> {*rhs})</DisplayString>
<DisplayString Condition="op==tint::ast::BinaryOp::kAdd">({*lhs} + {*rhs})</DisplayString>
<DisplayString Condition="op==tint::ast::BinaryOp::kSubtract">({*lhs} - {*rhs})</DisplayString>
<DisplayString Condition="op==tint::ast::BinaryOp::kMultiply">({*lhs} * {*rhs})</DisplayString>
<DisplayString Condition="op==tint::ast::BinaryOp::kDivide">({*lhs} / {*rhs})</DisplayString>
<DisplayString Condition="op==tint::ast::BinaryOp::kModulo">({*lhs} % {*rhs})</DisplayString>
</Type>
<Type Name="tint::ast::CallExpression">
<DisplayString Condition="args.size() == 0">{target}()</DisplayString>
<DisplayString Condition="args.size() == 1">{target}({*args[0]})</DisplayString>
<DisplayString Condition="args.size() == 2">{target}({*args[0]}, {*args[1]})</DisplayString>
<DisplayString Condition="args.size() == 3">{target}({*args[0]}, {*args[1]}, {*args[2]})</DisplayString>
<DisplayString Condition="args.size() > 3">{target}({*args[0]}, {*args[1]}, {*args[2]}, {args.size()-3} more...)</DisplayString>
<!-- TODO: add more overloads -->
</Type>
<Type Name="tint::ast::CallExpression::Target">
<DisplayString Condition ="name != nullptr">{*name}</DisplayString>
<DisplayString Condition ="name == nullptr">{*type}</DisplayString>
</Type>
<Type Name="tint::ast::Array">
<DisplayString Condition="count != nullptr">array&lt;{*type},{*count}&gt;</DisplayString>
<DisplayString Condition="count == nullptr">array&lt;{*type}&gt;</DisplayString>
</Type>
<Type Name="tint::ast::TypeName">
<DisplayString>{name}</DisplayString>
</Type>
<Type Name="tint::ast::Bool">
<DisplayString>bool</DisplayString>
</Type>
<Type Name="tint::ast::I32">
<DisplayString>i32</DisplayString>
</Type>
<Type Name="tint::ast::U32">
<DisplayString>u32</DisplayString>
</Type>
<Type Name="tint::ast::F32">
<DisplayString>f32</DisplayString>
</Type>
</AutoVisualizer>
<?xml version="1.0" encoding="utf-8"?>
<!--
/// Copyright 2021 The Tint Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
-->
<AutoVisualizer xmlns="http://schemas.microsoft.com/vstudio/debugger/natvis/2010">
<Type Name="tint::Symbol">
<!-- Requires TINT_SYMBOL_STORE_DEBUG_NAME defined to 1 -->
<DisplayString Optional="true">{debug_name_,sb}</DisplayString>
</Type>
<Type Name="tint::ast::AssignmentStatement">
<DisplayString>{*lhs} = {*rhs};</DisplayString>
<Expand>
<Item Name="lhs">*lhs</Item>
<Item Name="rhs">*rhs</Item>
</Expand>
</Type>
<Type Name="tint::ast::IfStatement">
<DisplayString Condition="else_statements.size() == 0">if ({*condition}) {*body}</DisplayString>
<DisplayString Condition="else_statements.size() == 1">if ({*condition}) {*body} {*else_statements[0]} </DisplayString>
<DisplayString Condition="else_statements.size() == 2">if ({*condition}) {*body} {*else_statements[0]} {*else_statements[1]} </DisplayString>
<DisplayString Condition="else_statements.size() == 3">if ({*condition}) {*body} {*else_statements[0]} {*else_statements[1]} {*else_statements[2]}</DisplayString>
<DisplayString Condition="else_statements.size() > 3">if ({*condition}) {*body} {*else_statements[0]} {*else_statements[1]} {*else_statements[2]} else {else_statements.size()-3} more...</DisplayString>
</Type>
<Type Name="tint::ast::ElseStatement">
<DisplayString Condition="!condition">else {*body}</DisplayString>
<DisplayString Condition="!!condition">else if ({*condition}) {*body}</DisplayString>
</Type>
<Type Name="tint::ast::BlockStatement">
<DisplayString Condition="statements.size() == 1">{{ {*statements[0]} }} </DisplayString>
<DisplayString Condition="statements.size() == 2">{{ {*statements[0]} {*statements[1]} }} </DisplayString>
<DisplayString Condition="statements.size() == 3">{{ {*statements[0]} {*statements[1]} {*statements[2]} }} </DisplayString>
<DisplayString Condition="statements.size() > 3">{{ {*statements[0]} {*statements[1]} {*statements[2]} {statements.size()-3} more... }} </DisplayString>
</Type>
<Type Name="tint::ast::ReturnStatement">
<DisplayString Condition="!value">return;</DisplayString>
<DisplayString Condition="!!value">return {*value};</DisplayString>
</Type>
<Type Name="tint::ast::Function">
<DisplayString Condition="params.size() == 0">fn {symbol}() -> {*return_type} {*body}</DisplayString>
<DisplayString Condition="params.size() == 1">fn {symbol}({*params[0]}) -> {*return_type} {*body}</DisplayString>
<DisplayString Condition="params.size() == 2">fn {symbol}({*params[0]} {*params[1]}) -> {*return_type} {*body}</DisplayString>
<DisplayString Condition="params.size() == 3">fn {symbol}({*params[0]} {*params[1]} {*params[2]}) -> {*return_type} {*body}</DisplayString>
<DisplayString Condition="params.size() > 3">fn {symbol}({*params[0]} {*params[1]} {*params[2]} {params.size()-3} more...) -> {*return_type} {*body}</DisplayString>
</Type>
<Type Name="tint::ast::IdentifierExpression">
<!--the ",sb" specifier removes the double quotes on the displayed string -->
<DisplayString>{symbol}</DisplayString>
<Expand>
<Item Name="symbol">symbol</Item>
</Expand>
</Type>
<Type Name="tint::ast::IndexAccessorExpression">
<DisplayString>{*object}[{*index}]</DisplayString>
<Expand>
<Item Name="object">*object</Item>
<Item Name="index">*index</Item>
</Expand>
</Type>
<Type Name="tint::ast::MemberAccessorExpression">
<DisplayString>{*structure}.{*member}</DisplayString>
<Expand>
<Item Name="structure">*structure</Item>
<Item Name="member">*member</Item>
</Expand>
</Type>
<Type Name="tint::ast::Variable">
<!-- Hack: we can deduce that this variable is a parameter if it's const with a type but no constructor, which is illegal for a let -->
<DisplayString Condition=" is_const &amp; !!type &amp; !constructor">{symbol} : {*type}</DisplayString>
<DisplayString Condition=" is_const &amp; !!type &amp; !!constructor">let {symbol} : {*type} = {*constructor}</DisplayString>
<DisplayString Condition=" is_const &amp; !type &amp; !constructor">let {symbol} = {*constructor}</DisplayString>
<DisplayString Condition="!is_const &amp; !!type &amp; !!constructor">var {symbol} : {*type} = {*constructor}</DisplayString>
<DisplayString Condition="!is_const &amp; !type &amp; !!constructor">var {symbol} = {*constructor}</DisplayString>
<DisplayString Condition="!is_const &amp; !!type &amp; !constructor">var {symbol}</DisplayString>
</Type>
<Type Name="tint::ast::VariableDeclStatement">
<DisplayString>{*variable};</DisplayString>
</Type>
<Type Name="tint::ast::UintLiteralExpression">
<DisplayString>{value}</DisplayString>
</Type>
<Type Name="tint::ast::SintLiteralExpression">
<DisplayString>{value}</DisplayString>
</Type>
<Type Name="tint::ast::BoolLiteralExpression">
<DisplayString>{value}</DisplayString>
</Type>
<Type Name="tint::ast::Void">
<DisplayString>void</DisplayString>
</Type>
<Type Name="tint::ast::UnaryOpExpression">
<DisplayString Condition="op==tint::ast::UnaryOp::kAddressOf">&amp;({expr})</DisplayString>
<DisplayString Condition="op==tint::ast::UnaryOp::kComplement">~({expr})</DisplayString>
<DisplayString Condition="op==tint::ast::UnaryOp::kIndirection">*({expr})</DisplayString>
<DisplayString Condition="op==tint::ast::UnaryOp::kNegation">-({expr})</DisplayString>
<DisplayString Condition="op==tint::ast::UnaryOp::kNot">!({expr})</DisplayString>
</Type>
<Type Name="tint::ast::BinaryExpression">
<DisplayString Condition="op==tint::ast::BinaryOp::kNone">({*lhs} NONE {*rhs})</DisplayString>
<DisplayString Condition="op==tint::ast::BinaryOp::kAnd">({*lhs} &amp; {*rhs})</DisplayString>
<DisplayString Condition="op==tint::ast::BinaryOp::kOr">({*lhs} | {*rhs})</DisplayString>
<DisplayString Condition="op==tint::ast::BinaryOp::kXor">({*lhs} ^ {*rhs})</DisplayString>
<DisplayString Condition="op==tint::ast::BinaryOp::kLogicalAnd">({*lhs} &amp;&amp; {*rhs})</DisplayString>
<DisplayString Condition="op==tint::ast::BinaryOp::kLogicalOr">({*lhs} || {*rhs})</DisplayString>
<DisplayString Condition="op==tint::ast::BinaryOp::kEqual">({*lhs} == {*rhs})</DisplayString>
<DisplayString Condition="op==tint::ast::BinaryOp::kNotEqual">({*lhs} != {*rhs})</DisplayString>
<DisplayString Condition="op==tint::ast::BinaryOp::kLessThan">({*lhs} &lt; {*rhs})</DisplayString>
<DisplayString Condition="op==tint::ast::BinaryOp::kGreaterThan">({*lhs} &gt; {*rhs})</DisplayString>
<DisplayString Condition="op==tint::ast::BinaryOp::kLessThanEqual">({*lhs} &lt;= {*rhs})</DisplayString>
<DisplayString Condition="op==tint::ast::BinaryOp::kGreaterThanEqual">({*lhs} &gt;= {*rhs})</DisplayString>
<DisplayString Condition="op==tint::ast::BinaryOp::kShiftLeft">({*lhs} &lt;&lt; {*rhs})</DisplayString>
<DisplayString Condition="op==tint::ast::BinaryOp::kShiftRight">({*lhs} >> {*rhs})</DisplayString>
<DisplayString Condition="op==tint::ast::BinaryOp::kAdd">({*lhs} + {*rhs})</DisplayString>
<DisplayString Condition="op==tint::ast::BinaryOp::kSubtract">({*lhs} - {*rhs})</DisplayString>
<DisplayString Condition="op==tint::ast::BinaryOp::kMultiply">({*lhs} * {*rhs})</DisplayString>
<DisplayString Condition="op==tint::ast::BinaryOp::kDivide">({*lhs} / {*rhs})</DisplayString>
<DisplayString Condition="op==tint::ast::BinaryOp::kModulo">({*lhs} % {*rhs})</DisplayString>
</Type>
<Type Name="tint::ast::CallExpression">
<DisplayString Condition="args.size() == 0">{target}()</DisplayString>
<DisplayString Condition="args.size() == 1">{target}({*args[0]})</DisplayString>
<DisplayString Condition="args.size() == 2">{target}({*args[0]}, {*args[1]})</DisplayString>
<DisplayString Condition="args.size() == 3">{target}({*args[0]}, {*args[1]}, {*args[2]})</DisplayString>
<DisplayString Condition="args.size() > 3">{target}({*args[0]}, {*args[1]}, {*args[2]}, {args.size()-3} more...)</DisplayString>
<!-- TODO: add more overloads -->
</Type>
<Type Name="tint::ast::CallExpression::Target">
<DisplayString Condition ="name != nullptr">{*name}</DisplayString>
<DisplayString Condition ="name == nullptr">{*type}</DisplayString>
</Type>
<Type Name="tint::ast::Array">
<DisplayString Condition="count != nullptr">array&lt;{*type},{*count}&gt;</DisplayString>
<DisplayString Condition="count == nullptr">array&lt;{*type}&gt;</DisplayString>
</Type>
<Type Name="tint::ast::TypeName">
<DisplayString>{name}</DisplayString>
</Type>
<Type Name="tint::ast::Bool">
<DisplayString>bool</DisplayString>
</Type>
<Type Name="tint::ast::I32">
<DisplayString>i32</DisplayString>
</Type>
<Type Name="tint::ast::U32">
<DisplayString>u32</DisplayString>
</Type>
<Type Name="tint::ast::F32">
<DisplayString>f32</DisplayString>
</Type>
</AutoVisualizer>

@ -1,63 +1,63 @@
struct Uniforms {
u_scale : vec2<f32>,
u_offset : vec2<f32>,
};
@binding(0) @group(0) var<uniform> uniforms : Uniforms;
struct VertexOutputs {
@location(0) texcoords : vec2<f32>,
@builtin(position) position : vec4<f32>,
};
@stage(vertex) fn vs_main(
@builtin(vertex_index) VertexIndex : u32
) -> VertexOutputs {
var texcoord = array<vec2<f32>, 3>(
vec2<f32>(-0.5, 0.0),
vec2<f32>( 1.5, 0.0),
vec2<f32>( 0.5, 2.0));
var output : VertexOutputs;
output.position = vec4<f32>((texcoord[VertexIndex] * 2.0 - vec2<f32>(1.0, 1.0)), 0.0, 1.0);
// Y component of scale is calculated by the copySizeHeight / textureHeight. Only
// flipY case can get negative number.
var flipY = uniforms.u_scale.y < 0.0;
// Texture coordinate takes top-left as origin point. We need to map the
// texture to triangle carefully.
if (flipY) {
// We need to get the mirror positions(mirrored based on y = 0.5) on flip cases.
// Adopt transform to src texture and then mapping it to triangle coord which
// do a +1 shift on Y dimension will help us got that mirror position perfectly.
output.texcoords = (texcoord[VertexIndex] * uniforms.u_scale + uniforms.u_offset) *
vec2<f32>(1.0, -1.0) + vec2<f32>(0.0, 1.0);
} else {
// For the normal case, we need to get the exact position.
// So mapping texture to triangle firstly then adopt the transform.
output.texcoords = (texcoord[VertexIndex] *
vec2<f32>(1.0, -1.0) + vec2<f32>(0.0, 1.0)) *
uniforms.u_scale + uniforms.u_offset;
}
return output;
}
@binding(1) @group(0) var mySampler: sampler;
@binding(2) @group(0) var myTexture: texture_2d<f32>;
@stage(fragment) fn fs_main(
@location(0) texcoord : vec2<f32>
) -> @location(0) vec4<f32> {
// Clamp the texcoord and discard the out-of-bound pixels.
var clampedTexcoord =
clamp(texcoord, vec2<f32>(0.0, 0.0), vec2<f32>(1.0, 1.0));
if (!all(clampedTexcoord == texcoord)) {
discard;
}
var srcColor = textureSample(myTexture, mySampler, texcoord);
// Swizzling of texture formats when sampling / rendering is handled by the
// hardware so we don't need special logic in this shader. This is covered by tests.
return srcColor;
}
struct Uniforms {
u_scale : vec2<f32>,
u_offset : vec2<f32>,
};
@binding(0) @group(0) var<uniform> uniforms : Uniforms;
struct VertexOutputs {
@location(0) texcoords : vec2<f32>,
@builtin(position) position : vec4<f32>,
};
@stage(vertex) fn vs_main(
@builtin(vertex_index) VertexIndex : u32
) -> VertexOutputs {
var texcoord = array<vec2<f32>, 3>(
vec2<f32>(-0.5, 0.0),
vec2<f32>( 1.5, 0.0),
vec2<f32>( 0.5, 2.0));
var output : VertexOutputs;
output.position = vec4<f32>((texcoord[VertexIndex] * 2.0 - vec2<f32>(1.0, 1.0)), 0.0, 1.0);
// Y component of scale is calculated by the copySizeHeight / textureHeight. Only
// flipY case can get negative number.
var flipY = uniforms.u_scale.y < 0.0;
// Texture coordinate takes top-left as origin point. We need to map the
// texture to triangle carefully.
if (flipY) {
// We need to get the mirror positions(mirrored based on y = 0.5) on flip cases.
// Adopt transform to src texture and then mapping it to triangle coord which
// do a +1 shift on Y dimension will help us got that mirror position perfectly.
output.texcoords = (texcoord[VertexIndex] * uniforms.u_scale + uniforms.u_offset) *
vec2<f32>(1.0, -1.0) + vec2<f32>(0.0, 1.0);
} else {
// For the normal case, we need to get the exact position.
// So mapping texture to triangle firstly then adopt the transform.
output.texcoords = (texcoord[VertexIndex] *
vec2<f32>(1.0, -1.0) + vec2<f32>(0.0, 1.0)) *
uniforms.u_scale + uniforms.u_offset;
}
return output;
}
@binding(1) @group(0) var mySampler: sampler;
@binding(2) @group(0) var myTexture: texture_2d<f32>;
@stage(fragment) fn fs_main(
@location(0) texcoord : vec2<f32>
) -> @location(0) vec4<f32> {
// Clamp the texcoord and discard the out-of-bound pixels.
var clampedTexcoord =
clamp(texcoord, vec2<f32>(0.0, 0.0), vec2<f32>(1.0, 1.0));
if (!all(clampedTexcoord == texcoord)) {
discard;
}
var srcColor = textureSample(myTexture, mySampler, texcoord);
// Swizzling of texture formats when sampling / rendering is handled by the
// hardware so we don't need special logic in this shader. This is covered by tests.
return srcColor;
}

@ -1,28 +1,28 @@
// 1112.wgsl
@group(0) @binding(0) var Sampler: sampler;
@group(0) @binding(1) var randomTexture: texture_2d<f32>;
@group(0) @binding(2) var depthTexture: texture_2d<f32>;
@stage(fragment)
fn main(@location(0) vUV : vec2<f32>) -> @location(0) vec4<f32> {
let random: vec3<f32> = textureSample(randomTexture, Sampler, vUV).rgb;
var i = 0;
loop {
if (i < 1) {
} else {
break;
}
let offset : vec3<f32> = vec3<f32>(random.x);
if (offset.x < 0.0 || offset.y < 0.0 || offset.x > 1.0 || offset.y > 1.0) {
i = i + 1;
continue;
}
let sampleDepth : f32 = textureSample(depthTexture, Sampler, offset.xy).r;
i = i + 1;
}
return vec4<f32>(1.0);
}
// 1112.wgsl
@group(0) @binding(0) var Sampler: sampler;
@group(0) @binding(1) var randomTexture: texture_2d<f32>;
@group(0) @binding(2) var depthTexture: texture_2d<f32>;
@stage(fragment)
fn main(@location(0) vUV : vec2<f32>) -> @location(0) vec4<f32> {
let random: vec3<f32> = textureSample(randomTexture, Sampler, vUV).rgb;
var i = 0;
loop {
if (i < 1) {
} else {
break;
}
let offset : vec3<f32> = vec3<f32>(random.x);
if (offset.x < 0.0 || offset.y < 0.0 || offset.x > 1.0 || offset.y > 1.0) {
i = i + 1;
continue;
}
let sampleDepth : f32 = textureSample(depthTexture, Sampler, offset.xy).r;
i = i + 1;
}
return vec4<f32>(1.0);
}

@ -1,23 +1,23 @@
struct Simulation {
i : u32,
};
struct Particle {
position : array<vec3<f32>, 8>,
lifetime : f32,
color : vec4<f32>,
velocity : vec3<f32>,
};
struct Particles {
p : array<Particle>,
};
@group(1) @binding(3) var<storage, read> particles : Particles;
@group(1) @binding(4) var<uniform> sim : Simulation;
@stage(compute) @workgroup_size(1)
fn main() {
var particle = particles.p[0];
particle.position[sim.i] = particle.position[sim.i];
}
struct Simulation {
i : u32,
};
struct Particle {
position : array<vec3<f32>, 8>,
lifetime : f32,
color : vec4<f32>,
velocity : vec3<f32>,
};
struct Particles {
p : array<Particle>,
};
@group(1) @binding(3) var<storage, read> particles : Particles;
@group(1) @binding(4) var<uniform> sim : Simulation;
@stage(compute) @workgroup_size(1)
fn main() {
var particle = particles.p[0];
particle.position[sim.i] = particle.position[sim.i];
}

@ -1,12 +1,12 @@
struct Uniforms {
i : u32,
j : u32,
};
@group(1) @binding(4) var<uniform> uniforms : Uniforms;
@stage(compute) @workgroup_size(1)
fn main() {
var m1 : mat2x4<f32>;
m1[uniforms.i][0] = 1.0;
}
struct Uniforms {
i : u32,
j : u32,
};
@group(1) @binding(4) var<uniform> uniforms : Uniforms;
@stage(compute) @workgroup_size(1)
fn main() {
var m1 : mat2x4<f32>;
m1[uniforms.i][0] = 1.0;
}

@ -1,12 +1,12 @@
struct Uniforms {
i : u32,
j : u32,
};
@group(1) @binding(4) var<uniform> uniforms : Uniforms;
@stage(compute) @workgroup_size(1)
fn main() {
var m1 : mat2x4<f32>;
m1[uniforms.i][uniforms.j] = 1.0;
}
struct Uniforms {
i : u32,
j : u32,
};
@group(1) @binding(4) var<uniform> uniforms : Uniforms;
@stage(compute) @workgroup_size(1)
fn main() {
var m1 : mat2x4<f32>;
m1[uniforms.i][uniforms.j] = 1.0;
}

@ -1,13 +1,13 @@
struct Uniforms {
i : u32,
j : u32,
};
@group(1) @binding(4) var<uniform> uniforms : Uniforms;
var<private> m1 : mat2x4<f32>;
@stage(compute) @workgroup_size(1)
fn main() {
m1[0][uniforms.j] = 1.0;
}
struct Uniforms {
i : u32,
j : u32,
};
@group(1) @binding(4) var<uniform> uniforms : Uniforms;
var<private> m1 : mat2x4<f32>;
@stage(compute) @workgroup_size(1)
fn main() {
m1[0][uniforms.j] = 1.0;
}

@ -1,12 +1,12 @@
struct Uniforms {
i : u32,
j : u32,
};
@group(1) @binding(4) var<uniform> uniforms : Uniforms;
@stage(compute) @workgroup_size(1)
fn main() {
var m1 : mat2x4<f32>;
m1[uniforms.i] = vec4<f32>(1.0);
}
struct Uniforms {
i : u32,
j : u32,
};
@group(1) @binding(4) var<uniform> uniforms : Uniforms;
@stage(compute) @workgroup_size(1)
fn main() {
var m1 : mat2x4<f32>;
m1[uniforms.i] = vec4<f32>(1.0);
}

@ -1,13 +1,13 @@
struct Uniforms {
i : u32,
j : u32,
};
@group(1) @binding(4) var<uniform> uniforms : Uniforms;
var<private> m1 : mat2x4<f32>;
@stage(compute) @workgroup_size(1)
fn main() {
m1[uniforms.i][0] = 1.0;
}
struct Uniforms {
i : u32,
j : u32,
};
@group(1) @binding(4) var<uniform> uniforms : Uniforms;
var<private> m1 : mat2x4<f32>;
@stage(compute) @workgroup_size(1)
fn main() {
m1[uniforms.i][0] = 1.0;
}

@ -1,13 +1,13 @@
struct Uniforms {
i : u32,
j : u32,
};
@group(1) @binding(4) var<uniform> uniforms : Uniforms;
var<private> m1 : mat2x4<f32>;
@stage(compute) @workgroup_size(1)
fn main() {
m1[uniforms.i][uniforms.j] = 1.0;
}
struct Uniforms {
i : u32,
j : u32,
};
@group(1) @binding(4) var<uniform> uniforms : Uniforms;
var<private> m1 : mat2x4<f32>;
@stage(compute) @workgroup_size(1)
fn main() {
m1[uniforms.i][uniforms.j] = 1.0;
}

@ -1,13 +1,13 @@
struct Uniforms {
i : u32,
j : u32,
};
@group(1) @binding(4) var<uniform> uniforms : Uniforms;
var<private> m1 : mat2x4<f32>;
@stage(compute) @workgroup_size(1)
fn main() {
m1[0][uniforms.j] = 1.0;
}
struct Uniforms {
i : u32,
j : u32,
};
@group(1) @binding(4) var<uniform> uniforms : Uniforms;
var<private> m1 : mat2x4<f32>;
@stage(compute) @workgroup_size(1)
fn main() {
m1[0][uniforms.j] = 1.0;
}

@ -1,13 +1,13 @@
struct Uniforms {
i : u32,
j : u32,
};
@group(1) @binding(4) var<uniform> uniforms : Uniforms;
var<private> m1 : mat2x4<f32>;
@stage(compute) @workgroup_size(1)
fn main() {
m1[uniforms.i] = vec4<f32>(1.0);
}
struct Uniforms {
i : u32,
j : u32,
};
@group(1) @binding(4) var<uniform> uniforms : Uniforms;
var<private> m1 : mat2x4<f32>;
@stage(compute) @workgroup_size(1)
fn main() {
m1[uniforms.i] = vec4<f32>(1.0);
}

@ -1,117 +1,117 @@
struct Scene {
vEyePosition : vec4<f32>,
};
struct Material {
vDiffuseColor : vec4<f32>,
vAmbientColor : vec3<f32>,
dummy: f32,
vEmissiveColor : vec3<f32>,
dummy2: f32,
};
struct Mesh {
visibility : f32,
};
var<private> fClipDistance3 : f32;
var<private> fClipDistance4 : f32;
@group(0) @binding(0) var<uniform> x_29 : Scene;
@group(0) @binding(1) var<uniform> x_49 : Material;
@group(0) @binding(2) var<uniform> x_137 : Mesh;
var<private> glFragColor : vec4<f32>;
fn main_1() {
var viewDirectionW : vec3<f32>;
var baseColor : vec4<f32>;
var diffuseColor : vec3<f32>;
var alpha : f32;
var normalW : vec3<f32>;
var uvOffset : vec2<f32>;
var baseAmbientColor : vec3<f32>;
var glossiness : f32;
var diffuseBase : vec3<f32>;
var shadow : f32;
var refractionColor : vec4<f32>;
var reflectionColor : vec4<f32>;
var emissiveColor : vec3<f32>;
var finalDiffuse : vec3<f32>;
var finalSpecular : vec3<f32>;
var color : vec4<f32>;
let x_9 : f32 = fClipDistance3;
if ((x_9 > 0.0)) {
discard;
}
let x_17 : f32 = fClipDistance4;
if ((x_17 > 0.0)) {
discard;
}
let x_34 : vec4<f32> = x_29.vEyePosition;
let x_38 : vec3<f32> = vec3<f32>(0., 0., 0.);
viewDirectionW = normalize((vec3<f32>(x_34.x, x_34.y, x_34.z) - x_38));
baseColor = vec4<f32>(1.0, 1.0, 1.0, 1.0);
let x_52 : vec4<f32> = x_49.vDiffuseColor;
diffuseColor = vec3<f32>(x_52.x, x_52.y, x_52.z);
let x_60 : f32 = x_49.vDiffuseColor.w;
alpha = x_60;
let x_62 : vec3<f32> = vec3<f32>(0., 0., 0.);
let x_64 : vec3<f32> = vec3<f32>(0., 0., 0.);
normalW = normalize(-(cross(dpdx(x_62), dpdy(x_64))));
uvOffset = vec2<f32>(0.0, 0.0);
let x_74 : vec4<f32> = vec4<f32>(0., 0., 0., 0.);
let x_76 : vec4<f32> = baseColor;
let x_78 : vec3<f32> = (vec3<f32>(x_76.x, x_76.y, x_76.z) * vec3<f32>(x_74.x, x_74.y, x_74.z));
let x_79 : vec4<f32> = baseColor;
baseColor = vec4<f32>(x_78.x, x_78.y, x_78.z, x_79.w);
baseAmbientColor = vec3<f32>(1.0, 1.0, 1.0);
glossiness = 0.0;
diffuseBase = vec3<f32>(0.0, 0.0, 0.0);
shadow = 1.0;
refractionColor = vec4<f32>(0.0, 0.0, 0.0, 1.0);
reflectionColor = vec4<f32>(0.0, 0.0, 0.0, 1.0);
let x_94 : vec3<f32> = x_49.vEmissiveColor;
emissiveColor = x_94;
let x_96 : vec3<f32> = diffuseBase;
let x_97 : vec3<f32> = diffuseColor;
let x_99 : vec3<f32> = emissiveColor;
let x_103 : vec3<f32> = x_49.vAmbientColor;
let x_108 : vec4<f32> = baseColor;
finalDiffuse = (clamp((((x_96 * x_97) + x_99) + x_103), vec3<f32>(0.0, 0.0, 0.0), vec3<f32>(1.0, 1.0, 1.0)) * vec3<f32>(x_108.x, x_108.y, x_108.z));
finalSpecular = vec3<f32>(0.0, 0.0, 0.0);
let x_113 : vec3<f32> = finalDiffuse;
let x_114 : vec3<f32> = baseAmbientColor;
let x_116 : vec3<f32> = finalSpecular;
let x_118 : vec4<f32> = reflectionColor;
let x_121 : vec4<f32> = refractionColor;
let x_123 : vec3<f32> = ((((x_113 * x_114) + x_116) + vec3<f32>(x_118.x, x_118.y, x_118.z)) + vec3<f32>(x_121.x, x_121.y, x_121.z));
let x_124 : f32 = alpha;
color = vec4<f32>(x_123.x, x_123.y, x_123.z, x_124);
let x_129 : vec4<f32> = color;
let x_132 : vec3<f32> = max(vec3<f32>(x_129.x, x_129.y, x_129.z), vec3<f32>(0.0, 0.0, 0.0));
let x_133 : vec4<f32> = color;
color = vec4<f32>(x_132.x, x_132.y, x_132.z, x_133.w);
let x_140 : f32 = x_137.visibility;
let x_142 : f32 = color.w;
color.w = (x_142 * x_140);
let x_147 : vec4<f32> = color;
glFragColor = x_147;
return;
}
struct main_out {
@location(0)
glFragColor_1 : vec4<f32>,
};
@stage(fragment)
fn main(@location(2) fClipDistance3_param : f32, @location(3) fClipDistance4_param : f32) -> main_out {
fClipDistance3 = fClipDistance3_param;
fClipDistance4 = fClipDistance4_param;
main_1();
return main_out(glFragColor);
}
struct Scene {
vEyePosition : vec4<f32>,
};
struct Material {
vDiffuseColor : vec4<f32>,
vAmbientColor : vec3<f32>,
dummy: f32,
vEmissiveColor : vec3<f32>,
dummy2: f32,
};
struct Mesh {
visibility : f32,
};
var<private> fClipDistance3 : f32;
var<private> fClipDistance4 : f32;
@group(0) @binding(0) var<uniform> x_29 : Scene;
@group(0) @binding(1) var<uniform> x_49 : Material;
@group(0) @binding(2) var<uniform> x_137 : Mesh;
var<private> glFragColor : vec4<f32>;
fn main_1() {
var viewDirectionW : vec3<f32>;
var baseColor : vec4<f32>;
var diffuseColor : vec3<f32>;
var alpha : f32;
var normalW : vec3<f32>;
var uvOffset : vec2<f32>;
var baseAmbientColor : vec3<f32>;
var glossiness : f32;
var diffuseBase : vec3<f32>;
var shadow : f32;
var refractionColor : vec4<f32>;
var reflectionColor : vec4<f32>;
var emissiveColor : vec3<f32>;
var finalDiffuse : vec3<f32>;
var finalSpecular : vec3<f32>;
var color : vec4<f32>;
let x_9 : f32 = fClipDistance3;
if ((x_9 > 0.0)) {
discard;
}
let x_17 : f32 = fClipDistance4;
if ((x_17 > 0.0)) {
discard;
}
let x_34 : vec4<f32> = x_29.vEyePosition;
let x_38 : vec3<f32> = vec3<f32>(0., 0., 0.);
viewDirectionW = normalize((vec3<f32>(x_34.x, x_34.y, x_34.z) - x_38));
baseColor = vec4<f32>(1.0, 1.0, 1.0, 1.0);
let x_52 : vec4<f32> = x_49.vDiffuseColor;
diffuseColor = vec3<f32>(x_52.x, x_52.y, x_52.z);
let x_60 : f32 = x_49.vDiffuseColor.w;
alpha = x_60;
let x_62 : vec3<f32> = vec3<f32>(0., 0., 0.);
let x_64 : vec3<f32> = vec3<f32>(0., 0., 0.);
normalW = normalize(-(cross(dpdx(x_62), dpdy(x_64))));
uvOffset = vec2<f32>(0.0, 0.0);
let x_74 : vec4<f32> = vec4<f32>(0., 0., 0., 0.);
let x_76 : vec4<f32> = baseColor;
let x_78 : vec3<f32> = (vec3<f32>(x_76.x, x_76.y, x_76.z) * vec3<f32>(x_74.x, x_74.y, x_74.z));
let x_79 : vec4<f32> = baseColor;
baseColor = vec4<f32>(x_78.x, x_78.y, x_78.z, x_79.w);
baseAmbientColor = vec3<f32>(1.0, 1.0, 1.0);
glossiness = 0.0;
diffuseBase = vec3<f32>(0.0, 0.0, 0.0);
shadow = 1.0;
refractionColor = vec4<f32>(0.0, 0.0, 0.0, 1.0);
reflectionColor = vec4<f32>(0.0, 0.0, 0.0, 1.0);
let x_94 : vec3<f32> = x_49.vEmissiveColor;
emissiveColor = x_94;
let x_96 : vec3<f32> = diffuseBase;
let x_97 : vec3<f32> = diffuseColor;
let x_99 : vec3<f32> = emissiveColor;
let x_103 : vec3<f32> = x_49.vAmbientColor;
let x_108 : vec4<f32> = baseColor;
finalDiffuse = (clamp((((x_96 * x_97) + x_99) + x_103), vec3<f32>(0.0, 0.0, 0.0), vec3<f32>(1.0, 1.0, 1.0)) * vec3<f32>(x_108.x, x_108.y, x_108.z));
finalSpecular = vec3<f32>(0.0, 0.0, 0.0);
let x_113 : vec3<f32> = finalDiffuse;
let x_114 : vec3<f32> = baseAmbientColor;
let x_116 : vec3<f32> = finalSpecular;
let x_118 : vec4<f32> = reflectionColor;
let x_121 : vec4<f32> = refractionColor;
let x_123 : vec3<f32> = ((((x_113 * x_114) + x_116) + vec3<f32>(x_118.x, x_118.y, x_118.z)) + vec3<f32>(x_121.x, x_121.y, x_121.z));
let x_124 : f32 = alpha;
color = vec4<f32>(x_123.x, x_123.y, x_123.z, x_124);
let x_129 : vec4<f32> = color;
let x_132 : vec3<f32> = max(vec3<f32>(x_129.x, x_129.y, x_129.z), vec3<f32>(0.0, 0.0, 0.0));
let x_133 : vec4<f32> = color;
color = vec4<f32>(x_132.x, x_132.y, x_132.z, x_133.w);
let x_140 : f32 = x_137.visibility;
let x_142 : f32 = color.w;
color.w = (x_142 * x_140);
let x_147 : vec4<f32> = color;
glFragColor = x_147;
return;
}
struct main_out {
@location(0)
glFragColor_1 : vec4<f32>,
};
@stage(fragment)
fn main(@location(2) fClipDistance3_param : f32, @location(3) fClipDistance4_param : f32) -> main_out {
fClipDistance3 = fClipDistance3_param;
fClipDistance4 = fClipDistance4_param;
main_1();
return main_out(glFragColor);
}

@ -1,48 +1,48 @@
struct Uniforms {
dstTextureFlipY : u32,
isFloat16 : u32,
isRGB10A2Unorm : u32,
channelCount : u32,
};
struct OutputBuf {
result : array<u32>,
};
@group(0) @binding(0) var src : texture_2d<f32>;
@group(0) @binding(1) var dst : texture_2d<f32>;
@group(0) @binding(2) var<storage_buffer, read_write> output : OutputBuf;
@group(0) @binding(3) var<uniform> uniforms : Uniforms;
//@builtin(global_invocation_id) var<in> GlobalInvocationID : vec3<u32>;
// Fp16 logic
// Infinity and NaN won't happen in this test case.
fn ConvertToFp16FloatValue(fp32 : f32) -> u32 {
return 1u;
}
@stage(compute) @workgroup_size(1, 1, 1)
fn main(@builtin(global_invocation_id) GlobalInvocationID : vec3<u32>) {
var size : vec2<i32> = textureDimensions(src);
var dstTexCoord : vec2<i32> = vec2<i32>(GlobalInvocationID.xy);
var srcTexCoord : vec2<i32> = dstTexCoord;
if (uniforms.dstTextureFlipY == 1u) {
srcTexCoord.y = size.y - dstTexCoord.y - 1;
}
var srcColor : vec4<f32> = textureLoad(src, srcTexCoord, 0);
var dstColor : vec4<f32> = textureLoad(dst, dstTexCoord, 0);
var success : bool = true;
var srcColorBits : vec4<u32>;
var dstColorBits : vec4<u32> = vec4<u32>(dstColor);
for (var i : u32 = 0u; i < uniforms.channelCount; i = i + 1u) {
srcColorBits[i] = ConvertToFp16FloatValue(srcColor[i]);
success = success && (srcColorBits[i] == dstColorBits[i]);
}
var outputIndex : u32 = GlobalInvocationID.y * u32(size.x) + GlobalInvocationID.x;
if (success) {
output.result[outputIndex] = u32(1);
} else {
output.result[outputIndex] = u32(0);
}
}
struct Uniforms {
dstTextureFlipY : u32,
isFloat16 : u32,
isRGB10A2Unorm : u32,
channelCount : u32,
};
struct OutputBuf {
result : array<u32>,
};
@group(0) @binding(0) var src : texture_2d<f32>;
@group(0) @binding(1) var dst : texture_2d<f32>;
@group(0) @binding(2) var<storage_buffer, read_write> output : OutputBuf;
@group(0) @binding(3) var<uniform> uniforms : Uniforms;
//@builtin(global_invocation_id) var<in> GlobalInvocationID : vec3<u32>;
// Fp16 logic
// Infinity and NaN won't happen in this test case.
fn ConvertToFp16FloatValue(fp32 : f32) -> u32 {
return 1u;
}
@stage(compute) @workgroup_size(1, 1, 1)
fn main(@builtin(global_invocation_id) GlobalInvocationID : vec3<u32>) {
var size : vec2<i32> = textureDimensions(src);
var dstTexCoord : vec2<i32> = vec2<i32>(GlobalInvocationID.xy);
var srcTexCoord : vec2<i32> = dstTexCoord;
if (uniforms.dstTextureFlipY == 1u) {
srcTexCoord.y = size.y - dstTexCoord.y - 1;
}
var srcColor : vec4<f32> = textureLoad(src, srcTexCoord, 0);
var dstColor : vec4<f32> = textureLoad(dst, dstTexCoord, 0);
var success : bool = true;
var srcColorBits : vec4<u32>;
var dstColorBits : vec4<u32> = vec4<u32>(dstColor);
for (var i : u32 = 0u; i < uniforms.channelCount; i = i + 1u) {
srcColorBits[i] = ConvertToFp16FloatValue(srcColor[i]);
success = success && (srcColorBits[i] == dstColorBits[i]);
}
var outputIndex : u32 = GlobalInvocationID.y * u32(size.x) + GlobalInvocationID.x;
if (success) {
output.result[outputIndex] = u32(1);
} else {
output.result[outputIndex] = u32(0);
}
}

@ -1,24 +1,24 @@
struct MyStruct {
f1 : f32,
};
type MyArray = array<f32, 10>;
// Global lets
let v1 = 1;
let v2 = 1u;
let v3 = 1.0;
let v4 = vec3<i32>(1, 1, 1);
let v5 = vec3<u32>(1u, 1u, 1u);
let v6 = vec3<f32>(1.0, 1.0, 1.0);
let v7 = mat3x3<f32>(vec3<f32>(1.0, 1.0, 1.0), vec3<f32>(1.0, 1.0, 1.0), vec3<f32>(1.0, 1.0, 1.0));
let v8 = MyStruct();
let v9 = MyArray();
@stage(fragment)
fn main() -> @location(0) vec4<f32> {
return vec4<f32>(0.0,0.0,0.0,0.0);
}
struct MyStruct {
f1 : f32,
};
type MyArray = array<f32, 10>;
// Global lets
let v1 = 1;
let v2 = 1u;
let v3 = 1.0;
let v4 = vec3<i32>(1, 1, 1);
let v5 = vec3<u32>(1u, 1u, 1u);
let v6 = vec3<f32>(1.0, 1.0, 1.0);
let v7 = mat3x3<f32>(vec3<f32>(1.0, 1.0, 1.0), vec3<f32>(1.0, 1.0, 1.0), vec3<f32>(1.0, 1.0, 1.0));
let v8 = MyStruct();
let v9 = MyArray();
@stage(fragment)
fn main() -> @location(0) vec4<f32> {
return vec4<f32>(0.0,0.0,0.0,0.0);
}

@ -1,39 +1,39 @@
struct MyStruct {
f1 : f32,
};
type MyArray = array<f32, 10>;
fn ret_i32() -> i32 { return 1; }
fn ret_u32() -> u32 { return 1u; }
fn ret_f32() -> f32 { return 1.0; }
fn ret_MyStruct() -> MyStruct { return MyStruct(); }
fn ret_MyArray() -> MyArray { return MyArray(); }
// Local lets
fn let_decls() {
let v1 = 1;
let v2 = 1u;
let v3 = 1.0;
let v4 = vec3<i32>(1, 1, 1);
let v5 = vec3<u32>(1u, 1u, 1u);
let v6 = vec3<f32>(1.0, 1.0, 1.0);
let v7 = mat3x3<f32>(v6, v6, v6);
let v8 = MyStruct(1.0);
let v9 = MyArray();
let v10 = ret_i32();
let v11 = ret_u32();
let v12 = ret_f32();
let v13 = ret_MyStruct();
let v14 = ret_MyStruct();
let v15 = ret_MyArray();
}
@stage(fragment)
fn main() -> @location(0) vec4<f32> {
return vec4<f32>(0.0,0.0,0.0,0.0);
}
struct MyStruct {
f1 : f32,
};
type MyArray = array<f32, 10>;
fn ret_i32() -> i32 { return 1; }
fn ret_u32() -> u32 { return 1u; }
fn ret_f32() -> f32 { return 1.0; }
fn ret_MyStruct() -> MyStruct { return MyStruct(); }
fn ret_MyArray() -> MyArray { return MyArray(); }
// Local lets
fn let_decls() {
let v1 = 1;
let v2 = 1u;
let v3 = 1.0;
let v4 = vec3<i32>(1, 1, 1);
let v5 = vec3<u32>(1u, 1u, 1u);
let v6 = vec3<f32>(1.0, 1.0, 1.0);
let v7 = mat3x3<f32>(v6, v6, v6);
let v8 = MyStruct(1.0);
let v9 = MyArray();
let v10 = ret_i32();
let v11 = ret_u32();
let v12 = ret_f32();
let v13 = ret_MyStruct();
let v14 = ret_MyStruct();
let v15 = ret_MyArray();
}
@stage(fragment)
fn main() -> @location(0) vec4<f32> {
return vec4<f32>(0.0,0.0,0.0,0.0);
}

@ -1,22 +1,22 @@
struct Uniforms {
i : u32,
};
struct InnerS {
v : i32,
};
struct OuterS {
a1 : array<InnerS, 8>,
};
@group(1) @binding(4) var<uniform> uniforms : Uniforms;
@stage(compute) @workgroup_size(1)
fn main() {
var v : InnerS;
var s1 : OuterS;
for (var i: i32 = 0; i < 4; i = i + 1) {
s1.a1[uniforms.i] = v;
}
}
struct Uniforms {
i : u32,
};
struct InnerS {
v : i32,
};
struct OuterS {
a1 : array<InnerS, 8>,
};
@group(1) @binding(4) var<uniform> uniforms : Uniforms;
@stage(compute) @workgroup_size(1)
fn main() {
var v : InnerS;
var s1 : OuterS;
for (var i: i32 = 0; i < 4; i = i + 1) {
s1.a1[uniforms.i] = v;
}
}